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Interatomic potentials have been widely used in atomistic simulations such as molecular dynamics. Recently,
frameworks to construct accurate interatomic potentials that combine a set of density functional theory (DFT)
calculations with machine learning techniques have been proposed. One of these methods is to use compressed
sensing to derive a sparse representation for the interatomic potential. This facilitates the control of the accuracy
of interatomic potentials. In this study, we demonstrate the applicability of compressed sensing to deriving the
interatomic potential of ten elemental metals, namely, Ag, Al, Au, Ca, Cu, Ga, In, K, Li, and Zn. For each
elemental metal, the interatomic potential is obtained from DFT calculations using elastic net regression. The
interatomic potentials are found to have prediction errors of less than 3.5 meV/atom, 0.03 eV/Å, and 0.15 GPa for
the energy, force, and the stress tensor, respectively, which enable the accurate prediction of physical properties
such as lattice constants and the phonon dispersion relationship.
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I. INTRODUCTION

Molecular dynamics (MD) has been a popular tool for
modeling a collection of interacting atoms within classical
mechanics [1]. The relationship between energy and atomic
coordinates, namely, the potential energy surface (PES), plays
a key role in MD simulations since the PES determines the
forces acting on atoms that originate from atomic interactions
and therefore the motion of atoms. As an alternative to first-
principles MD calculations, which provide the most accurate
PES [2], frameworks to estimate a reliable PES based on the
combination of density functional theory (DFT) calculations
and machine learning techniques have recently been proposed,
which are applicable to periodic systems [3,4]. The starting
point of these methods is that a DFT calculation is performed
for at least 103 different atomic configurations. A PES is then
constructed from the DFT training data set using regression
techniques to estimate the relationship between predictor and
observation variables. Its accuracy is known to be much better
than that of conventional interatomic potentials owing to the
flexibility of the method. The flexibility also makes it possible
to construct the PES for a wide range of materials using the
same method.

To estimate the PES from a data set of the energy for
many atomic configurations, a variety of methods can be
applied. For applications to molecules and clusters, spline
methods [5,6], interpolating moving least-squares methods
[7,8], modified Shepard interpolation and other interpolation
techniques [9–11], artificial neural networks [12–29], and the
reproducing kernel Hilbert space method [30,31] have been
used. However, only a few nonlinear regression techniques
such as artificial neural networks [3,32–37] and Gaussian
process regression [4] have been adopted to estimate the PES
for solids on account of the complex relationship between the
energy and crystal structure in solids. Thus, applications to
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solids have been limited to a small number of metallic [32,34],
covalent [3,4,35], and ionic materials [33].

In these methods, the PES is generally estimated by trans-
forming atomic positions into some descriptors. This plays
an essential role in constructing a PES that satisfies several
invariances, such as translational and rotational invariance, and
is transferable to structures composed of a different number of
atoms from those in the training data. Obviously, the accuracy
of the PES strongly depends on the selection of the descriptors.
So far, several descriptors for expressing atomic coordinates
have been proposed [38–43], although only some of them
have succeeded in obtaining accurate PESs. Descriptors are
preferably chosen without a priori knowledge of the energetics
of the target material. Therefore, it is desirable to establish a
method that enables automatic optimization of the descriptors
for constructing a PES.

The use of least absolute shrinkage and selection operator
(LASSO) regression [44,45] is a promising means of enabling
the automatic selection of descriptors. We previously intro-
duced a simple scheme to estimate the PES using LASSO
regression that was based on a set of simple basis functions and
a linear relationship between the energy and basis functions
[46], which was applied to the elemental metals of Na and
Mg. It was found that a sparse representation for the PES
with a small number of basis functions was efficiently derived
from relatively a large number of candidate basis functions
depending only on the distances between atoms. We also found
that the energy can be expressed by a linear relationship with
the basis functions. As a result, sparse PESs with prediction
errors of 1.3 and 0.9 meV/atom were obtained for Na and
Mg, respectively. In addition to our application of LASSO
regression for PES construction, it has recently been used to
obtain sparse representations for alloy thermodynamics [47],
interatomic force constants [48], and the PES for a molecule
[49].

The scheme to construct the PES on the basis of LASSO
regression with a linear relationship for energy has features as
follows. (1) Accuracy can be controlled in a transparent man-
ner. (2) A well-optimized sparse representation for the PES
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FIG. 1. (Color online) Relationship between total energy and
crystal structure.

is obtained, which can accelerate and increase the accuracy
of atomistic simulations while decreasing the computational
costs. (3) Information on the forces acting on atoms and stress
tensors can be included in the training data in a straightforward
manner. (4) Regression coefficients are generally determined
quickly using a standard least-squares technique.

In this study, we apply this scheme to construct PESs for
ten elemental metals, namely, Ag, Au, Al, Ca, Cu, Li, K, Ga,
In, and Zn. Here, we use elastic net regression, which is a
generalization of LASSO regression. This paper is organized
as follows. Section II presents the methodology including the
linear expression for the total energy, the basis functions, and
the regression techniques. Linear expressions for the forces
acting on atoms and the stress tensors are also derived from
the expression for the total energy. In Sec. III, the procedure
for optimizing the input factors used to estimate the PES is
described. In Sec. IV, the application of elastic net regression
to the ten elemental metals is demonstrated. Finally, we give a
conclusion in Sec. V.

II. METHODOLOGY

A. Linear expressions for total energy, forces acting
on atoms, and stress tensor

To model the relationship between the total energy and the
crystal structure, we adopt the linear expression for the total
energy proposed in Ref. [46]. Figure 1 shows the linear model
for the total energy, which is based on the widely accepted idea
that the total energy of a structure is equal to the sum of its
atomic energies [3,4]. Introducing a basis expansion derived
from a set of other atomic positions, this model assumes a
linear relationship between the energy of atom j in structure
i, E(i,j ), and the set of basis functions for atom j in structure
i, {b(i,j )

n }. The linear relationship between the atomic energy
and M given basis functions is expressed as

E(i,j ) =
M∑

n=0

wnb
(i,j )
n , (1)

where wn and b
(i,j )
n denote the expansion coefficients and basis

functions for atom j of structure i, respectively, and b
(i,j )
0 =

1. By applying the same expansion coefficients to identical
atomic species, the total energy of structure i composed of

N (i) atoms is derived as

E(i) =
∑

j

E(i,j )

=
∑

n

wn

⎡
⎣∑

j

b(i,j )
n

⎤
⎦

=
∑

n

wnx
(i)
n , (2)

where x(i)
n satisfies

x(i)
n =

∑
j

b(i,j )
n . (3)

This expression is applicable only to elemental systems.
Consequently, the total energy of structure i is expressed as a
linear relationship with the sum of the basis functions for all
atoms in structure i.

The forces acting on atoms and the stress tensor can be
given by linear equations as well as the total energy (see the
Appendix for details). The αth component of the force acting
on atom l and the virial stress tensor σαβ of structure i are
expressed as

F
(i)
l,α =

∑
n

wnx
(i,l,α)
force,n (4)

and

σ
(i)
αβ =

∑
n

wnx
(i,α,β)
stress,n, (5)

respectively, where x
(i,l,α)
force,n and x

(i,α,β)
stress,n can be derived from

the derivative of the basis functions with respect to the atomic
coordinates as will be shown later.

B. Estimation of regression coefficients

The expansion coefficients w = [w0,w1, . . . ,wM ]� char-
acterizing the energetics of a system can be estimated by
regression, which is a machine learning method for estimating
the relationship between the predictor and observation vari-
ables using a training data set. Regarding the training data,
the energy, the forces acting on atoms, and the stress tensor
computed by DFT calculation can all be used as observations
in the regression process since all of them can be expressed
by linear equations with the same expansion coefficients. Also
in the artificial neural network potential, the forces can also
be used to perform the fitting of training data [50]. When
considering only the energy as observations, the predictor
matrix X and observation vector y correspond to Xenergy and
yenergy, which are composed of x(i)

n and the DFT energies for
the structures in the training data, respectively, that is,

X = Xenergy, y = yenergy. (6)

When using the energy, forces and stress tensor as observa-
tions, X and y are written as

X =
⎡
⎣Xenergy

X force

X stress

⎤
⎦, y =

⎡
⎣ yenergy

yforce

ystress

⎤
⎦, (7)
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where X force and X stress are composed of x
(i,l,α)
force,n and x

(i,α,β)
stress,n

for the structures in the training data, respectively. yforce and
ystress are composed of the forces and stress tensor computed
by the DFT calculation for the structures in the training data,
respectively.

A simple procedure to estimate the expansion coefficients
is to use linear ridge regression. This is a shrinkage method
and shrinks the regression coefficients by imposing a penalty.
The ridge coefficients minimize the penalized residual sum of
squares expressed as

L(w) = ||Xw − y||22 + λ||w||22, (8)

where λ controls the magnitude of the penalty. This is referred
to as L2 regularization. The solution is easily obtained only in
terms of matrix operations as

w = (X� X + λI)−1 X� y,

where I denotes the unit matrix. Therefore, the regression
coefficients can be easily estimated while avoiding the well-
known multicollinearity problem occurring in the ordinary
least-squares method.

Although linear ridge regression is useful for obtaining a
PES from a given basis set, a basis set appropriate for the
system of interest is generally unknown. Moreover, a PES
with a small number of basis functions is desirable to decrease
the computational cost in atomistic simulations. Therefore,
we use elastic net regression [45,51] in combination with
the preparation of a considerable number of basis functions.
Elastic net regression is a generalization of LASSO regression
[44,45] and combines the L1 and L2 penalties. Elastic net
regression enables us not only to provide a solution for linear
regression, but also to obtain a sparse representation with a
small number of nonzero regression coefficients. The solution
is obtained by minimizing the function

L(w) = ||Xw − y||22 + αλ||w||1 + (1 − α)

2
λ||w||22, (9)

where the parameter α determines the mixing of the penalties.
When α = 1, the minimization function corresponds to that
of the LASSO. The accuracy of the solution can be controlled
simply by adjusting the values of λ and α for a given training
data set.

The use of elastic net regression allows us to avoid several
limitations of the LASSO. For example, if there is a group
of highly correlated predictor variables, the LASSO tends to
select only one variable from the group. Also, in the case of
high-dimensional predictor variables with few observations,
the LASSO selects at most the same number of predictor
variables as the number of observations before the solution
saturates.

Note that the units for the energy, forces, and stress tensor
are different, hence care is required in the selection of the
units. The units act as weights in the regression. Here, we
used the units of eV/supercell, eV/Å, and GPa for the energy,
forces, and stress tensor, respectively, when considering all
of them as observations. When considering only the energy
as observations, the unit of eV/atom can also be used. In
this study, regression coefficients were estimated using the
standardized training data.

C. Basis functions

In this study, the following simple form of the basis
functions is newly used as the linear expression for the energy.
This is a generalization of pairwise descriptors used in Ref.
[38]. The pth power of the nth element for atom j of structure
i, b

(i,j )
n,p , is written as

b(i,j )
n,p =

[∑
k

fn

(
R

(i)
jk

) · fc

(
R

(i)
jk

)]p

, (10)

where p is a positive integer and R
(i)
jk denotes the distance

between atoms j and k of structure i. The sum is taken over
all atoms within a cutoff radius Rc from atom j . fn(R(i)

jk )

and fc(R(i)
jk ) are an analytical pairwise function and a smooth

pairwise cutoff function that is zero at a distance greater than
Rc, respectively. Since the product of fn and fc is pairwise,
an exponential form of the sum of the pairwise functions is
introduced to take many-body effects into account. Although
pairwise functions are adopted here for fn, other types of
basis functions such as angular basis functions can be used in
principle.

Taking the sum of the basis functions for all atoms, x(i)
n,p is

obtained as

x(i)
n,p =

∑
j

[∑
k

fn

(
R

(i)
jk

) · fc

(
R

(i)
jk

)]p

. (11)

Using a combination of the linear model and this form of the
basis functions, the expression for the total energy is invariant
to the translation, rotation, and exchange of atoms. In addition,
it can be used to input crystal structures with a different number
of atoms from the structures in the training data.

x
(i,l,α)
force,n,p and x

(i,α,β)
stress,n,p can also be derived as

x
(i,l,α)
force,n,p = −p

∑
j

b
(i,j )
n,p−1

∂b
(i,j )
n,1

∂R
(i)
l,α

(12)

and

x
(i,α,β)
stress,n,p = − p

V

∑
l

R
(i)
l,α

∑
j

b
(i,j )
n,p−1

∂b
(i,j )
n,1

∂R
(i)
l,β

, (13)

respectively (see the Appendix for details). The derivative of
the basis functions with respect to the αth component of the
atomic position is written as

∂b
(j )
n,1

∂Rl,α

=
∑

k

[f ′
n(Rjk)fc(Rjk) + fn(Rjk)f ′

c(Rjk)]
∂Rjk

∂Rl,α

,

(14)

where the structure index i is omitted.
For the pairwise analytical function fn, we introduce

Gaussian, cosine, Bessel, Neumann, modified Morlet wavelet
(MMW), Slater-type orbital (STO), and Gaussian-type orbital
(GTO) functions. Table I shows the different function forms of
fn and their derivatives with respect to the distance f ′

n used in
this study. The derivatives can be seen in the expressions for the
forces acting on atoms and the stress tensor. For the cosine and
MMW types, function forms with a single internal parameter
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TABLE I. Adopted analytical pairwise functions for fn(R) and their derivatives f ′
n(R). The internal parameters a and b are always positive

except for parameter a in the STO and GTO functions. For the Bessel and Neumann functions, n is a positive integer.

fn(R) f ′
n(R)

Bessel Jn(R) −f1(R) (n = 0), [fn−1(R) − fn+1]/2 (n � 1)
Neumann Yn(R) −f1(R) (n = 0), [fn−1(R) − fn+1]/2 (n � 1)

Cosine cos(aR) −a sin(aR)
Modified Morlet wavelet (MMW) cos(aR)/ cosh(R) −a sin(aR)/ cosh(R) − fn(R) tanh(R)

Gaussian exp [−a(R − b)2] −2a(R − b)fn(R)
Slater-type orbital (STO) Ra exp (−bR) (a − bR)Ra−1 exp (−bR)
Gaussian-type orbital (GTO) Ra exp (−bR2) (a − 2bR2)Ra−1 exp (−bR2)

are introduced, while for the Gaussian, STO, and GTO types,
function forms with two internal parameters are used. Using
a number of functions with different internal parameters for
each type of function, a set of basis functions used to select
the basis in elastic net regression is obtained. For the cutoff
function, we adopt the cosine-based cutoff function used in
Ref. [3], expressed as

fc(R) =
{

1
2

[
cos

(
π R

Rc

) + 1
]

(R � Rc),

0 (R > Rc).
(15)

III. OPTIMIZATION OF INPUT FACTORS

The accuracy of the elastic net PES mainly depends on
(1) the cutoff radius Rc, (2) the size of the training data,
(3) the variety of structures included in the training data,
(4) the observation properties used for regression, (5) the
candidate basis functions, and (6) the parameters α and λ in the
minimization function of the elastic net regression. However, it
is difficult to optimize all of these input factors simultaneously.
We therefore optimize them in a stepwise manner.

A. DFT data set

To begin with, training and test data sets were generated
from DFT calculations. The test data set was used to examine
the predictive power for structures that were not included in the
training data set. We generated 2700 and 300 configurations
for the training and test data sets, respectively, for each
elemental metal. They include structures made by isotropic
expansions, random expansions, and random distortions of
ideal face-centered-cubic (fcc), body-centered-cubic (bcc),
hexagonal-closed-packed (hcp), simple cubic (sc), ω and β-tin
structures, in which the atomic positions and lattice constants
were fully optimized. Random structures were generated using
Gaussian random numbers with ten different values for the
variance. These configurations were made using supercells
constructed by the 2 × 2 × 2, 3 × 3 × 3, 3 × 3 × 3, 4 × 4 × 4,
3 × 3 × 3, and 2 × 2 × 2 expansions of the conventional unit
cells for fcc, bcc, hcp, sc, ω and β-tin structures, which are
composed of 32, 54, 54, 64, 81, and 32 atoms, respectively.

For a total of 3000 configurations for each elemental
metal, DFT calculations were performed using the plane-wave
basis projector augmented wave (PAW) method [52,53] within
the Perdew-Burke-Ernzerhof exchange-correlation functional
[54] as implemented in the VASP code [55,56]. The cutoff
energy was set to 400 eV. The total energies converged to less

than 10−3 meV/supercell. For only the ideal structures, the
atomic positions and lattice constants were optimized until the
residual forces became less than 10−3 eV/Å.

B. Cutoff radius

The optimal cutoff radius was determined for each ele-
mental metal using linear ridge regression with a given set of
180 basis functions consisting of 18 Bessel, 18 Neumann,
60 cosine, and 84 Gaussian functions. We searched for a
cutoff radius giving a low prediction error by constructing
PESs using several cutoff radii ranging from 5 to 10 Å
with intervals of 0.5 Å. The ridge penalty term was set
to λ = 10−4. To estimate the prediction error of each PES,
we calculated the root-mean-square error (RMSE) between
the observation property predicted by the DFT calculation
and that predicted by the PES for the test data. Then, the
convergence of the RMSE was examined. Here, the energy,
the force, and the stress tensor were used as the observation
properties. In addition, the cutoff radius also plays an essential
role in expressing the energy of structures with large volumes.
However, the contribution of such structures to the RMSE was
minor in our data sets. Therefore, we determined the cutoff
radii using the convergence of the energy-volume curve in
addition to the convergence of the RMSE.

Figure 2 shows the cutoff radius dependence of the RMSE.
Table II shows the optimized cutoff radii. Hereafter, these
optimized values will be used. Table II also shows the RMSEs
of the energy, force, and stress tensor. We obtained PESs with
the RMSEs for the energy ranging from 0.5 to 4.0 meV/atom.
In other words, PESs with high accuracy were obtained
even using a given set of basis functions and linear ridge
regression. The given set of basis functions may be acceptable
for expressing the energetics of the ten different elemental
metals. However, this may not be the case with other systems.

C. Observation property

The dependence of the PES accuracy on the observation
property of the training data was examined. We compared
two training sets of observation properties used for regression.
One training set was composed only of the energy, and
the other set is composed of the energy, force, and stress
tensor. The comparison was carried out using the above 180
basis functions, the optimized cutoff radius, and linear ridge
regression. When using only the energy as the observation
property, the RMSE was small for the energy but large for
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FIG. 2. (Color online) Cutoff radius dependence of RMSE of linear ridge PES.

the force and the stress tensor. Including the force and the
stress tensor to the observation properties resulted in improved
prediction for the force and the stress tensor at the expense of
the predictive power for the energy. To ensure accuracy for
both the force and the stress tensor, which is essential for
calculations of phonon dispersions and structure optimization,
we hereafter use the energy, force, and stress tensor as the
observation properties unless otherwise specified.

D. Candidate basis set

Even using a combination of linear ridge regression and
the above 180 basis functions, PESs with high accuracy
were sometimes obtained. However, a PES with a smaller
number of basis functions is generally preferable to accelerate
the computation of the energy, forces, and stress tensors.
Additionally, it may be possible to find more suitable basis

TABLE II. Optimal cutoff radius Rc. PESs are constructed by
linear ridge regression using a given basis set composed of 180
basis functions including 18 Bessel, 18 Neumann, 60 cosine, and
84 Gaussian functions.

Linear ridge regression (Nbasis = 180)
Rc RMSE (energy) RMSE (force) RMSE (stress)
(Å) (meV/atom) (eV/Å) (GPa)

Ag 7.5 2.4 0.012 0.08
Al 8.0 4.0 0.020 0.15
Au 6.0 3.0 0.030 0.16
Ca 9.5 1.2 0.011 0.03
Cu 7.5 2.6 0.018 0.10
Ga 10.0 1.9 0.019 0.11
In 10.0 1.9 0.017 0.07
K 10.0 0.5 0.001 0.00
Li 8.5 0.5 0.005 0.02
Zn 10.0 3.0 0.021 0.22

functions by considering other basis functions. Therefore, it is
useful to select suitable basis functions from a candidate basis
set including other basis functions by elastic net regression.

In general, a candidate basis set should ideally be compact
for the following reasons. (1) If the elastic net uses too many
basis functions compared to the number of input observations,
the selection of a good set of basis functions tends to be
difficult. (2) The amount of available memory on computers
can be exhausted, particularly when the forces and stress tensor
are used as the observations.

A compact candidate basis set was obtained by optimization
on the basis of the results of linear ridge regression with a single
type of basis function. For a basis type with a single internal
parameter, a trial set for the internal parameter was given by
an arithmetic sequence. The sequence can be specified by the
minimum and maximum values and the number of components
of the sequence. For the Bessel and Neumann types, we set
the minimum and interval of the arithmetic sequence to zero
and one, respectively. For the cosine and MMW functions, the
minimum value was taken to be 0.1 Å−1. Linear ridge PESs
were then constructed using many trial sets for each basis type.
Here, all the basis functions with p = 1,2,3 for each fn were
considered because it has been shown that the use of p = 1,2,3
terms greatly decreases the prediction error for elemental Na
and Mg [46]. The ridge penalty term was taken to be λ = 10−4.

Figures 3(a) and 3(b) show the convergence of the RMSE
for the energy with respect to the number of basis functions
for the cosine and MMW types. Unfixed parameters of the
sequence were determined from the convergence of the RMSE.
Table III shows the optimized number of basis functions
together with the minimum and maximum values of the se-
quence. We also tested polynomial forms, three types of expo-
nential forms, and Mexican hat wavelets with a single internal
parameter as candidates of fn. However, they showed a larger
RMSE or unstable behavior when performing regression.

For each basis type with two internal parameters, two
arithmetic sequences were given and all combinations of
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FIG. 3. (Color online) Dependence of RMSE of linear ridge PES on the number of basis functions for (a) cosine and (b) MMW types.
Max. stands for the maximum value of the arithmetic sequence of the internal parameter.

their components were considered. For the Gaussian type, the
minimum values of the sequences for a and b were fixed
to 0.1 and 0.0 Å, respectively. The number of components
of each sequence was set to 20. Therefore, each sequence
was specified only by the maximum value. For the STO and
GTO types, the sequence for a was fixed so that the minimum
value, the interval, and the maximum value were given as −2,
1, and 2, respectively. The minimum value of the sequence
for b was set to 0.1 Å−1 and 0.1 Å−2 for the STO and
GTO types, respectively. The sequence for b was specified
by the maximum value and the number of components of
the sequence. Table III shows the optimized sequences. We
used all the types of basis functions shown in Table III as
the candidate basis set. The total number of functions in the
candidate basis set was 4836.

IV. ELASTIC NET POTENTIAL ENERGY SURFACE

PESs were then estimated by elastic net regression using the
DFT observations, the candidate basis set, and the optimized

cutoff radius. PESs were optimized by changing the parameters
α and λ in the minimization function of Eq. (9). We varied
λ from 103 to 10−3 and adopted values of α of 0.6, 0.8,
and 1. In elastic net regression, we used only the energy
and stress tensor as the observations because the available
computational memory was limited. Although the regression
coefficients obtained by the elastic net were valid as they were,
we reestimated them using linear ridge regression, where the
energy, forces, and stress tensor were used as the observations.

As a criterion score to determine the optimal PES, the
average of the RMSEs for the energy and the stress tensor
was used. Here, we regarded the PES with the lowest criterion
score as the optimal one. Note, however, that the definition of
the optimal PES depends on the purpose. In another situation, a
PES with a smaller number of basis functions may be regarded
as the optimal one when a decrease in the computational costs
at the expense of slight degradation of the accuracy is desired.

Figure 4 shows the dependence of the RMSE for the energy
and stress tensor on the number of basis functions when α = 1.
The number of selected basis functions tended to increase with
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FIG. 4. (Color online) Dependence of RMSEs for the energy and the stress tensor of elastic net PES (α = 1, LASSO) on the number of the
basis functions for ten elemental metals. RMSEs for the energy and the stress tensor are shown by orange open circles and blue open squares,
respectively.

decreasing λ. At the same time, the RMSE for the energy
and stress tensor tended to decrease. Although multiple PESs
with the same number of basis functions were sometimes
obtained from different values of λ, only the PES with the
lowest criterion score among the PESs with the same number
of basis functions is shown in Fig. 4. On the other hand, the
criterion score does not change significantly with decreasing
α although the number of selected basis functions increases.
Therefore, we will hereafter show only the results for α = 1.

Table IV shows the RMSEs for the energy, the force,
and the stress tensor of the optimal elastic net PES. We
obtained PESs with the RMSE for the energy in the range
of 0.3–3.5 meV/atom for the ten elemental metals using

TABLE III. Optimized candidate basis set used in elastic net re-
gression. Min. and Max. stand for the minimum and maximum values
of the arithmetic sequence of the internal parameter, respectively. Nseq

denotes the number of components of the sequence.

Number of Internal parameter
Basis type basis functions Min. Max. Nseq

Bessel 18 n 0 5 6
Neumann 18 n 0 5 6

Cosine 300 a (Å−1) 0.1 10.0 100
MMW 300 a (Å−1) 0.1 10.0 100

Gaussian 1200 a (Å−2) 0.1 2.0 20
b (Å) 0.0 5.0 20

STO 1500 a −2 2 5
b (Å−1) 0.1 10.0 100

GTO 1500 a −2 2 5

b (Å−2) 0.1 10.0 100
Total 4836

only 165–288 basis functions. The RMSEs for the force and
the stress are within 0.03 eV/Å and 0.15 GPa, respectively.
Compared with the RMSEs of the PESs constructed from
the given basis set shown in Table II, the prediction errors
are reduced for some elemental metals as a consequence of
the automatic optimization of the basis set. Table IV also
shows the equilibrium lattice constants of the bcc and fcc
structures for the ten elemental metals predicted by the elastic
net PES, together with those predicted by DFT. The PESs have
equilibrium lattice constants that are in agreement with those
obtained by DFT.

Figure 5 shows a comparison of the energies of test data
predicted by the elastic net PES and DFT for Al and Zn,
showing the largest and second largest RMSEs for the energy.
As can be seen in Fig. 5, there is little difference between
the DFT and elastic net PES energies regardless of the crystal
structure. In addition, no dependence of the RMSE on the
energy can be clearly observed despite the wide range of
structures included in both the training and test data.

The applicability of the elastic net PES to the calculation of
the force was also examined by comparing phonon dispersion
relationships computed by the elastic net PES and DFT. The
phonon dispersion relationships were calculated by the super-
cell approach [57] for the bcc and fcc structures with the equi-
librium lattice constant. To evaluate the dynamical matrix, each
symmetrically independent atomic position was displaced by
0.01 Å. The forces acting on atoms by the elastic net PES can
then be analytically computed using Eq. (4). Supercells were
made by 4 × 4 × 4 expansion of the conventional unit cells
for both the bcc and fcc structures. The phonon calculations
were performed using the PHONOPY code [58]. Figure 6 shows
the phonon dispersion relationships of the (a) bcc and (b) fcc
structures for the ten elemental metals, computed by both the
elastic net PES and DFT. For all elemental metals with both
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TABLE IV. RMSEs for the energy, the force, and the stress tensor of elastic net PESs showing the minimum criterion score. Equilibrium
lattice constants for the bcc and fcc structures estimated from the elastic net PES are also shown. Values in brackets were obtained directly by
DFT calculation.

Number of RMSE (energy) RMSE (force) RMSE (stress) a (bcc) a (fcc)
Element basis functions (meV/atom) (eV/Å) (GPa) (Å) (Å)

Ag 190 2.2 0.011 0.07 3.309 (3.311) 4.157 (4.160)
Al 210 3.5 0.020 0.12 3.234 (3.233) 4.039 (4.038)
Au 165 2.4 0.030 0.15 3.316 (3.309) 4.172 (4.164)
Ca 234 1.2 0.010 0.03 4.383 (4.381) 5.522 (5.519)
Cu 202 2.6 0.018 0.12 2.885 (2.887) 3.630 (3.633)
Ga 266 2.2 0.017 0.09 3.371 (3.371) 4.227 (4.228)
In 253 2.3 0.019 0.07 3.814 (3.815) 4.797 (4.797)
K 197 0.3 0.001 0.00 5.284 (5.283) 6.666 (6.662)
Li 222 0.4 0.005 0.02 3.440 (3.439) 4.329 (4.331)
Zn 288 2.9 0.016 0.15 3.130 (3.136) 3.928 (3.935)

the bcc and fcc structures, the phonon dispersion relationships
calculated by the elastic net PES are in good agreement with
those calculated by DFT. This demonstrates that the elastic net
PES is sufficiently accurate to perform atomistic simulations
with similar accuracy to DFT calculation.

V. CONCLUSION

We have applied a method of constructing a linearized
PES by elastic net regression to a wide range of elemental
metals. Compared with the other approach based on first-
principles calculations, the elastic net interatomic potential
has the following main features. (1) A well-optimized sparse
representation for the PES can be obtained, which increases
the accuracy of atomistic simulations while decreasing the
computational cost. (2) The accuracy can be easily controlled,
i.e., the tradeoff between the accuracy and computational cost
is determined by a small number of parameters. (3) Information
on the forces acting on atoms and stress tensors can be included
in the training data in a straightforward manner. This ensures

the reliability of the force and stress tensor calculation using
constructed interatomic potentials.

As a result of applying the present method, we found that
the energetics can be expressed by a linear relationship with
simple basis functions depending only on distances between
atoms. A sparse set of suitable basis functions for expressing
the PES can also be easily extracted from 4836 basis functions
by elastic net regression. As a result, we have obtained a sparse
PES with prediction errors ranging from 0.3 to 3.5 meV/atom.
The prediction errors for the force and the stress tensor
were within 0.03 eV/Å and 0.15 GPa, respectively. Also, we
compared equilibrium lattice constants and phonon dispersion
relationships obtained by the elastic net PES and by DFT
calculation. The former were in good agreement with the latter
for all ten elemental metals considered in this study.
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APPENDIX: EXPRESSIONS FOR FORCES ACTING ON
ATOMS AND STRESS TENSOR

Here, expressions for forces acting on atoms and the stress
tensor are derived from the derivative of Eq. (2) with respect
to the atomic positions provided in Cartesian coordinates.
Although they depend on the form of the basis functions,
expressions for a linear model involving only basis functions
depending only on pair distances are derived. Since the total
energy of structure i has a linear relationship with the sum of
the basis functions, αth component of the force acting on atom
l of structure i is expressed by

F
(i)
l,α = − ∂E(i)

∂R
(i)
l,α

= −
∑
n,p

wn,p

∂x(i)
n,p

∂R
(i)
l,α

=
∑
n,p

wn,px
(i,l,α)
force,n,p, (A1)

where

x
(i,l,α)
force,n,p = −∂x(i)

n,p

∂R
(i)
l,α

= −p
∑

j

b
(i,j )
n,p−1

∂b
(i,j )
n,1

∂R
(i)
l,α

. (A2)

The stress tensor is generally obtained by virial stress compu-
tation. The virial stress tensor σαβ is expressed as

σ
(i)
αβ = 1

V

∑
l

R
(i)
l,αF

(i)
l,β , (A3)

where V denotes the volume of the cell containing N (i) atoms.
Using the expression for the forces in Eq. (A1), the stress
tensor is derived as the following linear equation:

σ
(i)
αβ = − 1

V

∑
l

R
(i)
l,α

⎡
⎣∑

n,p

wn,p

⎛
⎝p

∑
j

b
(i,j )
n,p−1

∂b
(i,j )
n,1

∂R
(i)
l,β

⎞
⎠

⎤
⎦

=
∑
n,p

wn,p

⎡
⎣− p

V

∑
l

R
(i)
l,α

∑
j

b
(i,j )
n,p−1

∂b
(i,j )
n,1

∂R
(i)
l,β

⎤
⎦

=
∑
n,p

wn,px
(i,α,β)
stress,n,p, (A4)

where

x
(i,α,β)
stress,n,p = − p

V

∑
l

R
(i)
l,α

∑
j

b
(i,j )
n,p−1

∂b
(i,j )
n,1

∂R
(i)
l,β

. (A5)

By computing all the contributions from atoms within the
cutoff radius using Eq. (A4), the virial stress is obtained.

The derivative of the basis functions with respect to the αth
component of the atomic position is written as

∂b
(j )
n,1

∂Rl,α

=
∑

k

[
∂fn(Rjk)

∂Rl,α

fc(Rjk) + fn(Rjk)
∂fc(Rjk)

∂Rl,α

]

=
∑

k

[f ′
n(Rjk)fc(Rjk) + fn(Rjk)f ′

c(Rjk)]
∂Rjk

∂Rl,α

,

(A6)

where structure index i is omitted. Three types of derivatives
can be found in Eq. (A6). The derivative of the distance
with respect to the αth component of the atomic position is
expressed as

∂Rjk

∂Rl,α

=
⎧⎨
⎩

(Rj −Rk)α

Rjk
(l = j ),

(Rk−Rj )α

Rjk
(l = k),

(A7)

where Rj denotes the three-dimensional atomic position of
atom j in Cartesian coordinates. The derivative of the cutoff
function with respect to the distance is given by

f ′
c(Rjk) = − π

2Rc

sin

(
π

Rjk

Rc

)
. (A8)

The derivative of the pairwise function fn with respect to the
distance depends on the selection of the functions, hence the
expression for the derivative for each type of fn is shown in
Table I.
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[42] K. T. Schütt, H. Glawe, F. Brockherde, A. Sanna, K. R. Müller,

and E. K. U. Gross, Phys. Rev. B 89, 205118 (2014).
[43] O. A. von Lilienfeld, R. Ramakrishnan, M. Rupp, and A. Knoll,

Int. J. Quantum Chem. 115, 1084 (2015).
[44] R. Tibshirani, J. R. Stat. Soc. B 58, 267 (1996).
[45] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of

Statistical Learning, 2nd ed. (Springer, New York, 2009).
[46] A. Seko, A. Takahashi, and I. Tanaka, Phys. Rev. B 90, 024101

(2014).
[47] L. J. Nelson, G. L. W. Hart, F. Zhou, and V. Ozoliņš, Phys. Rev.
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