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We improved a magnetic composite model that combines the Jiles�Atherton model
and Eshelby’s equivalent inclusion method to consider misoriented martensite par-
ticles. The magnetic permeability of type 304 stainless steel were analyzed by
using both experimental data on the orientation distribution of type 304 stain-
less steel specimens and the improved model. We found that the model is able
to qualitatively explain the variation of permeability with the orientation angle
and orientation distribution, an effect that depends on the direction of the exci-
tation magnetic field. © 2017 Author(s). All article content, except where other-
wise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). [http://dx.doi.org/10.1063/1.4974068]

I. INTRODUCTION

Type 304 stainless steel (SUS304 steel) is normally paramagnetic, but it is a unique material
in which plastic deformation induces a transformation to the ferromagnetic martensite phase. This
characteristic has been used to assess fatigue degradation1 and the extent of plastic deformation.2

However, for this, it is important to develop a magnetic composite model that allows us to predict
the magnetic properties of SUS304 steel. Magnetic composite models using an effective medium
approach3,4 have been developed to characterize dynamic magnetic behavior such as ferromagnetic
resonance. As an alternative approach, a magnetic composite model using Eshelby’s equivalent inclu-
sion method5 was introduced to describe the behavior of magnetoelectroelastic composite materials.6

The latter has the advantage that it allows for coupled analysis. However, to our knowledge, a mag-
netic composite model to describe static magnetic properties, such as the hysteresis loop, has not
been developed yet.

In a previous work, we derived a magnetic composite model7 that combined Eshelby’s equivalent
inclusion method and the Jiles�Atherton model (J�A model).8 However, that derived model did not
incorporate the orientation angle and orientation distribution of the martensite phase. In this study, we
derived a magnetic composite model that allows for misoriented martensite particles, and investigated
the influence of these particles on the permeability in SUS304 steel.

II. MATHEMATICAL MODEL

As shown in Fig. 1(a), needle-type particles (martensite particles, MPs) are generated in a grain
of SUS304 steel as a ferromagnetic martensite phase, and those grains are distributed in a test piece.
Therefore, we need to consider two different interactions: those between the MPs in a grain and those
between groups of MPs. MPs in a grain are modeled as single ellipsoidal inhomogeneity (equivalent
martensite particle, EMP) whose nonlinear magnetic behavior is described by the J�A model. In this
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FIG. 1. Schematic of the modeling of a magnetic composite; (a) Laser micrograph of SUS304 steel, (b) boundary condition,
and (c) coordinate system.

study, the EMPs are assumed to be prolate spheroid. The interaction between the MPs is accounted
for by the interaction term α of the J�A model. Based on that model, the differential magnetic
susceptibility χf of an EMP can be written as

χf =

{
kδc

dMan
f

dHe
f
+ δM (Man

f −Mf )

}
/

[
kδ − α

{
kδc

dMan
f

dHe
f
+ δM (Man

f −Mf )

}]
, (1)

where α, k, and c are model parameters, the subscript f represents the martensite phase, He is the
effective magnetic field, Man is the anhysteretic magnetization (described by the Langevin function),
δ denotes the sign of dH f /dt, and δM = 0.5[1 + sign((Man

f −Mf )Ḣf )].
The magnetic behavior of the composite is described by incremental equations based on the

Eshelby’s equivalent inclusion method, and the interaction between the EMPs by using the Mori-
Tanaka theory.9 The effect of the orientation distribution of the EMPs was introduced in the model
using a method similar to those of Hatta et al.10 and Dunn et al.11 Let the x3-axis point in the
longitudinal direction of the test piece and the x3

′-axis coincide with the fiber axis, as shown in
Fig. 1(c). The magnetic composite is subjected to a uniform incremental magnetic field Ḣ0 in the x3

direction. The orientation of an EMP is defined by two angles θ and φ. Using Eshelby’s equivalent
inclusion method, an incremental magnetic flux in the EMP can be written in the local coordinate
system through the following vector equation

Ḃf
′ = µf (Ḣ0

′ + Ḣ ′ + ˙̃H ′)= µm(Ḣ0
′ + Ḣ ′ + ˙̃H ′ − Ḣ

∗′), (2)

where µ is the differential permeability, Ḣ ′ is the incremental average disturbance of the magnetic

field (an interaction term), ˙̃H ′ is the incremental magnetic field disturbed by the existence of the
EMP, Ḣ

∗′ is the incremental eigen magnetic field, and the subscript m denotes the austenite phase.

The incremental eigen magnetic field is defined using ˙̃H ′ and the Eshelby’s tensor10 S by Eq. (3).

˙̃H ′ =SḢ
∗′. (3)

Inserting Eq. (3) into Eq. (2) and rearranging the terms, we obtain

Ḣ
∗′ =

{
(µf − µm)S + µm

}−1
(µm − µf )(Ḣ0

′ + Ḣ ′), (4)

˙̃H ′ =S
{
(µf − µm)S + µm

}−1
(µm − µf )(Ḣ

′

0 + Ḣ ′). (5)

Based on Fig. 1(c), a vector can be transformed between the global and local coordinates as follows:

y′ =Xy, y=X−1y′, X = *.
,

cos θ cos φ cos θ sin φ − sin θ
− sin φ cos φ 0

sin θ cos φ sin θ sin φ cos θ

+/
-

. (6)
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Using Eq. (6) to write Eqs. (4) and (5) in global coordinates, we obtain

Ḣ
∗
=X−1

{
(µf − µm)S + µm

}−1
(µm − µf )X(Ḣ0 + Ḣ)=M(Ḣ0 + Ḣ), (7)

˙̃H =X−1S
{
(µf − µm)S + µm

}−1
(µm − µf )X(Ḣ0 + Ḣ)=N(Ḣ0 + Ḣ). (8)

When the EMP orientation angles are within the ranges θa ≤ θ ≤ θb and φa ≤ φ ≤ φb , the volume

average of Ḣ
∗′ and ˙̃H ′over the entire composite can obtained by discrete integration:

〈
Ḣ
∗
〉
=

θb∑
θ=θa

φb∑
φ=φa

g(θ, φ) sin θḢ
∗
∆θ∆φ=

θb∑
θ=θa

φb∑
φ=φa

g(θ, φ) sin θM∆θ∆φ(Ḣ0 + Ḣ)=Q∗(Ḣ0 + Ḣ), (9)

〈
˙̃H
〉
=

θb∑
θ=θa

φb∑
φ=φa

g(θ, φ) sin θ ˙̃H∆θ∆φ=
θb∑
θ=θa

φb∑
φ=φa

g(θ, φ) sin θN∆θ∆φ(Ḣ0 + Ḣ)= Q̃(Ḣ0 + Ḣ), (10)

where g(θ, φ) is a probability density function, and 〈 〉 denotes volume average. When the magnetic
composite is subjected to an applied magnetic field, as shown in Fig. 1(b), the relationship between

the interaction field Ḣ and
〈

˙̃H
〉

is given by11

Ḣ =−Vf

〈
˙̃H
〉

, (11)

where V f is the martensite fraction. The relationship between the incremental magnetic flux density
and the incremental magnetic field can be found by using the law�of�mixtures formula12 for the
incremental magnetic flux density, together with Eqs. (2) and (11):〈

Ḃc

〉
= µm

(
Ḣ0 − Vf

〈
Ḣ
∗
〉)
= µm

{
I − Vf Q∗ + V2

f Q∗
(
I + Vf Q̃

)−1
Q̃
}

Ḣ0, (12)

where c denotes the magnetic composite and I is the unit matrix. The internal magnetic field of the
EMP in the local coordinates, needed to calculate Eq. (1), is given as

Ḣf
′ = Ḣ0

′ + Ḣ ′ + ˙̃H ′ =
[
I + S

{
(µf − µm)S + µm

}−1 (
µm − µf

)]
X

{
I − Vf

(
I + Vf Q̃

)−1
Q̃
}

Ḣ0.

(13)

For the probability density function appearing in Eqs. (9) and (10), we use the form proposed
by Maekawa et al.13 to express the fiber orientation distribution in a fiber-reinforced composite. The
following equation describes the three-dimensional orientation distribution with n peaks.

g(θ, φ)= gi (θ, φ)=

{
sin

(
θ
2

)}2Pi−1 {
cos

(
θ
2

)}2Qi−1

n∑
j=1

αj

×

{
sin

(
φ
2

)}2Ri−1 {
cos

(
φ
2

)}2Si−1

n∑
j=1

βj

, (14)

where Pi, Qi, Ri and Si are parameters of the material,

αj =

∫ θj+1

θj

{
sin

(
θ

2

)}2Pj−1 {
cos

(
θ

2

)}2Qj−1

dθ, βj =

∫ φj+1

φj

2
{
sin

(
φ

2

)}2Rj {
cos

(
φ

2

)}2Sj

dφ, ,

and θi ≤ θ<θi+1 , φi ≤ φ<φi+1 , (i = 1, . . ., n).

III. EXPERIMENTAL METHOD

The test specimens used were cold-rolled plates of SUS304 steel (2B finish) with a gage length
of 60 mm, a width of 12.5 mm, and a thickness of 2 mm. Maximum nominal strains of approximately
0.05, 0.1, 0.2, 0.3, and 0.4 were applied to them using a tensile machine and non-contact video
extensometer to generate different martensite phases. Aspect ratios (major axis length/minor axis
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length) and orientation angles of the MPs in the test pieces were measured using image processing
software, after first polishing the surface by buffing and then chemical etching.14 A magnetic field
with triangular wave form was set up along the longitudinal direction of the specimens using an
electromagnet, and the magnetic flux density was measured by means of a search coil. Permeability
was estimated through a differential permeability curve, obtained from the magnetic flux density
curve and the evaluation parameter

ψ =
�����

∫ H max

0
{µ(H) − µ(0)} /µ(0)dH

�����
. (15)

IV. RESULTS AND DISCUSSION

Figure 2 shows histograms of the measured orientation distribution of the MPs for each spec-
imen together with the best-fit curve calculated from Eq. (14). As it was difficult to measure the
three-dimensional orientation distribution of the MP, we evaluated the two-dimensional orientation
distribution for φ = 0 and n = 2. Because it was difficult to etch uniformly on the entire surface
of the specimen, the number of data points was not sufficient to produce a histogram. There-
fore, we assumed that the orientation distribution in the range 0◦ ≤ θ<90◦ was the same as that
in 90◦ ≤ θ<180◦, and then estimated the parameters P1 and S1 of the probability density function as
P1 = P2, S1 = S2. Moreover, J�A parameters were calculated from the magnetization curve for
SUS410S (martensitic stainless steels) because it was difficult to obtain SUS304 steel with a 100 %
martensite fraction.

Table I lists those J�A parameters together with the obtained values of the martensite fraction,
average aspect ratio, most probable orientation angle θmod, and probability density function param-
eters P1 and S1 for each specimen. The angle θmod decreases with increasing maximum strain up to
a maximum strain of 0.2. For larger maximum strains, θmod remains constant, but the half-width of
g (θ, 0) decreases.

Fig. 3(a) shows the relationship between the parameter ψ, obtained using Eq. (15) and the
permeability versus magnetic field relationship of SUS304 steel calculated using the parameters in
Table I and the equations in Section II, and the maximum strain. Fig. 3(b) shows the relationship
between the orientation angle θ and the parameters ψL and ψT (where the L and T subscripts indicate
that the magnetic field and permeability are parallel to the x3- and x1-axis, respectively), calculated

FIG. 2. Histogram and probability density function of the orientation angle of martensite particles, for different values of the
maximum strain εmax.
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TABLE I. Parameters of the material used in the numerical analysis.

Maximum strain
0.05 0.1 0.2 0.3 0.4

Volume fraction 0.0017 0.0028 0.012 0.033 0.070
Aspect ratio 31 30 41 44 56
θmod (degrees) 30 24 20 20 21
P1 12 6 2 5 12
Q1 165 127 46 159 328

J�A parameter
α a (A/m)a k (A/m) c Ms (MA/m)

0.0029 1312 457 0.051 1.27

aa is the parameter of the Langevin function.

FIG. 3. Relationship between the evaluation parameter ψ of the permeability curve and (a) the maximum strain, (b) the
orientation angle for a maximum strain of 0.2. The experimental values in (a) have been multiplied by an additional factor of
10-1.

using the parameter values for a maximum strain of 0.2. C1, C2, and C3 indicate that the analysis
was performed using θ = 0◦, θ = θmod, and g(θ, 0), respectively. The experimental values in Fig. 3(a)
are multiplied by an additional factor of 10�1 with respect to the computed values. The ψT value
for the case C1 was not plotted because it was negligible. Although the calculated and experimental
values are markedly different, the qualitative behavior of ψL is quite similar, increasing linearly with
maximum strain. The quantitative difference between the experimental and analysis result is a result
of estimating the J-A parameters using SUS410S. Obtaining the magnetization curve of a martensite
particle is a future challenge. For a maximum strain of 0.05, the ψL value in the case C2 is 22%
smaller than in the case C1, which clearly shows that the orientation angle has effect on ψL. On
the contrary, the ψL values in the cases C2 and C3 are about the same, even though the half-width
of g(θ, 0) is different; this means that the distribution of orientation angles has little effect on ψL.
On the other hand, the effect of the orientation distribution on ψT is observed clearly for maximum
strains of 0.2 and 0.3. In particular, for a maximum strain of 0.2, the ψT value in the case C3 is
30% larger than in the case C2. The reason for this can be understood from Fig. 3(b). If we assume
that the EMPs are uniformly oriented for 0◦ < θ < 40◦, we can consider that the areas under the
ψ-curves in Fig. 3(b) are nearly equivalent to those in the case C3. Because ψT is nearly zero for θ
< 10◦, the area under the ψT-curve on the interval 20◦ < θ < 40◦ is about seven times larger than
that on 0◦ < θ < 20◦. For a maximum strain of 0.2, g(θ, 0) is symmetric about θ = 20◦ and has large
half-width; hence, the ψT value in the case C3 receives a significant contribution from angles 20◦

< θ < 40◦ and becomes larger than in the case C2. On the other hand, the area under the ψL-curve
on the interval 20◦ < θ < 40◦ is smaller than the area on 0◦ < θ < 20◦, but only about 1.1 times.
As a result, the ψL values in the cases C3 and C2 are very similar, though the C3 value is slightly
smaller.
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V. CONCLUSION

In this study, we derived a magnetic composite model to account for misoriented martensite
particles, and investigated the effects of these particles on the permeability curve. The developed
model is able to qualitatively reproduce the change in permeability caused by misoriented martensite
particles. We found that the effect of the orientation distribution on the permeability curve depends
on the relative orientation between the martensite particles and the magnetic field.
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