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Abstract

In anabelian geometry, various strong/desired form of Grothendieck Conjecture-
type results for hyperbolic curves over relatively small arithmetic fields — for instance,
finite fields, number fields, or p-adic local fields — have been obtained by many re-
searchers, especially by A. Tamagawa and S. Mochizuki. Let us recall that, in their
proofs, the Weil Conjecture or p-adic Hodge theory plays an essential role. Therefore, to
obtain such Grothendieck Conjecture-type results, it appears that the condition that
the cyclotomic characters of the absolute Galois groups of the base fields are highly
nontrivial is indispensable. On the other hand, in an author’s recent joint work with
Y. Hoshi and S. Mochizuki, we introduced the notion of TKND-AVKF-field [concern-
ing the divisible subgroups of the groups of rational points of semi-abelian varieties]
and obtained the semi-absolute version of the Grothendieck Conjecture for higher di-
mensional (≥ 2) configuration spaces associated to hyperbolic curves of genus 0 over
TKND-AVKF-fields contained in the algebraic closure of the field of rational numbers.
For instance, every [possibly, infinite] cyclotomic extension field of a number field is such
a TKND-AVKF-field. In particular, this Grothendieck Conjecture-type result suggests
that the condition that the cyclotomic character of the absolute Galois group of the
base field under consideration is [sufficiently] nontrivial is, in fact, not indispensable for
strong/desired form of anabelian phenomena. In the present paper, to pose another ev-
idence for this observation, we prove the relative birational version of the Grothendieck
Conjecture for smooth curves over TKND-AVKF-fields with a certain mild condition
that every cyclotomic extension field of a number field satisfies. From the viewpoint of
the condition on base fields, this result may be regarded as a partial generalization of F.
Pop and S. Mochizuki’s results on the birational version of the Grothendieck Conjecture
for smooth curves.
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Introduction

Let p be a prime number. For a connected Noetherian scheme S, we shall write ΠS for the
étale fundamental group of S, relative to a suitable choice of basepoint. For any field F of
characteristic 0 and any algebraic variety [i.e., a separated, of finite type, and geometrically
integral scheme] Z over F , we shall write F for the algebraic closure [determined up to

isomorphisms] of F ; GF
def
= Gal(F/F ); K(Z) for the function field of Z; ∆Z

def
= ΠZ×FF ;

∆K(Z) for the kernel of the natural surjection GK(Z) ↠ GF . For any field F of characteristic
0 and any algebraic varieties Z1, Z2 over F , we shall write

IsomF (Z1, Z2) (respectively, IsomF (K(Z1), K(Z2))

for the set of F -isomorphisms between Z1 and Z2 (respectively, K(Z1) and K(Z2));

IsomGF
(ΠZ1 ,ΠZ2)/Inn(∆Z2) (respectively, IsomGF

(GK(Z1), GK(Z2))/Inn(∆K(Z2))

for the set of isomorphisms ΠZ1

∼→ ΠZ2 (respectively, GK(Z1)
∼→ GK(Z2)) of profinite groups

that lie over GF , considered up to compositions with inner automorphisms arising from
elements ∈ ∆Z2 (respectively, ∈ ∆K(Z2)).

In anabelian geometry, the birational version of the Grothendieck Conjecture has been
studied intensively [cf. for instance, see [1], [2], [17], [21], [26], [28], [29], [33], [40]]. Roughly
speaking, this birational version is a question on the reconstructibility of function fields from
their absolute Galois groups. After the pioneering and celebrated works of K. Uchida and
F. Pop for the function fields of smooth curves [i.e., smooth and 1-dimensional algebraic
varieties] over finitely generated fields [cf. [40], Theorem; [26], Theorem 1], S. Mochizuki
obtained the following result, which may be regarded as one of the strongest achievements
in characteristic 0:
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Theorem 0.1. Let K be a generalized sub-p-adic field [i.e., a subfield of a finitely generated
extension field of the completion of the maximal unramified extension of the field of p-adic
numbers Qp — cf. [18], Definition 4.11]; X, Y smooth proper curves over K. Then the
natural map

IsomK(K(Y ), K(X)) −→ IsomGK
(GK(X), GK(Y ))/Inn(∆K(Y ))

is bijective.

Note that, if we restrict our attention to the case where the base field K is a sub-p-adic
field [i.e., a subfield of a finitely generated extension field of Qp — cf. [17], Definition 15.4,
(i)], then the stronger Hom-version for the function fields of algebraic varieties over K of
arbitrary dimension is also obtained by S. Mochizuki [cf. [17], Theorem 17.1]. Note also that
Theorem 0.1 is a corollary of a highly nontrivial result, namely, the Grothendieck Conjecture
for hyperbolic curves over generalized sub-p-adic fields:

Theorem 0.2 ([18], Theorem 4.12). Let K be a generalized sub-p-adic field; X, Y hyperbolic
curves over K. Then the natural map

IsomK(X,Y ) −→ IsomGK
(ΠX ,ΠY )/Inn(∆Y )

is bijective.

Moreover, it would be natural to ask

whether or not the semi-absolute analogue of Theorem 0.1 holds.

In the author’s knowledge, this is an open question. [Note that the semi-absolute analogue
of Theorem 0.2 does not hold even if we assume that the base field is a sub-p-adic field — cf.
for instance, [8], Remark 5.6.1.] In this direction, as a corollary of a certain semi-absolute
Grothendieck Conjecture-type result for special curves called “quasi-tripods” obtained by Y.
Hoshi [cf. [8], Theorem A], one may obtain a partial result for this question. However, in
the present paper, we do not pursue this question anymore.

Next, to see another achievement [also obtained by S. Mochizuki] and state our main
result, let us recall the notions of Kummer-faithful field and TKND-AVKF-field [cf. Definition
1.1, (ii), (iii), (iv), (v), below]. Let F be a field of characteristic 0. Write Fdiv (⊆ F ) for
the field obtained by adjoining the divisible elements of the multiplicative groups of finite
extension fields of F to the field of rational numbers Q. Then we shall say that F is

• Kummer-faithful if, for each semi-abelian variety A over a finite extension field E of F ,
every divisible element ∈ A(E) is trivial;

• TKND [i.e., “torally Kummer-nondegenerate”] if Fdiv ⊆ F is an infinite field extension;

• AVKF [i.e., “abelian variety Kummer-faithful”] if, for each abelian variety A over a
finite extension field E of F , every divisible element ∈ A(E) is trivial;
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• TKND-AVKF if F is both TKND and AVKF.

For instance, every sub-p-adic field is Kummer-faithful, and every [possibly, infinite] cyclo-
tomic extension field of a number field is TKND-AVKF [cf. [21], Remark 1.5.4, (i); [37],
Theorem 3.1, and its proof; [37], Remark 3.4.1]. In particular, one obtains many TKND-
AVKF-fields whose associated cyclotomic characters totally vanish. On the other hand, it is
easy to see that every Kummer-faithful field is TKND-AVKF.

In the context of absolute anabelian geometry, S. Mochizuki proved that the semi-absolute
birational version of the Grothendieck Conjecture for smooth curves over Kummer-faithful
fields holds [cf. [21], Theorem 1.11]:

Theorem 0.3. Let K, L be Kummer-faithful fields [of characteristic 0]; X, Y smooth proper
curves over K, L, respectively. Write

Isom(K(Y )/L,K(X)/K)

for the set of isomorphisms K(Y )
∼→ K(X) of fields that induce isomorphisms L

∼→ K;

Isom(GK(X)/GK , GK(Y )/GL)/Inn(GK(Y ))

for the set of isomorphisms GK(X)
∼→ GK(Y ) of profinite groups that induce isomorphisms

GK
∼→ GL via the natural surjections GK(X) ↠ GK and GK(Y ) ↠ GL, considered up to

compositions with inner automorphisms that arise from elements ∈ GK(Y ). Then the natural
map

Isom(K(Y )/L,K(X)/K) −→ Isom(GK(X)/GK , GK(Y )/GL)/Inn(GK(Y ))

is bijective.

Note that since there exists a generalized sub-p-adic field that is not Kummer-faithful
[cf. Proposition 1.7, (ii)], Theorem 0.3 may not be regarded as a generalization of Theorem
0.1. Note also that since Theorem 0.3 is a result on semi-absolute anabelian geometry, and
Theorem 0.1 deals with relative anabelian geometry, Theorem 0.1 may not be regarded as a
generalization of Theorem 0.3.

On the other hand, in a recent joint work with Y. Hoshi and S. Mochizuki, we obtained
a certain semi-absolute Grothendieck Conjecture-type result for higher dimensional (≥ 2)
configuration spaces associated to hyperbolic curves of genus 0 over TKND-AVKF-fields [cf.
[10], Theorem G, (ii)]:

Theorem 0.4. Let (m,n) be a pair of positive integers; K,L ⊆ Q TKND-AVKF-fields; X,
Y hyperbolic curves over K, L, respectively. Write gX (respectively, gY ) for the genus of X
(respectively, Y ); Xm (respectively, Yn) for the m-th (respectively, n-th) configuration space
associated to X (respectively, Y );

Isom(ΠXm/GK ,ΠYn/GL)/Inn(ΠYn)

for the set of isomorphisms ΠXm

∼→ ΠYn of profinite groups that induce isomorphisms GK
∼→

GL via the natural surjections ΠXm ↠ GK and ΠYn ↠ GL, considered up to compositions
with inner automorphisms arising from elements ∈ ΠYn. Suppose that
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• m ≥ 2 or n ≥ 2;

• gX = 0 or gY = 0.

Then the natural map

Isom(Xm, Yn) −→ Isom(ΠXm/GK ,ΠYn/GL)/Inn(ΠYn)

is bijective.

It appears to the author that this anabelian geometric result suggests that

the condition that the cyclotomic characters of the absolute Galois groups of the
base fields are [sufficiently] nontrivial is, in fact, not a necessary condition for
[the strong/desired form of] anabelian phenomena.

[With regard to the weak form of anabelian phenomena [i.e., reconstructions of isomorphism
classes of geometric objects under considerations from their fundamental groups] for hy-
perbolic curves over fields whose associated cyclotomic characters vanish, many results have
already been obtained by various researchers so far — cf. for instance, see [13], [30], [32], [34],
[35], [36], [37], [39].] On the other hand, since the proof of Theorem 0.4 depends heavily on
the rich symmetry of the second dimensional configuration space associated to the projective
line minus three points, the method of [10] may not be applied to prove general low dimen-
sional (≤ 1) anabelian Grothendieck Conjecture in an evident way. However, it appears that
Theorem 0.4 may be regarded as an evidence of the existence of anabelian phenomena for
geometric objects over TKND-AVKF-fields [of characteristic 0]. In particular, it is natural
to ask

whether or not the various anabelian geometric results that have been obtained so
far may be generalized to the results in the case where the base fields are TKND-
AVKF-fields.

With regard to this question, in the present paper, we give a partial generalization of The-
orems 0.1, 0.3 obtained by S. Mochizuki, namely, the relative birational version of the an-
abelian Grothendieck Conjecture for smooth curves over TKND-AVKF-fields with a certain
mild condition [cf. Theorem 4.7]:

Theorem A. Let K be a TKND-AVKF-field [of characteristic 0]; X, Y smooth proper curves
over K. Suppose that there exists a surjective homomorphism K× ↠ Z. Then the natural
map

IsomK(K(Y ), K(X)) −→ IsomGK
(GK(X), GK(Y ))/Inn(∆K(Y ))

is bijective.

The key ingredient of the proof of Theorem A is to establish a criterion for algebricity of
certain set-theoretic functions on smooth proper curves over algebraically closed fields, which
we shall refer to as quasi-rational functions [cf. Definition 3.1; Proposition 3.6]. This criterion
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strengthens the criterion for algebricity of certain set-theoretic automorphism that appears
in [10], §1, which may be regarded as one of the key ingredients of the proof of Theorem 0.4.
The author expects that such a consideration on augmented geometric objects [compared to
usual scheme-theoretic objects] will make a further progress on a deeper understanding of
anabelian phenomena. On the other hand, we note that the assumption that K× admits a
surjective homomorphism onto Z is applied to verify the [partial] compatibility of cyclotomes
that arise from X and Y . At the time of writing of the present paper, the author does
not know whether or not this assumption may be dropped [even if we assume that K is a
Kummer-faithful field — cf. Remark 4.9.2].

Finally, after making an observation on the freeness of the multiplicative groups of certain
fields modulo the divisible subgroups [cf. Proposition 4.9], as a corollary of Theorem A and
[38], Theorem A, we obtain the following concrete result [cf. Corollary 4.10]:

Corollary B. Let M be a number field [i.e., a finite extension field of Q]. Write L (⊆ Q)
for the field obtained by adjoining all roots of p to M [so L contains all roots of unity,
and M ⊆ L is a nonabelian metabelian Galois extension]. Let K be a subfield of a finitely
generated extension field of L; X, Y smooth proper curves over K. Then the natural map

IsomK(K(Y ), K(X)) −→ IsomGK
(GK(X), GK(Y ))/Inn(∆K(Y ))

is bijective.

In the author’s knowledge, it appears that Corollary B is the first result concerning [the
strong/desired form of] the Grothendieck Conjecture for the function fields of smooth curves
over fields whose associated cyclotomic characters totally vanish.

The present paper is organized as follows. In §1, we first recall the definitions of Kummer-
faithful field and TKND-AVKF-field. Next, we investigate basic properties of these fields and
give some examples and counter-examples. In §2, we reconstruct, from the data of the ab-
solute Galois group of the function field of a smooth curve over a TKND-AVKF-field [of
characteristic 0], together with the natural surjection onto the absolute Galois group of the
base field, the image of the multiplicative group of the function field via the Kummer map.
The discussion that appears in this section is an appropriate modification of S. Mochizuki’s
argument [for the function fields of smooth curves over Kummer-faithful fields]. In §3, we
introduce the notion of quasi-rational functions on smooth curves over algebraically closed
fields which may be regarded as a generalized notion of usual rational functions. The quasi-
rational functions are certain set-theoretic functions on smooth curves that are “not so far”
from the rational functions. Our main result in this section is to give a certain sufficient con-
dition that quasi-rational functions become rational functions automatically. This algebricity
criterion may be applied to give a bridge between the Kummer classes of the multiplicative
groups of the function fields of smooth curves and the function fields themselves. In §4, we
first apply the results obtained in §2, §3, to prove Theorem A. Next, we prove a certain gen-
eralization of the result on the freeness of the multiplicative groups of certain fields modulo
torsion subgroups obtained by W. May. Finally, by applying Theorem A, together with this
generalization, we prove Corollary B.
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Notations and Conventions

Sets: Let A,B be sets. Then we shall write Fn(A,B) for the set of maps from A to B.

Numbers: The notation Q will be used to denote the group or field of rational numbers.
The notation Z will be used to denote the additive group or ring of integers. We shall refer
to a finite extension field of Q as a number field. The notation Ẑ will be used to denote the
profinite completion of Z. If p is a prime number, then Qp will be used to denote the field of
p-adic numbers; Qur

p will be used to denote the maximal unramified extension field of Qp. If
A is a commutative ring, then A× will be used to denote the group of units ∈ A.

Fields: Let F be a field; n a positive integer; p a prime number. Then we shall write F
for the algebraic closure [determined up to isomorphisms] of F ; F sep (⊆ F ) for the separable

closure of F ; GF
def
= Gal(F sep/F );

µn(F )
def
= {x ∈ F× | xn = 1}; µ(F )

def
=

∪
m

µm(F );

F×∞ def
=

∩
m

(F×)m; F×p∞ def
=

∩
m

(F×)p
m

,

where m ranges over the positive integers; Fdiv (⊆ F ) for the field obtained by adjoining the
divisible elements of the multiplicative groups of finite extension fields of F to the prime field
of F .

Topological groups: Let G be a profinite group; H ⊆ G a subgroup of G. Then we shall
write H ⊆ G for the closure of H in G; ZG(H) for the centralizer of H ⊆ G, i.e.,

ZG(H)
def
= {g ∈ G | ghg−1 = h for any h ∈ H}.

[Note that since G is Hausdorff, the centralizer ZG(H) is automatically closed in G.] We
shall write Gab for the quotient of G by [G,G] ⊆ G; Aut(G) for the group of continu-
ous automorphisms of G; Inn(G) ⊆ Aut(G) for the group of inner automorphisms of G;

Out(G)
def
= Aut(G)/Inn(G).

Schemes: Let K be a field; K ⊆ L a field extension; X an algebraic variety [i.e., a separated,
of finite type, and geometrically integral scheme] over K. Then we shall write X(L) for the

set of L-valued points of X; XL
def
= X ×K L.

Fundamental groups: For a connected Noetherian scheme S, we shall write ΠS for the
étale fundamental group of S, relative to a suitable choice of basepoint. Let K be a field; X
an algebraic variety over K. Then we shall write

∆X
def
= ΠXKsep .
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In particular, we have a natural exact sequence of profinite groups

1 −→ ∆X −→ ΠX −→ GK −→ 1

[cf. [5], Exposé IX, Théorème 6.1]. We shall write

Π
(ab)
X

def
= ΠX/Ker(∆X ↠ ∆ab

X ).

Curves: Let K be a field. Then we shall write A1
K (respectively, P1

K) for the affine line
(respectively, the projective line) over K. Let X be a smooth curve [i.e., a smooth and 1-
dimensional algebraic variety] overK. Then we shall writeX for the smooth compactification
of X over K; K(X) for the function field of X;

∆K(X)
def
= GK(X)⊗KKsep .

In particular, we have a natural exact sequence of profinite groups

1 −→ ∆K(X) −→ GK(X) −→ GK −→ 1.

We shall refer to an element ∈ XK \ XK as a cusp of X. Then we shall say that X is a
hyperbolic curve if 2g− 2 + r > 0, where g denotes the genus of X; r denotes the cardinality
of the set of cusps of X.

Next, suppose that X is a hyperbolic curve over K. Then we shall refer to the stabilizer
subgroup of ∆X associated to some pro-cusp of the pro-universal étale covering of XK that
lies over a cusp x ∈ XK \XK as a cuspidal inertia subgroup of ΠX [or ∆X ] associated to x.
Write {Ui}i∈I for the family of open subschemes of XK . Then it follows immediately from
the various definitions involved that there exists a natural isomorphism of profinite groups

∆K(X)
∼→ lim←−

i∈I
∆Ui

,

where the transition maps are the [outer] surjections induced by the natural open immersions.
We shall refer to an inverse limit of cuspidal inertia subgroups of some cofinal collection of
∆Ui

’s as a cuspidal inertia subgroup of GK(X) [or ∆K(X)].

1 Kummer-faithful fields and TKND-AVKF-fields

In the present section, we recall [slightly generalized version of] the definitions of Kummer-
faithful field and TKND-AVKF-field. Moreover, we give some examples and counter-examples
of these fields.
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Definition 1.1 ([10], Definition 6.1, (iii); [10], Definition 6.6, (i), (ii), (iii); [21], Definition
1.5). Let F be a field.

(i) If E×∞ = {1} for every finite field extension F ⊆ E, then we shall say that F is a
torally Kummer-faithful field.

(ii) If Fdiv ⊆ F is an infinite field extension, then we shall say that F is a TKND-field [i.e.,
“torally Kummer-nondegenerate field”].

(iii) If F satisfies the following condition, then we shall say that F is a Kummer-faithful
field:

Let A be a semi-abelian variety over a finite extension field E of F . Then
every divisible element ∈ A(E) is trivial.

(iv) If F satisfies the following condition, then we shall say that F is an AVKF-field [i.e.,
“abelian variety Kummer-faithful field”]:

Let A be an abelian variety over a finite extension field E of F . Then every
divisible element ∈ A(E) is trivial.

(v) If F is both a TKND-field and an AVKF-field, then we shall say that F is a TKND-
AVKF-field.

Remark 1.1.1. It follows immediately from the various definitions involved that every torally
Kummer-faithful field (respectively, Kummer-faithful field) is a TKND-field (respectively,
TKND-AVKF-field).

Remark 1.1.2. It follows immediately from the various definitions involved that every subfield
of a torally Kummer-faithful field (respectively, Kummer-faithful field; AVKF-field) is also
a torally Kummer-faithful field (respectively, Kummer-faithful field; AVKF-field). On the
other hand, the notion of TKND-field does not satisfy this property [cf. [38], Remark 1.1.1].

Next, by applying a similar argument to the argument applied in [21], Remark 1.5.4, (i),
we prove the following result:

Proposition 1.2. Let K be a field; L a finitely generated extension field of K. Then the
following hold:

(i) Suppose that K is torally Kummer-faithful (respectively, TKND). Then L is also torally
Kummer-faithful (respectively, TKND).

(ii) Suppose that K is AVKF. Then L is also AVKF.

(iii) Suppose that K is Kummer-faithful (respectively, TKND-AVKF). Then L is also Kummer-
faithful (respectively, TKND-AVKF).
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Proof. Note that, if the field extension K ⊆ L is algebraic, then there is nothing to prove.
Thus, we may assume without loss of generality that the field extension K ⊆ L is transcen-
dental.

First, we verify assertion (i). Let L ⊆ L† (⊆ L) be a finite field extension. Write K† ⊆ L†

for the algebraic closure of K in L†. Then it suffices to verify that (L†)×∞ ⊆ K†. Let X be
a geometrically connected, normal, proper scheme over K† such that the function field of X
coincides with L†. Observe that Z has no nontrivial divisible element. Then, for each point
x ∈ X of codimension 1, it holds that every element ∈ (L†)×∞ determines a unit of the local
ring at x of X. Thus, since X is a geometrically connected, normal, proper scheme over K†,
we conclude that (L†)×∞ ⊆ OX(X) = K†. This completes the proof of assertion (i).

Next, we verify assertion (ii). Let L ⊆ L† (⊆ L) be a finite field extension; A an abelian
variety over L†. Then it suffices to prove that A(L†) has no nontrivial divisible element.
Let U be an algebraic variety over a finite extension field of K such that the function field
of U coincides with L†, and the abelian variety A extends to an abelian scheme A over
U . Observe from the properness criterion that any divisible element ∈ A(L†) extends to a
divisible element ∈ A(U). For each closed point x ∈ U , write Kx for the residue field of U at

x; Ax
def
= A×U Spec Kx. Then since the field extension K ⊆ Kx is finite, it follows from our

assumption that K is AVKF that the point ∈ Ax(Kx) determined by any divisible element
∈ A(U) is the origin of Ax. On the other hand, since U is an algebraic variety, the subset of
closed points ∈ U forms a dense subset of U . Thus, since the image of any section ∈ A(U)
forms a closed subset of A, we conclude that every divisible element ∈ A(U) coincides with
the origin. This completes the proof of assertion (ii).

Assertion (iii) follows immediately from assertions (i), (ii), together with the various
definitions involved. This completes the proof of Proposition 1.2.

Lemma 1.3. Let p be a prime number; R a complete discrete valuation ring of residue
characteristic p; G a commutative formal group over R. Write K for the field of fractions
of R. Let K ⊆ L be a [possibly, infinite] Galois extension. Write S for the integral closure
of R in the Henselian valuation field L; mS for the maximal ideal of S; G(mS) for the group
associated to the commutative formal group G×RS over S. Suppose that the group of p-power
torsion points of G(mS) is finite. [For instance, every [possibly, infinite] tame extension field
of K satisfies this assumption.] Then there exists no nontrivial p-divisible element of G(mS).

Proof. We identify G(mS) with m⊕n
S , where n denotes the dimension of G. First, it follows

immediately from the definition of formal group law that, if K ⊆ L is a finite field extension,
then it holds that

piG(mS) ⊆ (mi+1
S )⊕n ⊆ m⊕n

S = G(mS)

for each positive integer i. In particular, there exists no nontrivial p-divisible element of
G(mS) under the assumption that K ⊆ L is a finite field extension. Next, we have

G(mS) =
∪

K⊆K†⊆L

G(mR†),
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where K ⊆ K† (⊆ L) ranges over the finite field extensions contained in L; R† denotes the
integral closure of R in K†; G(mR†) denotes the group associated to the commutative formal
group G ×R R† over R†. Let x ∈ G(mS) be a p-divisible element. To verify Lemma 1.3, it
suffices to prove that x is trivial. By replacing K by a finite extension field of K, we may
assume without loss of generality that x ∈ G(mR). For each positive integer m, fix an element
xm ∈ G(mS) such that pmxm = x. Write pc for the cardinality of the group of p-power torsion
points of G(mS). Let σ ∈ Gal(L/K) be an element. Then since x ∈ G(mR), it holds that
σ(xm)−xm is a p-power torsion point for each positive integer m. In particular, it holds that
σ(pcxm) = pcxm, hence that pcxm ∈ G(mR) for each positive integer m. This implies that
pcx is a p-divisible element of G(mR). Therefore, it follows from the above argument that
pcx is trivial, hence that x is a p-power torsion point. Thus, since x is a p-divisible element,
we conclude from our assumption that G(mS) has finitely many p-power torsion points that
x is trivial. This completes the proof of Lemma 1.3.

Remark 1.3.1. The argument applied in the proof of Lemma 1.3 is similar to the argument
applied in the proof of [10], Lemma 6.2, (iiAV ), hence also of [23], Proposition 7.

Proposition 1.4. Let R be a Noetherian local domain whose residue characteristic is positive.
Write K for the field of fractions of R; k for the residue field of R. Then the following hold:

(i) Suppose that k is torally Kummer-faithful. Then K is also torally Kummer-faithful.

(ii) K is TKND [cf. [38], Proposition 2.3].

(iii) Suppose that k is Kummer-faithful. Then K is also Kummer-faithful [cf. [24], Propo-
sition 3.7].

Proof. Recall that there exists a discrete valuation ring S such that S dominates R, and the
residue field of S is a finitely generated extension field over k. Then it follows immediately
from Remark 1.1.2 and Proposition 1.2, (i), (iii), that, by replacing R by the completion of
S, we may assume without loss of generality that R is a complete discrete valuation ring.
Let K ⊆ K† be a finite field extension. Write R† (⊆ K†) for the integral closure of R in K†;
k† for the residue field of R†.

Next, we verify assertions (i), (ii). Observe that since R† is also a complete discrete
valuation ring whose residue characteristic is positive, it holds that (K†)×∞ is contained in
the image of (k†)×∞ via the Teichmüller character associated to R†. Thus, by varying K†,
we observe the following:

• If k is torally Kummer-faithful, then K is also torally Kummer-faithful.

• Kdiv is contained in the maximal unramified extension field of K. In particular, K is
TKND.
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This completes the proofs of assertions (i), (ii).
Next, we verify assertion (iii). Let A be an abelian variety over K†. It suffices to verify

that A(K†) has no nontrivial divisible element. By replacing K by a finite extension field of
K, we may assume without loss of generality that K = K†, and A has semi-stable reduction
over K [cf. [6], Exposé IX, Théorème 3.6]. Write A for the semi-abelian scheme over R that

lies over A; As for the special fiber of A; Â for the formal completion of A at the origin.
Then the reduction map induces a natural exact sequence

0 −→ Â(R) −→ A(K) = A(R) −→ As(k).

Note that it follows immediately from Lemma 1.3 that Â(R) has no nontrivial divisible
element. On the other hand, since k is Kummer-faithful, it holds that As(k) has no nontrivial
divisible element. Note that, for each positive integer n, the group of n-torsion points ∈ A(K)
is finite. Thus, we conclude that A(K) has no nontrivial divisible element. This completes
the proof of assertion (iii), hence of Proposition 1.4.

Remark 1.4.1. Note that a similar assertion for “stably p-×µ-indivisible field” is proved in
[16], Proposition 1.10.

Remark 1.4.2. Let k be a field of characteristic 0. Then the one-parameter formal power
series field k((t)) over k is not TKND. Indeed, it follows from a direct computation that
1 + tk[[t]] ⊆ k((t))×∞. Then it holds that k ⊆ Q(tk[[t]]) = Q(1 + tk[[t]]) ⊆ Q(k((t))×∞). On
the other hand, observe that k and 1+tk[[t]] generate the field k((t)). Thus, since every finite
extension field of k((t)) is isomorphic to k†((t)) for some finite extension field k† of k, we
conclude that k((t))div = k((t)). In particular, the assumption that the residue characteristic
of R is positive that appears in Proposition 1.4 is indispensable.

Remark 1.4.3. The assumption that the local domain R is Noetherian that appears in Propo-
sition 1.4 is also indispensable. Indeed, let p be a prime number; E a Tate elliptic curve over
Qp. Write Qp(µp∞) for the extension field of Qp obtained by adjoining all p-power roots
of unity to Qp; R for the integral closure of Zp in Qp(µp∞). Then it holds that R is not
Noetherian, and the residue field of R is finite, hence, in particular, Kummer-faithful. On
the other hand, it holds that E(Qp(µp∞)) has infinitely many p-power torsion points, hence,
in particular, that Qp(µp∞) is not AVKF. Moreover, it follows immediately from the various
definitions involved that Qp(µp∞) is not torally Kummer-faithful.

Remark 1.4.4. The argument applied in the proof of Proposition 1.4, (ii), is a review of
Murotani’s argument applied in the proof of [24], Proposition 3.7.
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Remark 1.4.5. Let p be a prime number; l a prime number ̸= p; K a p-adic local field. Fix
a system of l-power roots of p [compatible with the l-th power map]. Write L for the field
obtained by adjoining these roots of p to K. Then L is a Kummer-faithful field. Indeed, let
L† be a finite extension field of L. Observe that the residue field of L† is finite, and the finite
fields are Kummer-faithful. Moreover, it follows immediately from the definition of L that
L† is a subfield of the maximal tame extension field of a finite extension field of K. Thus, in
light of Lemma 1.3, by applying a similar argument to the argument applied in the proof of
Proposition 1.4, (ii), we conclude that L is a Kummer-faithful field.

Remark 1.4.6. At the time of writing of the present paper, the author does not know whether
or not an assertion for AVKF similar to Proposition 1.4, (i), (iii), holds.

Definition 1.5. Let p be a prime number; F a field. Then:

(i) We shall say that F is a quasi-finite field if F is perfect, and GF
∼→ Ẑ.

(ii) We shall say that F is a sub-p-adic field if F is a subfield of a finitely generated extension
field of Qp [cf. [17], Definition 15.4, (i)].

(iii) We shall say that F is a generalized sub-p-adic field if F is a subfield of a finitely
generated extension field of the completion of Qur

p [cf. [18], Definition 4.11].

Remark 1.5.1. Let p be a prime number. Then every sub-p-adic field is a Kummer-faithful
field [cf. [21], Remark 1.5.4, (i)]. We slightly generalize this fact below [cf. Proposition 1.7,
(i)].

Definition 1.6 ([3], Chapter I, §1.1). Let F be a field; d a positive integer. Then:

(i) A structure of local field of dimension d on F is a sequence of complete discrete valuation

fields F (d) def
= F, F (d−1), . . . , F (0) such that

• F (0) is a perfect field;

• for each integer 0 ≤ i ≤ d − 1, F (i) is the residue field of the complete discrete
valuation field F (i+1).

(ii) We shall say that F is a higher local field if F admits a structure of local field of some
positive dimension. With respect to some fixed structure of higher local field, we shall
refer to F (0) as the final residue field of F .

Proposition 1.7. Let p be a prime number. Then the following hold:

13



(i) Let k be a quasi-finite field of characteristic p that is algebraic over the prime field;
K a mixed characteristic or positive characteristic higher local field whose final residue
field is k. Let M be a subfield of a finitely generated extension field of K. Then M is
a Kummer-faithful field.

(ii) Let E be an elliptic curve over Qur
p . Suppose that E has good ordinary reduction and

complex multiplication over Qur
p . [Note that such an elliptic curve may be constructed

as the base extension of the Serre-Tate’s canonical lifting of an ordinary elliptic curve
over a finite field of characteristic p — cf. [15], Chapter V, Theorem 3.3.] Then, for
each prime number l, the elliptic curve E has infinitely many l-power torsion points
valued in Qur

p . In particular, Qur
p is a generalized sub-p-adic field that is not AVKF,

hence not Kummer-faithful [cf. Remark 1.1.1].

Proof. First, we verify assertion (i). It follows immediately from Remark 1.1.2, together with
Proposition 1.2, (iii), that we may assume without loss of generality that M = K. Then, in
light of Proposition 1.4, (ii), it suffices to verify that k is a Kummer-faithful field. Let A be a
semi-abelian variety over a finite extension field of k. For each prime number l, write TlA for
the l-adic Tate module associated to A. Since k is algebraic over the prime field, it holds that
A(k) is a torsion group. On the other hand, since k is quasi-finite and algebraic over the prime
field, it follows immediately from the various definitions involved that H0(Gk† , TlA) = {0}
for each prime number l and each finite field extension k ⊆ k† (⊆ k). Thus, we conclude from
these observations that k is a Kummer-faithful field. This completes the proof of assertion
(i).

Next, we verify assertion (ii). Since E has good reduction, it holds that, for each prime
number l ̸= p, every l-power torsion point is a Qur

p -valued point. Thus, it suffices to verify
that E has infinitely many p-power torsion points valued in Qur

p . However, since E has
good ordinary reduction and complex multiplication over Qur

p , this fact follows immediately
from [31], Chapter IV, A.2.4, Theorem. This completes the proof of assertion (ii), hence of
Proposition 1.7.

Theorem 1.8. Let p be a prime number; F a number field. Write E (⊆ Q) for the field
obtained by adjoining all roots of p to F [so E contains all roots of unity, and F ⊆ E is a
nonabelian metabelian Galois extension]. Let K be a subfield of a finitely generated extension
field of E. Then K is a TKND-AVKF-field.

Proof. In light of [38], Theorem A; Remark 1.1.2; Proposition 1.2, (iii), it suffices to verify
that K is TKND. However, this follows immediately from the argument applied in the proof
of Proposition 1.2, (i), together with the fact that E is algebraic over the prime field. This
completes the proof of Theorem 1.8.

Remark 1.8.1. Note that [38], Theorem A is proved by applying Grothendieck’s monodromy
theorem [cf. [6]] and Ribet’s theorem concerning the finiteness of torsion points of abelian
varieties valued in the maximal cyclotomic extensions of number fields [cf. [11]], together
with some lemmas observed by Kubo-Taguchi and Moon [cf. [12], [23]].
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Remark 1.8.2. It follows immediately from the well-known theory of complex multiplication
that the maximal abelian extension of Q(µ4(Q)) is not AVKF [cf. [38], Proposition C]. In
particular, one concludes from [4], Theorem 16.11.3, that Hilbertian fields need not to be
AVKF in general.

2 Reconstruction of the Kummer classes of rational

functions

Let K be a TKND-AVKF-field of characteristic 0; X a proper hyperbolic curve over K.
In the present section, we discuss the [semi-absolute] reconstruction of the Kummer classes
of K(X)× from the data of the natural surjection GK(X) ↠ GK , together with the data
of cuspidal inertia subgroups [cf. Definition 2.4; Proposition 2.6]. The argument applied
in the reconstruction of the Kummer classes is similar to the argument applied in [21], §1.
After this, we observe that any isomorphism between the data GK(X) ↠ GK and a similar
data “GK(Y ) ↠ GL” maps the cuspidal inertia subgroups of GK(X) to the cuspidal inertia
subgroups ofGK(Y ). This implies that any such isomorphism induces an isomorphism between
the respective Kummer classes [cf. Corollary 2.7]. Finally, we also discuss a phenomenon
of partial cyclotomic rigidity in the relative anabelian geometric situation [cf. Proposition
2.10], which will be applied in the proof of the relative birational version of the Grothendieck
Conjecture for smooth curves over TKND-AVKF-fields in §4.

First, we begin by reviewing the synchronization of geometric cyclotomes.

Definition 2.1. We shall write
ΛX

for the dual Ẑ-module of the second cohomology group H2(∆X , Ẑ). Note that since X is a

smooth proper curve of genus ≥ 2, it holds that H2(∆X , Ẑ)
∼→ H2

ét(XK , Ẑ). In particular,

it follows immediately from Poincaré duality that ΛX is isomorphic to Ẑ(1), where “(1)”

denotes the Tate twist, i.e., Ẑ(1) def
= lim←−n

µn(K).

Definition 2.2.

(i) Let G1, G2 be profinite groups; ϕ : G1 ↠ G2 an outer surjection. Then we shall refer
to the quotient profinite group

(G1 ↠) G1/[Ker(ϕ), G1]

of G1 as the maximal cuspidally central quotient associated to ϕ [cf. [20], Definition
1.1, (i)].
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(ii) Let x ∈ X(K) be a closed point. Then we shall write Xx
def
= X \ {x};

∆cn
Xx

for the maximal cuspidally central quotient associated to the outer surjection ∆Xx ↠
∆X induced by the natural open immersion Xx ↪→ X.

Proposition 2.3. Let x ∈ X(K) be a closed point; Ix ⊆ ∆K(X) a cuspidal inertia subgroup
associated to x. Then we have a natural exact sequence of profinite groups

1 −→ Ix −→ ∆cn
Xx
−→ ∆X −→ 1.

Moreover, one may reconstruct the natural scheme-theoretic identification

ΛX
∼→ Ix (

∼→ Ẑ(1))

[from the natural outer surjection ∆Xx ↠ ∆X ], in a purely group-theoretic way, as follows:
The Leray-Serre spectral sequence

Ei,j
2 = H i(∆X , H

j(Ix, Ix)) ⇒ H i+j(∆cn
Xx

, Ix)

associated to the above exact sequence induces a differential

H1(Ix, Ix) = H0(∆X , H
1(Ix, Ix)) = E0,1

2 −→ E2,0
2 = H2(∆X , H

0(Ix, Ix)) = Hom(ΛX , Ix).

Then the image of the identity automorphism ∈ Hom(Ix, Ix) = H1(Ix, Ix) via the above
differential gives us the isomorphism ΛX

∼→ Ix as desired.

Proof. Observe that the kernel of the natural outer surjection ∆Xx ↠ ∆X is topologically
normally generated by the image of the pro-cyclic group Ix via the natural outer surjection
∆K(X) ↠ ∆Xx . Thus, the former assertion follows immediately from the various defini-
tions involved. Since the construction of ∆cn

Xx
is purely group-theoretic, the latter assertion

also follows immediately from the various definitions involved. This completes the proof of
Proposition 2.3.

Next, by applying the synchronization of geometric cyclotomes discussed above, we re-
construct the group of Kummer classes of K(X)×.

Definition 2.4. We shall construct a subset

K(X)κ ⊆ lim−→
K⊆K†

H1(GK(X)⊗KK† ,ΛX),

— where K ⊆ K† (⊆ K) ranges over the finite field extensions — as follows: Let S ⊆ X be

a nonempty finite subset of closed points. Write U
def
= X \S ⊆ X. By replacing K by a finite
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extension field of K, we assume that S ⊆ X(K). Let K ⊆ M be a finite field extension.
Observe that the natural exact sequence

1 −→ ∆U −→ ΠUM
−→ GM −→ 1

determines an exact sequence

0 −→ H1(GM ,ΛX) −→ H1(ΠUM
,ΛX)

r−→ H1(∆U ,ΛX)
GM .

Thus, by allowing the [sufficiently large] finite extension fields K ⊆ K† to vary, we obtain an
exact sequence

0 −→ lim−→
K⊆K†

H1(GK† ,ΛX) −→ lim−→
K⊆K†

H1(ΠU
K† ,ΛX) −→ lim−→

K⊆K†

H1(∆U ,ΛX)
G

K† .

Here, we observe that, for any finite field extension K ⊆ K†,

H1(∆U ,ΛX)
G

K† = H1(∆ab
U ,ΛX)

G
K† .

Next, for each x ∈ S, let Ix be a cuspidal inertia subgroup of ∆K(X) (⊆ GK(X)) associated
to x. Then we have an exact sequence of GM -modules⊕

x∈S

Ix −→ ∆ab
U −→ ∆ab

X −→ 0,

which determines an exact sequence of modules

0 −→ H1(∆ab
X ,ΛX)

GM −→ H1(∆ab
U ,ΛX)

GM −→
⊕
x∈S

H1(Ix,ΛX).

Note that since K is an AVKF-field, it holds that, for any finite field extension K ⊆ K†,

H1(∆X ,ΛX)
G

K† = {0}.

Thus, we obtain a natural injection

i : H1(∆ab
U ,ΛX)

GM ↪→
⊕
x∈S

H1(Ix,ΛX).

Write
1x ∈ H1(Ix,ΛX) = Hom(Ix,ΛX)

for the isomorphism Ix
∼→ ΛX of Proposition 2.3;

Zx ⊆ H1(Ix,ΛX)

for the subgroup generated by 1x;

ix : GM ↪→ ΠXM
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for the section of the natural surjection ΠXM
↠ GM determined by the image ofNGK(X)⊗KM

(Ix)
via the natural surjection GK(X)⊗KM ↠ ΠXM

. Next, we fix x0 ∈ S. Write

Dx ∈ H1(GM ,∆ab
X )

for the element obtained by forming the difference between ix0 and ix;

PS ⊆
⊕
x∈S

Zx

(
⊆

⊕
x∈S

H1(Ix,ΛX)

)
for the subgroup consisting of (nx)x∈S ∈

⊕
x∈S Zx such that∑

x∈S

nx = 0,
∑
x∈S

nx ·Dx = 0
(
∈ H1(GM ,∆ab

X )
)

[where we identify Zx with Z via the unique isomorphism Zx
∼→ Z that maps 1x to 1, and

note that one verifies immediately that these conditions on (nx)x∈S are independent of the
choice of x0 ∈ S];

Pκ
S

for the image of (i ◦ r)−1(PS) via the natural homomorphism

H1(ΠUM
,ΛX) −→ lim−→

K⊆K†

H1(ΠU
K† ,ΛX).

Let y ∈ U(K) be an element; Iy ⊆ ∆K(X) ⊆ GK(X) a cuspidal inertia subgroup associated to
y. Fix a finite field extension K ⊆ Ky such that y ∈ U(Ky). Write

Ey : lim−→
K⊆K†

H1(ΠU
K† ,ΛX) −→ lim−→

K⊆K†

H1(GK† ,ΛX)

for the natural restriction homomorphism induced by the section of the natural surjec-
tion ΠUKy

↠ GKy determined by the image of NGK(X)⊗KKy
(Iy) via the natural surjection

GK(X)⊗KKy ↠ ΠUKy
. Then, in light of the [inductive limit of] inflation map

lim−→
K⊆K†

H1(ΠU
K† ,ΛX) ↪→ lim−→

K⊆K†

H1(GK(X)⊗KK† ,ΛX),

by allowing the nonempty finite subset S ⊆ X of closed points to vary, we obtain

Pκ def
=

∪
S

Pκ
S ⊆ lim−→

K⊆K†

H1(GK(X)⊗KK† ,ΛX).

Finally, we define

K(X)κ ⊆ Pκ

(
⊆ lim−→

K⊆K†

H1(GK(X)⊗KK† ,ΛX)

)
as a subset consisting of elements f ∈ Pκ satisfying one of the following conditions:
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(i) There exist a nonempty finite subset Sf ⊆ X of closed points and z1, z2 ∈ (X \ Sf )(K)
such that

f ∈ Pκ
Sf
, Ez1(f) = 1, Ez2(f) ̸= 1

[where, if one works additively, then Ez1(f) = 0, and Ez2(f) ̸= 0].

(ii) There exist an element g ∈ Pκ
Sg
⊆ Pκ satisfying condition (i), and w ∈ (X \ Sg)(K)

such that the image of Ew(g) via the [inductive limit of] inflation map

lim−→
K⊆K†

H1(GK† ,ΛX) ↪→ lim−→
K⊆K†

H1(GK(X)⊗KK† ,ΛX)

coincides with f .

Proposition 2.5. We maintain the notation of Definition 2.4. Then the following hold:

(i) The subgroup PS ⊆
⊕

x∈S Zx (
∼→

⊕
x∈S Z) coincides with the group of principal

divisors associated to the rational functions on X whose support are contained in S.

(ii) Let h ∈ Pκ
S be an element. Then there exist a finite field extension K ⊆ Kh, a rational

function hf on UKh
, and an element c ∈ H1(GKh

,ΛX), such that

h = c · hκ
f ,

where c denotes the image of c via the natural composite homomorphism

H1(GKh
,ΛX)→ lim−→

K⊆K†

H1(GK† ,ΛX) ↪→ lim−→
K⊆K†

H1(ΠU
K† ,ΛX);

hκ
f denotes the image of hf via the Kummer map. [In the remainder, we shall say that

h is nonconstant if the rational function hf is nonconstant.]

(iii) Let K ⊆ K† be a finite field extension; f a nonconstant rational function on XK†.
Then there exist points z1, z2 ∈ XK†(K) such that z1 and z2 are neither zeros nor poles
of f , and the image of f(z1) (respectively, f(z2)) via the [inductive limit of ] Kummer
map

K
×
= lim−→

K⊆K†

(K†)× −→ lim−→
K⊆K†

H1(GK† ,ΛX)

is trivial (respectively, nontrivial).

(iv) Let h ∈ Pκ be a nonconstant element. Then it holds that h ∈ K(X)κ if and only if h
coincides with the Kummer class of a nonconstant rational function on XK† for some
finite field extension K ⊆ K†.

(v) Let c ∈ K
×
be an element; g a nonconstant rational function on X. Then there exists

a point z ∈ X(K) such that g(z) coincides with c.
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Proof. Since K is an AVKF-field, assertion (i) follows immediately from an elementary prop-
erty of Jacobian, together with the definition of PS. Assertion (ii) follows immediately from
assertion (i), together with the various definitions involved. Since K is a TKND-field, as-
sertion (iii) follows immediately from the fact that every nonconstant rational function on
XK† determines a [finite] surjective morphism XK → P1

K
. Assertion (iv) follows immediately

from assertions (ii), (iii). Assertion (v) follows immediately from a similar argument to the
argument applied in the proof of assertion (iii). This completes the proof of Proposition
2.5.

Proposition 2.6. The image of the [inductive limit of ] Kummer map

lim−→
K⊆K†

(K(X)⊗K†)× −→ lim−→
K⊆K†

H1(GK(X)⊗KK† ,ΛX)

— where K ⊆ K† (⊆ K) ranges over the finite field extensions — coincides with K(X)κ [cf.
Definition 2.4].

Proof. Proposition 2.6 follows immediately from Proposition 2.5, (iv), (v), together with the
various constructions involved.

Corollary 2.7. Let L be a TKND-AVKF-field of characteristic 0; Y a smooth proper curve
over L;

σ : GK(X)
∼→ GK(Y )

an isomorphism of profinite groups that induces an isomorphism GK
∼→ GL via the natural

surjections GK(X) ↠ GK and GK(Y ) ↠ GL. For each finite field extension K ⊆ K† (⊆ K),

write L ⊆ L† (⊆ L) for the corresponding finite field extension via the isomorphism GK
∼→

GL. Then σ induces naturally commutative diagrams of groups:

lim−→K⊆K† (K†)×/(K†)×∞ −−−→ lim−→K⊆K† H1(GK† ,ΛX)y≀
y≀

lim−→L⊆L† (L†)×/(L†)×∞ −−−→ lim−→L⊆L† H1(GL† ,ΛY ),

lim−→K⊆K† (K(X)⊗K K†)×/(K†)×∞ −−−→ lim−→K⊆K† H1(GK(X)⊗KK† ,ΛX)y≀
y≀

lim−→L⊆L† (K(Y )⊗L L†)×/(L†)×∞ −−−→ lim−→L⊆L† H1(GK(Y )⊗LL† ,ΛY ),

where K ⊆ K† (⊆ K) ranges over the finite field extensions; the horizontal arrows of the
above commutative diagrams denote the natural injections induced by the [inductive limits of ]
Kummer maps [cf. Proposition 2.3].
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Proof. First, it follows immediately from Proposition 2.6 that it suffices to verify that σ maps
the cuspidal inertia subgroups of GK(X) to the cuspidal inertia subgroups of GK(Y ). Note
that, if there exists a prime number l such that the l-adic cyclotomic character associated to
K [or equivalently, to L — cf. [21], Theorem 1.11, (a)] is open, then such a preservation of
cuspidal inertia subgroups follows from a similar argument to the argument applied in the
procedure of [21], Theorem 1.11, (b). Thus, we may assume without loss of generality that,
for each prime number l, the image of the l-adic cyclotomic character associated to K [or
equivalently, to L] is finite. Let I ⊆ GK(X) be a cuspidal inertia subgroup.

Next, we verify the following assertion:

Claim 2.7.A: The image of the closed subgroup σ(I) ⊆ GK(Y ) via the natural
composite homomorphism

GK(Y ) ↠ ΠY ↠ Π
(ab)
Y

— where the first arrow denotes the natural surjection induced by the natural
morphism Spec K(Y )→ Y ; the second arrow denotes the natural surjection [cf.
Notations and Conventions] — is trivial.

Indeed, let l be a prime number. Observe that it follows immediately from our assumption
that the l-adic cyclotomic character associated to L is finite that, by replacing L by a finite
extension field of L, we may assume without loss of generality that σ(I)l is isomorphic to Zl

as a GL-module. On the other hand, since L is an AVKF-field, it holds that the image of
any GL-equivariant homomorphism (σ(I)l ∼=) Zl → (∆ab

Y )l vanishes. Thus, by varying l, we
conclude that the image of σ(I) in ∆ab

Y is trivial. This completes the proof of Claim 2.7.A.
Next, we verify the following assertion:

Claim 2.7.B: Let J ⊆ GK(Y ) be a pro-cyclic closed subgroup. Suppose that, for
any open subgroup GK(Z) ⊆ GK(Y ) [where Z denotes the domain curve of the
finite ramified covering of Y corresponding to the open subgroup], the image of
the closed subgroup J∩GK(Z) ⊆ GK(Z) via the natural composite homomorphism

GK(Z) ↠ ΠZ ↠ Π
(ab)
Z

— where the first arrow denotes the natural surjection induced by the natural
morphism Spec K(Z) → Z; the second arrow denotes the natural surjection [cf.
Notations and Conventions] — is trivial. Then it holds that J ⊆ GK(Y ) is a
cuspidal inertia subgroup.

Indeed, Claim 2.7.B follows immediately from [9], Lemma 1.6.
Finally, it follows immediately from the various definitions involved that the intersection

of I with any open subgroup ofGK(X) is also a cuspidal inertia subgroup of the open subgroup.
Then, by applying Claim 2.7.A for such open subgroups, we observe that the assumption of
Claim 2.7.B for J = σ(I) holds. Thus, we conclude from Claim 2.7.B that σ(I) ⊆ GK(Y ) is
a cuspidal inertia subgroup. This completes the proof of Corollary 2.7.
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Next, we discuss a phenomenon of partial cyclotomic rigidity in the relative anabelian
geometric situation.

Lemma 2.8. It holds that Q ∩ Ẑ× = {±1}, where we regard Q and Ẑ× (⊆ Ẑ) as subsets of

Q⊗Z Ẑ via the natural injections Q ↪→ Q⊗Z Ẑ and Ẑ× ↪→ Q⊗Z Ẑ.
Proof. Let m be a positive integer; n a nonzero integer coprime to m; a ∈ Ẑ× an element
such that n = am. Observe that, for every prime number l, it holds that the l-adic valuation
of m coincides with the l-adic valuation of n. Then since m is coprime to n, we conclude
that m,n ∈ {±1}. This argument implies that Q∩ Ẑ× = {±1}. This completes the proof of
Lemma 2.8.

Remark 2.8.1. In [22], this elementary property is applied to reconstruct the cyclotomic
rigidity isomorphism surrounding κ-coric rational functions.

Lemma 2.9. Write

κ : K
×
= lim−→

K⊆K†

(K†)× −→ lim−→
K⊆K†

H1(GK† , Ẑ(1))

— where K ⊆ K† ranges over the finite field extensions — for the [inductive limit of ]

Kummer map(s). Let σ ∈ Aut(Ẑ(1)) = Ẑ× be an element. Write

τ ∈ Aut
(

lim−→
K⊆K†

H1(GK† , Ẑ(1))
)

for the automorphism induced by σ. Suppose that

• τ(Im(κ)) = Im(κ), and

• there exists a surjective homomorphism K× ↠ Z.
Then it holds that σ ∈ {±1}.

Proof. Fix a surjective homomorphism ϕ : K× ↠ Z. Write ϕ̃ : K
× ↠ Q for the surjective

homomorphism obtained by assigning

K
× ∋ x 7→

ϕ(NmK†/K(x))

[K† : K]
∈ Q,

where K† denotes a finite extension field of K that contains x; NmK†/K : (K†)× → K×

denotes the norm map. Then we have the following commutative diagram

K× ϕ−−−→ Zy y
K

× ϕ̃−−−→ Q

κ

y y
lim−→K⊆K† H1(GK† , Ẑ(1)) ϕ̂−−−→ Q⊗Z Ẑ,
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where the right-hand vertical arrows denote the natural injections; the lower horizontal arrow
denotes the homomorphism induced by ϕ̃. Observe that the natural actions of σ on the
domain and the codomain of ϕ̂ is compatible with ϕ̂. In particular, since τ(Im(κ)) = Im(κ),

the automorphism of Q⊗Z Ẑ determined by σ ∈ Ẑ× maps 1 ∈ Q ⊆ Q⊗Z Ẑ to some nonzero
rational number ∈ Q ⊆ Q ⊗Z Ẑ. Thus, we conclude from Lemma 2.8 that σ ∈ {±1}. This
completes the proof of Lemma 2.9.

Proposition 2.10. In the notation of Corollary 2.7, suppose that

• K = L,

• the isomorphism σ lies over GK, and

• there exists a surjective homomorphism K× ↠ Z.

Then the natural automorphism Ẑ(1) ∼→ ΛX
∼→ ΛY

∼← Ẑ(1) induced by σ [cf. Proposition
2.3] is the identity automorphism or the inversion automorphism.

Proof. In light of the first commutative diagram of Corollary 2.7, Proposition 2.10 follows
immediately from Lemma 2.9.

3 Quasi-rational functions on smooth curves over alge-

braically closed fields

In the present section, we introduce the notion of quasi-rational functions on smooth
[proper] curves over algebraically closed fields, which may be regarded as a certain generalized
notion of rational functions. After introducing quasi-rational functions [cf. Definition 3.1],
we give a criterion that quasi-rational functions become rational functions automatically [cf.
Proposition 3.6]. This criterion is the main observation of the present paper and will be
applied in the proof of the relative birational version of the Grothendieck Conjecture for
smooth curves over TKND-AVKF-fields in the next section.

Definition 3.1. Let K be an algebraically closed field; k ⊆ K a subfield; X a smooth proper
curve over K; f ∈ Fn(X(K), K∪{∞}). Then we shall say that f is a quasi-rational function
on X associated to k if there exist elements

ϕf ∈ Fn(X(K), k×), g ∈ K(X)

such that f = ϕf · g.
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Remark 3.1.1. We maintain the notation of Definition 3.1. Then the following hold:

(i) Every rational function ∈ K(X) is a quasi-rational function on X associated to any
subfield of K.

(ii) Let f1, f2 ∈ Fn(X(K), K∪{∞}) be quasi-rational functions onX associated to k. Then
it follows immediately from the various definitions involved that the product f1 · f2 is
a quasi-rational function on X associated to k.

Remark 3.1.2. In the notation of Definition 3.1, suppose that k ⊊ K, and f ∈ Fn(X(K), K∪
{∞}) is a quasi-rational function onX associated to k. Then since every nonconstant rational
function on X induces a surjective morphism X → P1

K , the rational function g is uniquely
determined by f up to multiplication by a constant function ∈ Fn(X(K), k×).

Remark 3.1.3. In the notation of Definition 3.1, suppose that k ⊊ K. Let

f1, f2 ∈ Fn(X(K), K ∪ {∞})

be quasi-rational functions on X associated to k. Note that, for each x ∈ X(K), it holds
that

(f1 + f2)|x
def
= ϕf1(x) · g1 + ϕf2(x) · g2 ∈ K(X)

[cf. Remark 3.1.2]. Then, by assigning x to the evaluation of the rational function (f1+f2)|x
at x, we obtain an element f1 + f2 ∈ Fn(X(K), K ∪ {∞}).

Lemma 3.2. Let K be an algebraically closed field; X a smooth proper curve over K; g1, g2
nonconstant rational functions on X. For each i = 1, 2, write mi for the geometric degree
of gi [i.e., the degree of the finite morphism X → P1

K determined by gi]. Suppose that the
rational function g1+g2 is also a nonconstant function. Then, if we write m for the geometric
degree of g1 + g2, then it holds that m ≤ m1 +m2.

Proof. Observe that the geometric degrees m1, m2, m coincide with the degrees of the pole
divisors associated to the nonconstant rational functions g1, g2, g1 + g2, respectively. This
observation immediately implies that m ≤ m1 + m2. This completes the proof of Lemma
3.2.

Lemma 3.3. In the notation of Remark 3.1.3, suppose that

• k ⊆ K is an infinite algebraic field extension,

• g1 ∈ K(X) is a nonconstant rational function, and

• 1 = f1 + f2 ∈ Fn(X(K), K ∪ {∞}).
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Then there exists an element x ∈ X(K) such that (f1+ f2)|x ∈ K(X) is a constant function.

Proof. First, since g1 ∈ K(X) is a nonconstant rational function, it holds that ϕf2 · g2 =
1 − ϕf1 · g1 admits both a value ∈ K and a pole. In particular, g2 ∈ K(X) is also a
nonconstant rational function. Next, since k ⊆ K is an infinite algebraic extension, by
replacing k by a finite extension field of k, we may assume without loss of generality that the
finite morphisms X → P1

K induced by the nonconstant rational functions g1 and g2 descend
to finite morphisms Xk → P1

k over k. Write m1, m2 for the degrees of the finite morphisms
associated to g1, g2, respectively. Suppose that,

for every x ∈ X(K), the rational function (f1 + f2)|x ∈ K(X) is a nonconstant
function.

Note that since f1 + f2 = 1, it holds that (f1 + f2)|x(x) = 1 ∈ P1
k(k). Then it follows

immediately from Lemma 3.2 that, for each x ∈ X(K), there exists a finite field extension
k ⊆ kx (⊆ K) of degree ≤ m1 + m2 such that x ∈ Xk(kx) ⊆ X(K). On the other hand,
since k ⊆ K is an infinite algebraic field extension, there exists an element y ∈ K such that
the finite field extension k ⊆ k(y) is of degree > m1 + m2. In particular, the residue field
of any point ∈ g−1

1 (y) ⊆ Xk(K) is a finite extension field of k of degree > m1 + m2. This
is a contradiction. Thus, we conclude that there exists an element x ∈ X(K) such that
(f1 + f2)|x ∈ K(X) is a constant function. This completes the proof of Lemma 3.3.

Lemma 3.4. In the notation of Remark 3.1.3, suppose that

• k ⊊ K,

• 1 = f1 + f2 ∈ Fn(X(K), K ∪ {∞}), and

• there exists an element x ∈ X(K) such that (f1 + f2)|x ∈ K(X) is a constant function.

Write C ⊆ X(K) for the inverse image of P1
K(K) \ P1

k(k) ⊆ P1
K(K) via the morphism

X → P1
K determined by the rational function g1 [cf. Remark 3.1.2]. Then there exists

a rational function h ∈ K(X) ⊆ Fn(X(K), K ∪ {∞}) such that the restriction of h to
C ⊆ X(K) coincides with the restriction of f1 to C ⊆ X(K).

Proof. Fix an element x ∈ X(K) such that (f1 + f2)|x ∈ K(X) is a constant function. Then
since f1 + f2 = 1, it holds that (f1 + f2)|x = 1. Next, by replacing g1, g2 by ϕf1(x)

−1 · g1,
ϕf2(x)

−1 ·g2, respectively, we may assume without loss of generality that ϕf1(x) = ϕf2(x) = 1,
hence that g1 + g2 = 1. Thus, since f1 + f2 = 1, it holds that

ϕf2 − 1 = (ϕf2 − ϕf1) · g1.

Note that ϕf2 − 1 and ϕf2 − ϕf1 are k-valued [set-theoretic] functions. Then, for each y ∈ C,
it holds that ϕf2(y) − 1 = ϕf2(y) − ϕf1(y) = 0, hence that ϕf1(y) = ϕf2(y) = 1. Therefore,
one may choose the rational function g1 as a desired rational function h. This completes the
proof of Lemma 3.4.
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Lemma 3.5. In the notation of Remark 3.1.3, suppose that

• k ⊆ K is an infinite algebraic field extension,

• 1 = f1 + f2 ∈ Fn(X(K), K ∪ {∞}),

• g1 ∈ K(X) is a nonconstant rational function, and

• there exists an element a ∈ K \ k such that f1 + a and f2 − a (= −(f1 + a − 1)) are
quasi-rational functions on X associated to k.

Then it holds that f1 ∈ K(X).

Proof. Fix an element a ∈ K \ k such that f1 + a and f2 − a are quasi-rational functions on
X associated to k. Then there exist elements

ϕa ∈ Fn(X(K), k×), ga ∈ K(X)

such that ϕf1 ·g1+a = f1+a = ϕa ·ga. Fix such elements. Note that since g1 is a nonconstant
rational function, it holds that ϕf1 ·g1+a admits both a value ∈ K and a pole. In particular,
ga is also a nonconstant rational function. Write C ⊆ X(K) (respectively, Ca ⊆ X(K)) for
the inverse image of P1

K(K) \ P1
k(k) ⊆ P1

K(K) via the finite morphism X → P1
K determined

by the nonconstant rational function g1 (respectively, ga). Observe that since a ∈ K \ k,
it follows immediately from the equality ϕf1 · g1 + a = ϕa · ga, together with the various
definitions involved, that

C
∪

Ca = X(K).

On the other hand, it follows immediately from Lemmas 3.3, 3.4, together with our as-
sumption that f2 − a is a quasi-rational function on X associated to k, that there exists a
nonconstant rational function h ∈ K(X) (respectively, ha ∈ K(X)) such that the restriction
of h (respectively, ha) to C (respectively, Ca) coincides with the restriction of f1 to C (re-
spectively, Ca). Therefore, since C ∪ Ca = X(K), it suffices to verify that h = ha. Observe
that since k ⊆ K is an infinite algebraic field extension, it holds that C∩Ca is an infinite set.
In particular, the rational function h−ha coincides with 0 on some infinite subset. Thus, we
conclude that h = ha. This completes the proof of Lemma 3.5.

Finally, by applying Lemma 3.5, we obtain the following criterion for algebricity of quasi-
rational functions:

Proposition 3.6. Let K be an algebraically closed field; k ⊆ K a subfield such that the exten-
sion is algebraic and of infinite degree; X a smooth proper curve over K; f ∈ Fn(X(K), K ∪
{∞}) a quasi-rational function on X associated to k such that the rational function deter-
mined [up to multiplication by a constant function — cf. Remark 3.1.2] by f is a nonconstant
function. Suppose that, for every a ∈ K, the set-theoretic function f + a is a quasi-rational
function on X associated to k. Then f is a rational function on X.
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Proof. Let b ∈ K \ k be an element. Note that it follows immediately from our assumption
that the set-theoretic functions

1− f = −1 · (f − 1), f + b, 1− f − b = −1 · (f + b− 1)

are also quasi-rational functions on X associated to k [cf. Remark 3.1.1, (ii)]. Thus, since the
rational function determined [up to multiplication by a constant function] by f is nonconstant,
we conclude from Lemma 3.5, together with the various definitions involved, that f is a
rational function on X. This completes the proof of Proposition 3.6.

Remark 3.6.1. One may regard the above criterion for algebricity of quasi-rational functions
as a strengthened version of [10], Corollary 1.3.

4 Birational anabelian Grothendieck Conjecture over

TKND-AVKF-fields

In the present section, by applying the results obtained in the previous sections, we
first prove the relative birational version of the Grothendieck Conjecture for smooth curves
over TKND-AVKF-fields of characteristic 0 whose multiplicative groups admit surjective
homomorphisms onto Z [cf. Theorem 4.7]. Next, we prove a certain generalization of the
result on the freeness of the multiplicative groups of fields modulo torsion obtained by May
[cf. Proposition 4.9]. Finally, as a corollary Theorem 4.7 and Proposition 4.9, we obtain the
relative birational version of the Grothendieck Conjecture for smooth curves over subfields
of finitely generated extension fields of the field obtained by adjoining all roots of a prime
number to a number field [cf. Corollary 4.10].

Definition 4.1. Let K be a field of characteristic 0; X an algebraic variety over K. Then:

(i) We shall write
SectGal(X)

for the set of equivalence classes of sections of the natural surjection ΠX ↠ GK that
arise from the K-valued points of X, where we consider two such sections to be equiv-
alent if they differ by composition with an inner automorphism induced by an element
of ∆X . In particular, we have a natural surjection

X(K) ↠ SectGal(X).

(ii) We shall write

SectOp-Gal(X)
def
= lim−→

K⊆K†

SectGal(XK†),
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where K ⊆ K† (⊆ K) ranges over the finite field extensions; the transition maps [that
appear in the inductive limit] are the natural maps obtained by restricting the domains
of sections. In particular, we have a natural surjection

XK(K) ↠ SectOp-Gal(X).

Proposition 4.2. Let K be an AVKF-field of characteristic 0; X a hyperbolic curve over K.
Then the natural surjection

XK(K) ↠ SectOp-Gal(X)

[cf. Definition 4.1, (ii)] is bijective.

Proof. Proposition 4.2 follows immediately from the injectivity portion of the Section Con-
jecture for arbitrary hyperbolic curves over AVKF-fields [cf. the proofs of [10], Corollary 6.4;
[37], Theorem 3.1; [37], Corollary 3.2], together with the various definitions involved.

Proposition 4.3. Let K be a field of characteristic 0; X a smooth curve over K. Write

IX

for the set of conjugacy classes of cuspidal inertia subgroups of ∆K(X) that are not associated
to cusps of XK. Then the natural surjection

XK(K) ↠ IX

is bijective.

Proof. Proposition 4.3 follows immediately from [19], Proposition 1.2, (i), together with the
various definitions involved.

Proposition 4.4. We maintain the notation of Proposition 4.3. Suppose that K is an
AVKF-field, and X is a hyperbolic curve over K. Then the natural surjection

IX ↠ SectOp-Gal(X)

[obtained by forming the images of the normalizers in GK(X) of cuspidal inertia subgroups
of ∆K(X) via the natural [∆X-outer] surjection GK(X) ↠ ΠX that lies over GK] is bijective.
Moreover, this bijection is compatible with the bijections that appear in Propositions 4.2, 4.3.

Proof. Proposition 4.4 follows immediately from Propositions 4.2, 4.3.
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Lemma 4.5. Let K1 be a field; K1 ⊆ K2 an infinite field extension such that K2 is an
algebraically closed field. Then there exists an intermediate field K1 ⊆ K3 ⊆ K2 such that
the field extension K3 ⊆ K2 is an infinite algebraic field extension.

Proof. Recall that every field extension admits a transcendence basis, and the absolute Galois
groups of the purely transcendental extension fields of arbitrary field are infinite. Thus, since
K2 is an algebraically closed field, one may take K3 as the field obtained by adjoining a
transcendental basis of the field extension K1 ⊆ K2 to K1. This completes the proof of
Lemma 4.5.

Here, we review a well-known lemma for “anabelian” profinite groups.

Lemma 4.6.

(i) Let G be a profinite group; H ⊆ G a normal open subgroup such that ZG(H) = {1};
σ ∈ Aut(G) an automorphism that induces the identity automorphism on H. Then σ
is the identity automorphism.

(ii) Let
1 −→ G1 −→ G2 −→ G3 −→ 1

be an exact sequence of profinite groups; σ ∈ Aut(G2) an automorphism that induces
the identity automorphisms on G1 and G3. Suppose that G1 is center-free. Then σ is
the identity automorphism.

Proof. First, we verify assertion (i). Observe that since ZG(H) = {1}, the natural homo-
morphism G→ Aut(H) obtained by forming conjugations is injective. Moreover, σ and the
inner automorphism of Aut(H) determined by the restriction of σ on H are compatible with
this injection. Thus, since σ induces the identity automorphism on H, we conclude that σ is
the identity automorphism. This completes the proof of assertion (i).

Next, we verify assertion (ii). Let g1 ∈ G1, g2 ∈ G2 be elements. Then since σ induces
the identity automorphism on G3, it holds that σ(g2)g

−1
2 ∈ G1. Moreover, since σ induces

the identity automorphism on G1, it holds that

σ(g−1
2 )g1σ(g2) = σ(g−1

2 g1g2) = g−1
2 g1g2,

hence that g1 commutes with σ(g2)g
−1
2 . This argument implies that σ(g2)g

−1
2 ∈ ZG1(G1).

Thus, since G1 is center-free, we conclude that σ is the identity automorphism. This com-
pletes the proof of assertion (ii), hence of Lemma 4.6.

Next, we prove our main theorem [cf. Theorem A]:

29



Theorem 4.7. Let K be a TKND-AVKF-field of characteristic 0; X, Y smooth proper curves
over K. Write

IsomK(K(Y ), K(X))

for the set of K-isomorphisms between K(Y ) and K(X);

IsomGK
(GK(X), GK(Y ))/Inn(∆K(Y ))

for the set of isomorphisms GK(X)
∼→ GK(Y ) of profinite groups that lie over GK, considered

up to compositions with inner automorphisms that arise from elements ∈ ∆K(Y ). Suppose
that there exists a surjective homomorphism K× ↠ Z. Then the natural map

IsomK(K(Y ), K(X)) −→ IsomGK
(GK(X), GK(Y ))/Inn(∆K(Y ))

is bijective.

Proof. First, we verify the injectivity. It follows immediately from the various definitions
involved that we may assume without loss of generality that X = Y . Moreover, by replacing
X by a finite ramified Galois covering of X, we may assume without loss of generality that
X is a smooth proper curve of genus ≥ 2. Then the desired injectivity follows immediately
from the well-known injectivity of the natural map

(AutK(K(X)) ⊆) AutK(K(X)⊗K K) = AutK(XK) −→ Out(∆X).

Next, we verify the surjectivity. Recall that ∆K(X) is isomorphic to the inverse limit of a
system of free profinite groups whose transition maps are surjective. In particular, for every
open subgroup H ⊆ ∆K(X), it holds that Z∆K(X)

(H) = {1}. Thus, to verify the surjectivity,
it follows immediately from Galois descent, together with Lemma 4.6, (i), (ii), that we may
assume without loss of generality that X and Y have genus ≥ 2. [In particular, one may
apply the constructions in §2.] Let

σ ∈ IsomGK
(GK(X), GK(Y ))/Inn(∆K(Y ))

be an element; σ̃ ∈ IsomGK
(GK(X), GK(Y )) a lifting of σ. Recall from the proof of Corollary

2.7 that σ̃ induces a bijection between the set of cuspidal inertia subgroups of GK(X) and the
set of cuspidal inertia subgroups of GK(Y ). Then, in light of Proposition 4.4, since K is an
AVKF-field of characteristic 0, the isomorphism σ̃ determines a commutative diagram

XK(K)
∼−−−→ IX

∼−−−→ SectOp-Gal(X)y≀
y≀

y≀

YK(K)
∼−−−→ IY

∼−−−→ SectOp-Gal(Y ).

Write
pκσ̃ : lim−→

K⊆K†

H1(GK(Y )⊗KK† , Ẑ(1)) ∼→ lim−→
K⊆K†

H1(GK(X)⊗KK† , Ẑ(1))
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— where K ⊆ K† (⊆ K) ranges over the finite field extensions — for the isomorphism
induced by σ̃;

pσ̃ : Fn(YK(K), K ∪ {∞}) ∼→ Fn(XK(K), K ∪ {∞})
for the bijection induced by the bijection XK(K)

∼→ YK(K) that appears in the above
commutative diagram.

Next, we verify the following assertion:

Claim 4.7.A: The isomorphism pκσ̃ induces an isomorphism

fσ̃ : lim−→
K⊆K†

(K(Y )⊗K K†)×/(K†)×∞ ∼→ lim−→
K⊆K†

(K(X)⊗K K†)×/(K†)×∞

via the [inductive limits of] Kummer maps.

Indeed, Claim 4.7.A follows immediately from Corollary 2.7.
Next, we verify the following assertion:

Claim 4.7.B: Let M (⊆ K) be a field such that lim−→K⊆K† (K
†)×∞ ⊆M . Then the

isomorphism that appears in Claim 4.7.A induces an isomorphism

fM
σ̃ : (K(Y )⊗K K)×/M× ∼→ (K(X)⊗K K)×/M×.

Moreover, fM
σ̃ or the composite of fM

σ̃ with the inversion automorphism of the
codomain of fM

σ̃ is compatible with the bijection

Fn(YK(K), (K
×
/M×) ∪ {0,∞}) ∼→ Fn(XK(K), (K

×
/M×) ∪ {0,∞})

induced by the bijection XK(K)
∼→ YK(K) [that appears in the above commuta-

tive diagram] via the natural injections

(K(X)⊗K K)×/M× ↪→ Fn(XK(K), (K
×
/M×) ∪ {0,∞}),

(K(Y )⊗K K)×/M× ↪→ Fn(YK(K), (K
×
/M×) ∪ {0,∞}).

Indeed, observe from Proposition 2.10, together with our assumption that σ̃ lies over GK , that

fσ̃ induces the identity automorphism or the inversion automorphism onK
×
/ lim−→K⊆K† (K

†)×∞.

Then the first assertion follows immediately from this observation. Moreover, in light of the
operation of Galois evaluation, the second assertion follows immediately from this observation
and the commutativity of the above diagram. This completes the proof of Claim 4.7.B.

Next, we verify the following assertion:

Claim 4.7.C: The bijection pσ̃ induces a field isomorphism

K(Y )⊗K K
∼→ K(X)⊗K K

over K. Moreover, this field isomorphism is GK-equivariant, hence, in particular,
induces a field isomorphism

K(Y )
∼→ K(X)

over K.
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Indeed, to verify the first assertion of Claim 4.7.C, it suffices to prove that pσ̃ maps any
rational function on YK to a rational function on XK . Note that it follows immediately
from the various definitions involved that pσ̃ maps any constant rational function on YK to
a constant rational function on XK . Recall that K is a TKND-field. Then it holds that
Kdiv ⊊ K is an infinite field extension. Fix an intermediate extension field Kdiv ⊆ M ⊆ K
such that the field extension M ⊆ K is an infinite algebraic field extension [cf. Lemma 4.5].
Note that lim−→K⊆K† (K†)×∞ ⊆ Kdiv (⊆ M). Then it follows immediately from Claim 4.7.B

that pσ̃ maps any rational function on YK to a quasi-rational function on XK associated to
M . Let f be such a quasi-rational function on XK associated to M that arises as the image of
some nonconstant rational function on YK . Then one may make the following observations:

• Since M ⊊ K, the rational function determined [up to multiplication by a constant
function] by f is nonconstant.

• For each a ∈ K, it holds that f + a is also a quasi-rational function on XK associated
to M .

Thus, we conclude from Proposition 3.6, together with the above observations, that pσ̃ maps
any rational function on YK to a rational function on XK . This completes the proof of the
first assertion of Claim 4.7.C. Since σ̃ lies over GK , the second assertion follows immediately
from the first assertion, together with the various constructions involved. This completes the
proof of Claim 4.7.C.

Finally, observe that the construction of the bijection pσ̃ is functorial with respect to
the restrictions of σ̃ to the open subgroups of GK(X). Thus, by applying Claim 4.7.C to
the isomorphisms between the open subgroups of GK(X) and the open subgroups of GK(Y )

induced by σ̃, we conclude that σ̃ arises from a(n) [unique] field isomorphism K(Y )
∼→ K(X)

over K. This completes the proof of Theorem 4.7.

Remark 4.7.1. At the time of writing of the present paper, the author does not know whether
or not the condition that the multiplicative group of the base field admits a surjective ho-
momorphism onto Z may be dropped in general [even if we assume that the base field is
Kummer-faithful — cf. Remark 4.9.2 below].

Remark 4.7.2. Let K, L be TKND-AVKF-fields of characteristic 0; X, Y hyperbolic curves
over K, L, respectively. With regard to further developments of anabelian geometry for
geometric objects over TKND-AVKF-fields [of characteristic 0], in light of the historical
developments of anabelian geometry [cf. for instance, see [7], [17], [18], [20] [21], [26], [33]],
it is natural to pose the following questions:

Question 1: Can we obtain the semi-absolute analogue of Theorem 4.7? More
precisely, in a similar notation to the notation in Theorem 0.3, is the natural map

Isom(K(Y )/L,K(X)/K) −→ Isom(GK(X)/GK , GK(Y )/GL)/Inn(GK(Y ))

bijective?
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Question 2: Can we obtain the hyperbolic curve analogue [i.e., usual setting of the
Grothendieck Conjecture in anabelian geometry] of Theorem 4.7? More precisely,
in the case where K = L, is the natural map

IsomK(X,Y ) −→ IsomGK
(ΠX ,ΠY )/Inn(∆Y )

bijective?

However, at the time of writing of the present paper, the author does not know whether or
not the answer of each question is affirmative or not [even if we assume the preservation of
decomposition subgroups associated to the closed points of hyperbolic curves under consid-
eration in Question 2]. If the answer of Question 1 is affirmative, then we obtain a complete
generalization of Theorem 0.3. On the other hand, to obtain such a result, one needs to in-
vestigate a certain generalization of Uchida’s lemma. The author hopes to be able to address
such an issue in a future paper.

Remark 4.7.3. Let p be a prime number. Then it would be interesting to investigate to what
extent Theorem 4.7 may be generalized to the situation that the base field is of characteristic
p. At the time of writing of the present paper, it appears to the author that we need to
restrict our attention to the geometrically pro-prime-to-p situation to apply Kummer theory
[cf. [27], [29]]. However, if we consider such a situation, then we need to impose a stronger
assumption on the base field to execute [certain modifications of] various procedures that
appear in the present paper in a reasonable way. The author hopes to be able to address
such an issue in a future paper.

Proposition 4.8. Let F be a field; K a subfield of a finitely generated extension field L of
F . Suppose that K is not contained in F . Then there exists a surjective homomorphism
K× ↠ Z.

Proof. Suppose that there exists no surjective homomorphism K× ↠ Z. Note that every
nontrivial subgroup of Z is isomorphic to Z. In particular, for each discrete valuation v :
L× ↠ Z on L, the restriction of v on K× is trivial. Then since L is a finitely generated
extension field of F , it holds that K ⊆ F [cf. the proof of Proposition 1.2, (i)]. This is a
contradiction. Thus, we conclude that there exists a surjective homomorphism K× ↠ Z.
This completes the proof of Proposition 4.8.

Proposition 4.9. Let F be a number field; f ∈ F . Write E (⊆ Q) for the field obtained by
adjoining all roots of f to F [so E contains all roots of unity]. Then it holds that E×/E×∞

is a free abelian group.
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Proof. For each positive integer i, write Ei ⊆ E for the subfield generated by all roots of
unity and an i-th root of f over F ;

ϕi : E
×
i /E

×∞
i → E×/E×∞

for the natural homomorphism induced by the inclusion Ei ⊆ E. In particular, it holds that

E×/E×∞ =
∪
i≥1

Im(ϕi).

On the other hand, it follows immediately from [14], Theorem 2, together with [37], Lemma
D, (iii), (iv), that, for each positive integer i, it holds that E×

i /E
×∞
i is a free abelian group.

Thus, we may assume without loss of generality that f ̸∈ µ(F ), hence that Gal(E/Ei) ∼= Ẑ.
Next, observe that Ker(ϕi) ∼= Z. Indeed, since every subgroup of a free abelian group is

a free abelian group, it holds that Ker(ϕi) is also a free abelian group. Here, we note that
since E×∞ is divisible, and µ(Q) ⊆ E×∞, it holds that E×/E×∞ is torsion-free, hence that
the subgroup Im(ϕi) ⊆ E×/E×∞ is a flat Z-module. Let l be a prime number. Then, in light
of the flatness of Im(ϕi), we obtain a natural injection Ker(ϕi)/lKer(ϕi) ↪→ E×

i /(E
×
i )

l whose
image is contained in the kernel of the natural homomorphism E×

i /(E
×
i )

l → E×/(E×)l. On

the other hand, since Gal(E/Ei) ∼= Ẑ, it follows immediately from Kummer theory that this
kernel is isomorphic to Z/lZ. In addition, since E×∞

i = µ(Q) [cf. [37], Lemma D, (iii), (iv)],
and f ̸∈ µ(F ), it holds that Ker(ϕi) ̸= {0}. Thus, since Ker(ϕi) is a free abelian group, we
conclude that Ker(ϕi) ∼= Z.

Next, since

• Ker(ϕi) is a finitely generated abelian group;

• E×
i /E

×∞
i is a free abelian group;

• E×/E×∞ is a torsion-free abelian group,

one may observe that Im(ϕi) is also a free abelian group. Then, in light of Pontryagin’s
criterion of freeness for countable torsion-free abelian groups [cf. [25], Lemma 16], to verify
Proposition 4.9, it suffices to prove that Im(ϕi) is saturated in E×/E×∞. Write (E×

i )
sat for

the saturation of E×
i in E×. Note that since E×∞ is divisible, the saturation of Im(ϕi) in

E×/E×∞ coincides with
((E×

i )
sat · E×∞)/E×∞.

Let x ∈ (E×
i )

sat ⊆ E× be an element; m a positive integer such that xm ∈ E×
i . Now we have

the following commutative diagram of exact sequences of abelian groups

0 −−−→ Z −−−→ E×
i /E

×∞
i

ϕi−−−→ E×/E×∞y y y
0 −−−→ Z/mZ −−−→ E×

i /(E
×
i )

m −−−→ E×/(E×)m,
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where the vertical arrows denote the natural surjections. Then it follows immediately from a
diagram chase that xm ∈ Ker(ϕi) · (E×

i )
m, hence that xm ∈ (E×

i )
m · E×∞. Thus, since E×∞

is divisible, and µ(Q) ⊆ E×∞, we conclude that x ∈ E×
i · E×∞. This argument implies that

Im(ϕi) is saturated in E×/E×∞. This completes the proof of Proposition 4.9.

Remark 4.9.1. Let l be a prime number; F a number field that contains a primitive l-th
root of unity. Write K (⊆ Q) for the maximal pro-l extension field of F . Then since K× is
l-divisible, there exists no surjective homomorphism K× ↠ Z. On the other hand, it follows
immediately from [37], Lemma D, (iii), (vi), that K is TKND.

Remark 4.9.2. We retain the notation of Remark 1.4.5. Then there exists no surjective
homomorphism L× ↠ Z. Indeed, observe from the construction of L that the value group
of L is l-divisible. Then it suffices to prove that the unit group of the ring of integers of L
does not admit any surjective homomorphism onto Z. Moreover, since L may be written as
the union of p-adic local fields, it suffices to prove that a similar assertion for the p-adic local
fields holds. However, this follows immediately from the [easily verified] fact that Zp does
not admit any surjective homomorphism onto Z. In particular, in light of Remark 1.4.5, we
obtain an example of Kummer-faithful field whose multiplicative group does not admit any
surjective homomorphism onto Z.

Corollary 4.10. Let p be a prime number; F a number field. Write E (⊆ Q) for the field
obtained by adjoining all roots of p to F [so E contains all roots of unity, and F ⊆ E is a
nonabelian metabelian Galois extension]. Let K be a subfield of a finitely generated extension
field of E; M1, M2 function fields of one variable over K. Write ∆ for the kernel of the
natural surjection GM2 ↠ GK. Then the natural map

IsomK(M2,M1) −→ IsomGK
(GM1 , GM2)/Inn(∆)

is bijective.

Proof. In light of Theorems 1.8, 4.7, to verify Corollary 4.10, it suffices to prove that there
exists a surjective homomorphism K× ↠ Z. First, by applying Proposition 4.8, we may
assume without loss of generality that K is a subfield of E. Next, suppose that K× does not
admit any surjective homomorphism onto Z. Then it follows immediately from Proposition
4.9 that K× ⊆ E×∞. This is a contradiction. Thus, we conclude that there exists a surjective
homomorphism K× ↠ Z. This completes the proof of Corollary 4.10.

Remark 4.10.1. It appears to the author that the above result may be regarded as the first
result concerning [the strong/desired form of] the Grothendieck Conjecture for the function
fields of smooth curves over fields whose associated cyclotomic characters totally vanish.
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algébrique, Lecture Notes in Math. 288 (1972).

[7] Y. Hoshi, On the Grothendieck conjecture for affine hyperbolic curves over Kummer-
faithful fields, Kyushu J. Math. 71 (2017), pp. 1–29.

[8] Y. Hoshi, The absolute anabelian geometry of quasi-tripods, to appear in Kyoto J. Math.

[9] Y. Hoshi and S. Mochizuki, On the combinatorial anabelian geometry of nodally non-
degenerate outer representations, Hiroshima Math. J. 41 (2011), pp. 275–342.

[10] Y. Hoshi, S. Mochizuki, and S. Tsujimura, Combinatorial construction of the absolute
Galois group of the field of rational numbers, RIMS Preprint 1935 (December 2020).

[11] N. Katz and S. Lang, Finiteness theorems in geometric class field theory, with an ap-
pendix by Kenneth A. Ribet, Enseign. Math. (2) 27 (1981), pp. 285–319.

[12] Y. Kubo and Y. Taguchi, A generalization of a theorem of Imai and its applications to
Iwasawa theory, Math. Z. 275 (2013), pp. 1181–1195.

36



[13] E. Lepage, Resolution of non-singularities for Mumford curves, Publ. Res. Inst. Math.
Sci. 49 (2013), pp. 861–891.

[14] W. May, Fields with free multiplicative groups modulo torsion, Rocky Mountain J. Math.
10 (1980), pp. 599–604.

[15] W. Messing, The crystals associated to Barsotti-Tate groups; with applications to abelian
schemes, Lecture Notes in Math. 264 (1972), Springer-Verlag.

[16] A. Minamide and S. Tsujimura, Anabelian group-theoretic properties of the absolute
Galois groups of discrete valuation fields, to appear in J. Number Theory.

[17] S. Mochizuki, The local pro-p anabelian geometry of curves, Invent. Math. 138 (1999),
pp. 319–423.

[18] S. Mochizuki, Topics surrounding the anabelian geometry of hyperbolic curves, Galois
groups and fundamental groups, Math. Sci. Res. Inst. Publ. 41, Cambridge Univ. Press.
(2003), pp. 119–165.

[19] S. Mochizuki, A combinatorial version of the Grothendieck conjecture, Tohoku Math. J.
59 (2007), pp. 455–479.

[20] S. Mochizuki, Absolute anabelian cuspidalizations of proper hyperbolic curves, J. Math.
Kyoto Univ. 47 (2007), pp. 451–539.

[21] S. Mochizuki, Topics in absolute anabelian geometry III: Global reconstruction algo-
rithms, J. Math. Sci. Univ. Tokyo 22 (2015), pp. 939–1156.

[22] S. Mochizuki, Inter-universal Teichmüller Theory I: Construction of Hodge Theaters,
Publ. Res. Inst. Math. Sci. 57 (2021), pp. 3–207.

[23] H. Moon, On the Mordell-Weil groups of Jacobians of hyperelliptic curves over certain
elementary abelian 2-extensions, Kyungpook Math. J. 49 (2009), pp. 419–424.

[24] T. Murotani, A study on anabelian geometry of higher local fields, RIMS Preprint 1944
(March 2021).

[25] L. Pontryagin, The theory of topological commutative groups, Ann. of Math. 35 (1934),
pp. 361–388.

[26] F. Pop, On Grothendieck’s conjecture of birational anabelian geometry, Ann. of Math.
138 (1994), pp. 147–185.
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