ダウンロード数: 0

このアイテムのファイル:
このアイテムは一定期間後に公開されます。
公開日については,アイテム画面の「著作権等」でご確認ください。
タイトル: Range of rotation of thoracolumbar vertebrae in Japanese macaques
著者: Kinoshita, Yuki
Hirasaki, Eishi
著者名の別形: 木下, 勇貴
平﨑, 鋭矢
キーワード: macaque
spine
trunk axial rotation
zygapophysis
発行日: 11-Dec-2023
出版者: Wiley
誌名: The Anatomical Record
巻: 62
号: 11
論文番号: e202314968
抄録: In humans, the range of thoracic vertebral rotation is known to be greater than that of the lumbar vertebrae due to their zygapophyseal orientation and soft tissue structure. However, little is known regarding vertebral movements in non-human primate species, which are primarily quadrupedal walkers. To understand the evolutionary background of human vertebral movements, this study estimated the range of axial rotation of the thoracolumbar spine in macaque monkeys. First, computed tomography (CT) was performed while passively rotating the trunk of whole-body cadavers of Japanese macaques, after which the motion of each thoracolumbar vertebra was estimated. Second, to evaluate the influence of the shoulder girdle and surrounding soft tissues, specimens with only bones and ligaments were prepared, after which the rotation of each vertebra was estimated using an optical motion tracking system. In both conditions, the three-dimensional coordinates of each vertebra were digitized, and the axial rotational angles between adjacent vertebrae were calculated. In the whole-body condition, the lower thoracic vertebrae had a greater range of rotation than did the other regions, similar to that observed in humans. In addition, absolute values for the range of rotation were similar between humans and macaques. However, in the bone–ligament preparation condition, the upper thoracic vertebrae had a range of rotation similar to that of the lower thoracic vertebrae. Contrary to previous speculations, our results showed that the mechanical restrictions by the ribs were not as significant; rather, the shoulder girdle largely restricted the rotation of the upper thoracic vertebrae, at least, in macaques.
著作権等: This is the peer reviewed version of the following article: [Matsuo, Y., Maeda, C., Tsutsui, Y., Tanaka, T., Seki, S., Angew. Chem. Int. Ed. 2023, 62, e202314968.], which has been published in final form at https://doi.org/10.1002/ar.25273. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions. This article may not be enhanced, enriched or otherwise transformed into a derivative work, without express permission from Wiley or by statutory rights under applicable legislation. Copyright notices must not be removed, obscured or modified. The article must be linked to Wiley’s version of record on Wiley Online Library and any embedding, framing or otherwise making available the article or pages thereof by third parties from platforms, services and websites other than Wiley Online Library must be prohibited.
The full-text file will be made open to the public on 08 June 2024 in accordance with publisher's 'Terms and Conditions for Self-Archiving'.
This is not the published version. Please cite only the published version. この論文は出版社版でありません。引用の際には出版社版をご確認ご利用ください。
URI: http://hdl.handle.net/2433/286390
DOI(出版社版): 10.1002/ar.25273
PubMed ID: 37289013
出現コレクション:学術雑誌掲載論文等

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。