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We investigate geonetric groups and sets of permutations of

an infinite set. (These are a generalisation of sharplv

and give constructions of sets., for certain parameters.

t-transitive groups and sets.) We prove non-existence of Jgroups,
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1. Introduction.

It is known that sharply t-transitive groups of
permutations of an infinite set exist only for t< 3 (4], while

sharply t-transitive sets exist for all t (1).

Geometric groups and sets of permutations have been
proposed as a natural generalisation of sharplv t-transitive
groups and sets (2). Our purpose is to investigate such objects
on infinite sets. Not surprisinglv, we give nonexistence results

for groups, and constructions for sets.

Let L = {?0, fl’ R 25_1} be a finite set of

natural numbers, with eb < ... <‘es—1' The permutation group

G on the set X is a geometric group of tvpe L if there

exist points X - xs ¢ X such that

1’
(i) the stabiliser of Xl’ ey xs is the identity;

(ii) for i < s, the stabiliser of x s Xy fixes éi

l)

points and acts transitively on its non-fixed points.

Theorem 1. There is no infinite geometric group of type

{0, m, 2m, e (p—1)m}, where p is prime and p divides m.

This theorem is proved in Section 2. The case p = m = 2 is
an infinite analogue of a theorem of Tsuzuku (5). The theorem is

{ 3, since the non-existence of infinite

new only for p &

geometric groups of tvpe {0, m, ..., (t—l)m} for any t.) 4
follows from a theorem of Yoshizawa (6] (see (3]). However, the

case p = 2 is the most interesting. It has the following



consedquence, also derived in Section 2:

2. Y

corollary Let L [O’ . es_lz, with

{0 < ... <.€S_1. If £i+1 —-4 is even for some

i € {0, e, 5—2}, then no geometric group of tvpe L exists.

Geometric sets are harder to define; but our examples (in
common with all known finite examples) satisfv an additional,
simplifyving condition. Let L = §{_, ..., £_ 3} with

(0.<'... < es—l’ The set S'of permutations of X is a

special geometric set of tvpe L if there is a matroid
%Qof rank s on X satisfying
(i) anv element of S i1s an automorphism of 7/1;
(ii> for i £ s, a flat of Mof rank i has cardinality ei;
(iii) for any g, h € S,.ix € X\g(x)~= h(x)} is a flat ofM;
(iv) S is sharplyv basis-transitive, that is, -if.
(xl, e, xS) and (y., e, y53 are bases of'WL there is

a unique g € S with g(x;) =y, for i =1, ..., s.

It is easily seen that anv geometric group is a special
geometric set; the bases‘of'WZare the s-tuples with the property
of the definition. A geometric set in the sense of (2) is
special if and only if it is unisupported (all the matroids a

coincide) and consists of automorphisms of this common matroid.
In Section 3, we prove:

Theorem 3. There exist special geometric sets of

permutations of a countable set, of each of the following
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types

(i) L = io, m, 2m, ..., (t—1>m} for anv t, m > 1{

(ii) L = {O, 1, q, N qt—l} for any t » 1 and anv prime
power (.

2. Geometric groups.

We begin with a lemma. This lemma, in more general form, is
due to Yoshizawa (6); we repeat the proof for completeness.
However, by Yoshizawa's theorem (6), the lemma is vacuous unless

p £3.°

Lemma 2.1. Let p be a prime. Suppose that G is
p-transitive on an infinite set, and that the stabiliser of p
points is finite with order divisible by p. Then some element of

order p fixes infinitelyv manv points.

Proof. Suppose that G is a counterexampie to the lemma.
Let g € G be an element of order p with (finite) fixed point set
F (with |F| > p) and (infinitely many) cycles C,. C,»
For each i €[N, g normalises the pointwise stabiliser Hi of
Ci; so there is an element hi (3 Hi of order p which
commutes with g. Thus hi maps F to F. But infinitelyv manv of-
the elements hi are different, since bv assumption an element
of order p can belong to onlyv finitely manv subgroups Hi’

Thus, the setwise stabiliser of F is infinite, and so is its

pointwise stabiliser, contrary to assumption.
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.If L is fihite and 0 € L, a geometric group G of tvpe L is
transitive,‘and the stabiliser of a point fixes [1 points,
where ll = min(L‘\iO}): These fixed point sets are blocks of
impfimitivity for G: for brevity, we call them blocks. Note>that
the stabiliser of a point acts onwthe set of its non-fixed
points as a geometric group H of type
L =E£~-[llf€ L, £ ; fog. we requife a lemma about the

kernel of the action of G on the set of blocks.

- Lemma 2.2. Let G be geometric of tvpe L, where L is
finite and O € .. Then the kernel K of the action of G on its
set of blocks is semiregular; that is, no non-identity element

fixes every block and a point in one of them.

Proof. Observe first that K is finite; indeed,
. s . C .
‘k\ < fl , where s = [L\, because the stabiliser of s
independent points is trivial. The lemma is proved by induction
on s, being clear when s = 1. We suppose the result true for

L' -geometric groups with [L'l = s5-1.

Let  H be the stabiliser of a point x, acting on its
non-fixed points. Bv the induction hypothesis, the stabiliser
of all H-blocks is semiregular. Each H-block is a union of
G-blocks;vso, if K is the kernel of the action on G-blocks, then
ny = 1 whenever X and v lie in different G-blocks. Thus, as X
runs over a set of representatives for thevG~blocks, the
subgroups Kx all have the same order and intersect pairwise in

the identitv. Because there are infinitely many G-blocks but K

is finite, this requires Kx = 1.
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We turn now to the proof of Theorem 1. Suppose that G is a
geonmetric group ot tvpe io, m, ..., (p—l)m}, where p is prime

and plm, and let K be the kernel of the action of G on blocks.

Any two elements of order p in G\NK are conjﬂgate. For, let

g and h be two such elements; let (xl, e, xp) be a cvcle
of g with its points in distinct blocks., and (yl, s Y
cycle of h with the same property. Then {xl, e, xp% and
iyl, e yp% are bases of the matroid M. so I is the unique
element of G having‘a cvcle (yl, R yp); and there exists
kK €G with k(x,) = v, for i =1, ..., p. Then kgk ' has a
cycle (v, ..., yh), and so kgk Y = h.

By Lemma 2.2, it follows that any two elements of order p

which fix a point are conjugate.

Now G acts p-transitivelyv on the set of blocks, and the

stabiliser of p blocks is finite with order divisible bv p (its

p-1

order is a multiple of m and a divisor of mp). Let g be

an element of order p fixing p-1 blocks B, ..., Bp 1
1 -
pointwise and anothe block setwise. By the above remarks and
Lemma 2.1, g fixes infinitely many blocks setwise, sav Bl',
82', ...
For anv i » p, g normalises the subgroup Hi fixing Bi .

' c e ' poi j i ' twi ;S ,

B, Bp_1 pointwise and B, setwise; so H,

contains an element hi of order p commuting with g. Then hi

fixes setwise fhe fixed point set 81\)...\)Bp_1 of g, and

4



61

preserves the block svstem; so- it fixes B, ..., B

1 p-1

setwise. Also, the elements hi‘are all distinct, -since if

‘- h. then h, fixes B,', B.', B_.', ..., B_' (a
hi J 1 1 J 2 5]

total of p blocks) pointwise. Thus the setwise stabiliser of

., B B.' is infinite, a contradiction.

B p-1° 1

1’

Proof of Corollarv 2. Well-known necessary conditions for

the existence of perfect matroid designs (see (2)) show that

¢

.1~ %_o> SO we may assume that

I. —f. divides é
i+1 i s

'es—l- és—z is even. Then the stabiliser of s-2 independent

points, acting on its set of non-fixXxed points, is geometric of

type {p, s-1" 5_2}, contradicting Theorem 1.

3. Geometric sets

" We begin with some general remarks.

1. The property of being a special geometric set of type L
is unaffected by left or right multiplication by a fixed
permutation. So we may assume, without loss, that a special

geometric set contains the identity.

2. If min(L) = eb'>~0, then the existence ef special
'geometric sets of type L and of tvpe L—-QO = {K-QJ‘QG-L} are
eqﬁivalent. For we may add points fixed by every permutation;
conversely, if S has type L and contains the ideﬁtity, then the
members of S have eb common fixed points, which may be

deleted.
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3. If O € L, then the existence of a special geometric set
of tvpe L implies the existence of one of type L\\ioz (for

example, all permutations in L which fixXx some given point).

As an illustration, Theorem 3(ii) implies the existence of

special geometric. sets of type {O, 1, 3, 7, ..., zt—l}.

We turn now to the proof of Theorem 3. The strategy is to
prescribe in advance the matroid ”L and to construct freely the

required set of permutations.

Consider the case L = {0, m, ..., (t—l)m}. Let X be the

called

disjoint union of countably many m-sets Xl’ Xz, e

blocks, where X, = % ., Xim—i}’ We construct

o, XL,
Xio’® *i1
a sequence of pairs q;n' mn), where gn is a set of
bijections between subsets of X, and mn is a positive

integer, so that the following conditions are Satisfied, where

A =X ... X :
n 1 m
n

(i) Each member Of<§n is contained in a unique member of
2 and m < m .
n+1’ n n+1
(ii) The domain and range of each member of 5; are unions
of blocks and contain‘An.
PR . ) ( L -
(iti) If <y1, - Yy and Zys +--. Zy0 are t tuples
of elements of An’ the members of each tuple lying in distinct
blocks, then a unique membertﬂ’%%lcarries yi to zi for
i=1, ..., t.
iv) ’ (X, .) = 3 s
(iv) If g € gn and g‘.le Xk’( then

g(x,

. X for s = 1, ..., m-1, where the second
ij+s kf+s
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subscript is taken mod m.

It is clear that a starting pair (go, m0> satisfving

(ii)»-(iv) exists.

Suppose that (5%7 mn) has been constructed. The

. . () ' .
) w t .
construction of §1n+1’ m o, q involves two s.eps

(a) First, let mn+1 be the largest index of a block

contained in the domain or range of an element of sn, and

An+1 = XlL""\’xmn+1' For each pair of t-tuples from

An+1 as in (iii), if there is not already

a member of’gA‘carrying the first to the second, adjoin such a
bi jection between the unions of the blocks containing the two

t-tuples, in such a way that (iv) is satisfied.

(b) Now extend each bijection so that its domain and range

contain A For example,if g is not defined on the block

n+1-

Bi € An+1’ select the first block not alreadv used in the

construction, say Bj’ and let g map Bi to Bj so that (iv)
is satisfied.

1° mnH )'

It is now clear that all the conditions hold for (5n+

” .
Now let % be the set of permutations of X obtained as
direct limits (or unions) of sequences ign) of bijections,

and gn‘g g (all such direct limits are

n+1-

w ). €
here g, ¢ gn

[
permutations, by (il1).) Clearlv anv element of % permutes the
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blocks among themselves; so(g consists of automorphisms of the
matroid'm,whose i-flats are unions of i distinct blocks for |

i € t-1. We must show that, if g, he S’ with g # h, then
{x\g(x) =‘h(x)} is the union of fewer than t blocks. By (iv),
this set is a union of blocks. At the first stage at which both
g, and hn are defined, this set contains fewer than t

blocks, by (iii) (or by assumption if n = 0); ahd the
prescription of (b)) guarantees that no further'agreement occurs.
Finally, the transitivity of g on bases of M (t-tuples from

distinct blocks) is clear from (ii).

1]

Now consider the case L {0, 1, a, ..., ﬁt-lz, where q

is a prime power. Tﬁis time, let X be the point set of an affine
space of countable dimension over GF(q), with affine basis

ixo, X, X, ...}. (We may take X to be a GF(q)-vector

<

space of countable‘dlmens1on, with XO = 0 and {xl, x2, .-.}
a vector space basis.) Again we construct pairs (5;, mn),
where An is the affine span of {xo, ., xmﬁ}. The
conditions are:

(i) As before.

(ii) Each member ofS&lis an affine bijection between
affine subspaces of X; its doméﬁn and range contain An'

(iii) If (yo, e e yt) and (zo, e e Zt) are affine

independent (v+1)-tuples of elements of An’ then a unique

element of fn carries yi to Zi for i = 0, ..., t.

The construction iis as before; the analogue of (iv) is the
requirement that the transformations are affine (so that domains

and ranges are affine subspaces). In (a), for each pair of

/0



tuples as in (iii» for which no transformation vet carries the

first to the second, adjoin the unique affine transformation

froﬁ (yo, R yt) to <20. e, Zt> car-rying'yi to z;

for i = O, ..., t. The extension process in (b) requires
comment. Suppose that g: U —> V, where g egn. Let

. . _ 3 1 = <
dlm(An ) dlm(An*lrib) r. Let hj+ be the

1 10 0 Njer

first r basis vectors not previously used, and extend g to an
. : " 7 > ~
affine transformation from (U, An+1> to (\, §j+1’ . ey kj+r>
The extension of the range is done similarly. The proof that
the construction works is as before, noting that ix\g(x) = h(x)}

is an affine subspace.
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