特異点の解消と Iwusa local zeta-functions

筑波大 教学系 木村達雄 (Tatsuo KIMURA)

\[K = p\text{-adic field} \bigg/ O_K \bigg/ \pi O_K, \quad \mathcal{F}_g = O_K^\frac{1}{\pi O_K} \]
（\(g = \text{odd} \), を仮定する）, \(U_K = O_K - \pi O_K : \text{units} \), として
1 で \(K \) の絶対値で \(|x|_K = g^{-1} \) となるものを表す。

\(\Rightarrow \) \(O_K = \{ x \in K ; |x|_K \leq 1 \}, \) \(\pi O_K = \{ x \in K ; |x|_K < 1 \}, \)
\(U_K = \{ x \in K ; |x|_K = 1 \} \)

\(d \mathcal{X} : K^n \text{上の Haar measure で} \text{ vol}(O^n_K) = \int_{O^n_K} d \mathcal{X} = 1 \)
なるものとする。

\[f(x) \in O_K[x_1, \ldots, x_n] \] に対して,

\[Z(s) \overset{def}{=} \int_{O^n_K} |f(x)|_K^s d \mathcal{X} \] を考えると, これは

\(t = g^{-s} \) の有理関数にちうことが知られている (I. Igusa).
J.P. Serre により, \(Z(s) \) は Iwusa local zeta function
と名付けられた。本論の目的は与えられた \(f(x) \) に対し \(Z(s) = \int_{O^n_K} |f(x)|_K^s d \mathcal{X} \) の算出を考えることである。
番簡単な例は次のように直接計算できる。

Proposition 1. \[\int_{0_k} |x|^s_k \, dx = \frac{1 - \frac{g^{-1}}{g^{-(s+1)}}}{1 - \frac{g^{-1}}{1 - g^{-1}t}} \]

\[\frac{g^{-1}}{g^{-(s+1)}} \]

\[(g^{k+1}, g^k \cup k) \]

我々の基本的な考えは 特異点の解消（resolution of singularity of \(f = 0 \)）を用いて、一般の \(Z(s) \) の計算を Prop.1 へ帰着させよう というものである。

そこで blowing up とは何かを簡単に復習してみよう。

\(n = 2 \) の場合、\(A^2 = \{(x, y)\} \) の原点 \((0, 0) \) に関する blowing up とは、

\[P \rightarrow \mathbb{P}^1 \]

原点を通る直線 \(l \) と、\(l \) 上の点 \(P \) の組 \((P, l) \) 全体を考えることである。\(\{(P, l)\}, \)

\(P \neq 0 \) なら、\(l \) は原点 \(0 \) と \(P \) を結ぶ直線として unique に定まるから \(\{(P, l) ; P \neq 0\} \cong A^2 - \{(0, 0)\} \)

であるが、\(P = 0 (= (0, 0)) \) のところでは \(l \) は自由、

\[\{l : tx - uy = 0\} = \{(t : u)\} = \mathbb{P}^1 \]

blowing up \(\{(P, l)\} \) は原点 \((0, 0) \) のかわりに \(\mathbb{P}^1 \) を入れ

2
たようなもの（即ち原点0をPにふくらませたもの）である。
\(\{(P, l)\} \) に於て \(l \ni \{x=0\} \quad \Rightarrow u\neq 0 \) \(; \quad y = \frac{u}{x} \) のとき3で考えると、\(l \) は \(y = \frac{u}{x} \) とまわされ、\(l \) 上の点 \(P \) は、\(x \) 座標でuniqueに定まるから、
そこでの局所座標として \((x, \frac{u}{x}) \) をとることかできる。
そこで \(\lambda = x, \frac{v}{x} = y' \) とおくと、そこでは
\((x, y) = (\lambda, \lambda y') \) となっている。

例として cusplの場合,
\[f(x, y) = x^3 + y^2 = 0 \]
即ち \(f(x, y) = x^3 + y^2 = 0 \)
を考えてみよう。これは
原点のみにsingularityを
もっている（\(f(x_0, y_0) = \frac{df}{dx}(x_0, y_0) = \frac{df}{dy}(x_0, y_0) = 0 \) \(\Rightarrow (x_0, y_0) = (0, 0) \)）が、原点をblowing upした \(\{(P, l)\} \) の \(l \ni \{x=0\} \) なる部分の局所座標
\((\lambda, y') \) でみてみると
\[f(x, y) = x^3 + y^2 = \lambda^3 + (\lambda y')^2 = \lambda^2 (\lambda + y'/\lambda) \]
= 0 となり、\(f = 0 \) のsingularityは
図1に比べて、図2のように
弱まっている。（\(l \ni \{y=0\} \)
の所では局所座標として
\((\mu, x') \) 但し \((x, y) = (\mu x', \mu) \)
もとることか で て $f(x, y) = \mu^2 (\mu x^3 + 1) = 0$
となり、$\mu = 0$ と $\mu x^3 + 1 = 0$ を nonsingular に与える

更に blowing up すると 図 2 は 図 3 のように

なる。もう 1 回更に blowing up すると

![図3](image)

![図4](image)

図 4 のようになり $f = 0$ の既約成分が
Transversal に交わる（その tangent が 1 次独立）
ことかわかる。

N か一般のときも 原点の x_n に関する blowing up
は $(x_1, x_2, \ldots, x_n) = (x_1, \ldots, x_n)$
により x_n まで局所座標で考えることに相当する。blowing up に無関係の変数が入っていることもある。

一般に 次の embedded resolution (of singularity
of $f = 0$) (by H. Hironaka 1964) が知られている。

K 上 定義された nonsingular absolutely irreducible
variety Y と K 上 定義された regular map h
$h: Y \to \mathbb{A}^n$ で 次の3条件をみたすものがある。
1) $Y - \{ f \circ h = 0 \} \cong \mathbb{A}^n - \{ f = 0 \}$ bijective
2) h は (K に定義された nonsingular center をもつ) blowing up の有限回の合成である。
3) $\{ f \circ h = 0 \} = \bigcup_{i \in T} C_i$, $C_i = K$-irreducible
かつ nonsingular で"，$\{ f \circ h = 0 \}$ のところでの"の交わりは すべて transversal である。

このとき，$(f \circ h) = \sum_{i \in T} N_i C_i$, $h^\ast dx = \sum_{i \in T} (N_i - 1) C_i$
とおく（() は divisor を表す。local に小は $C_i = \{ y_i = 0 \}$ とするとき，これは $f \circ h = y_1^{N_1} \cdots y_t^{N_t} (T = \{ 1, \ldots, t \})$, $h^\ast dx = y_1^{N_1-1} \cdots y_t^{N_t} dy_1 \cdots dy_t$ という感覚である）

$f(x,y) = x^3 + y^2$ の例 で いえば 次のようにある。

$Y = W_1 \cup W_2 \cup W_3 \cup W_4$

$\{ \xi_1, \eta_1 \}$ $\{ \xi_2, \eta_2 \}$ $\{ \xi_3, \eta_3 \}$ $\{ x_3, y_3 \}$

h

$\mathbb{A}^2 \ni (x,y) = (\xi, \eta) = (\xi_1, \xi_2, \eta_1, \xi_3, \eta_2) = (\xi_3, \eta_3, \xi_3, \eta_3^2) = (x_3 y_3, x_3^2 y_3)$

$h^\ast dx = -\xi_1 d\xi_1 d\eta_1 = \xi_2 d\xi_2 d\eta_2 = \xi_3^4 \eta_3 d\xi_3 d\eta_3 d\xi_3 = -x_3^4 y_3 dx_3 dy_3$
\[f \circ h = \tilde{\alpha}_1^2 (1 + \tilde{\alpha}_1^1 \tilde{\alpha}_1^3) = \tilde{\alpha}_2^3 (1 + \tilde{\alpha}_2^1 \tilde{\alpha}_2^2) = \tilde{\alpha}_3^6 \tilde{\alpha}_3^1 (1 + \tilde{\alpha}_3^1) = \chi_3^6 y_3^2 (1 + y_3) \]

\[f = \chi_3^3 + y_3^2 \]

\(\{ f \circ h = 0 \} = C_1 \cup C_2 \cup C_3 \cup C_4 \) とよっており

\[C_1 = \{ \tilde{\alpha}_1^1 = 0 \} = \{ y_3 = 0 \} \quad (N_1, \nu_1) = (2, 2) \]
\[C_2 = \{ \tilde{\alpha}_2^1 = 0 \} = \{ \tilde{\alpha}_3^1 = 0 \} \quad (N_2, \nu_2) = (3, 3) \]
\[C_3 = \{ \tilde{\alpha}_3^1 = 0 \} = \{ \tilde{\alpha}_3^1 = 0 \} \quad (N_3, \nu_3) = (6, 5) \]
\[C_4 = \{ \tilde{\alpha}_3^1 = -1 \} = \{ y_3 = -1 \} \quad (N_4, \nu_4) = (1, 1) \]

\(\{ 1 + \tilde{\alpha}_1^1 \tilde{\alpha}_1^3 = 0 \} = C_2 \cup C_3 \cup C_4 \), \(\{ 1 + \tilde{\alpha}_2^1 \tilde{\alpha}_2^3 = 0 \} = C_3 \cup C_4 \) である（容易に check できる！）

ここで Denef の結果を一つ紹介する。

\(\Upsilon(\mathcal{O}_K) \) を \(\mod \pi \mathcal{O}_K \) で考え \(\Upsilon(\mathbf{F}_q) \) 上で考えたものを\(\tilde{\Upsilon} \)をつけて表わす。

（仮定） \(\mathcal{C}_c \)（\(\in \mathcal{T} \)）も \(\mathbf{F}_q \)-\textit{Reducible}，\textit{nonsingular}で\textit{Transversal}に交わる。

（注：この仮定をみたさぬ例はいくつでもある。数体から出発すれば、有限個の finite place \(P \) を除いてこの仮定がみたされるが、我々は \(p \)-adic field から出発しているので、これをちょっと仮定反則はならない。)

このとき、各 \(\mathcal{C}_c \) に対し関数 \(\mathcal{C}_c(s) \) で
$C_c(s) \overset{\text{def}}{=} \frac{(q-1)q^{-(N-s)}v}{1-q^{-(N-s)+v}}$ とおき T の subset I

に対して,

$Z_I(s) \overset{\text{def}}{=} q^{-n}\prod_{c \in I} C_c(s)$ とおく。

Theorem (Denef) 2. $\bar{a} \in \gamma(F_q)$ に対し T の subset $I(\bar{a})$

と

$I(\bar{a}) \overset{\text{def}}{=} \{ c \in T ; \bar{a} \in \overline{C_c} \}$ と定め

$Z_{\bar{a}}(s) \overset{\text{def}}{=} \int_{\gamma(O_K)} |f_{\bar{a}}(x)|^s |dx| \mod \pi$ とおくと

$Z_\alpha(s) = Z_{I(\bar{a})}(s)$ が成り立つ。

$Z(s) = \sum_{\bar{a} \in \gamma(F_q)} Z_{\bar{a}}(s)$

ゆえに,

$Z(s) = \sum_{I \subseteq T} C_I Z_I(s)$

とし,

$C_I = \# \{ \bar{a} \in \gamma(F_q) ; \bar{a} \in \bigcap_{c \in I} \overline{C_c}, \bar{a} \notin \bigcup_{j \in I} \overline{C_j} \}$

この定理により 6 頁の仮定が満たされる $t \in O_K$ と定められる

の Igusa local zeta function $Z(s)$ を知るには,

次のように Nerve complex with data が重要となる。

$c \in T$ により Nerve complex とは

$\{ C_c, \ldots, C_p \} = p$-simplex $\Leftrightarrow C_c, \ldots, C_p \neq \emptyset$

で, 各 p-simplex に対し data $C_I (I = \{i_1, \ldots, i_p\})$

を attach させる。特に各 C_c に対しては data (N_c, v_c)

も attach させる。全体には C_{\emptyset} を attach させる。
例えは $f(x_1, x_2) = x_1^3 + x_2^2$ の Nerve complex with data は

\[\begin{array}{c}
C_1 \quad (2,2) \quad 8
\end{array} \]

\[\begin{array}{c}
C_2 \quad (3,3) \quad 8
\end{array} \]

\[\begin{array}{c}
C_3 \quad (6,5) \quad (8-2) \quad (8^2-8)
\end{array} \]

\[\begin{array}{c}
C_4 \quad (1,1) \quad (8-1)
\end{array} \]

\[\begin{align*}
\mathcal{Z}(S) &= 8^{-2} \sum_{I \subseteq \{1, 2, 3\}} \prod_{i \in I} C_i(S) \\
&= \frac{(1-8^{-1}) \left\{ 1 - 8^{-2} + 8^{-4} - 8^{-5} \right\}}{(1-8^{-2}) \left(1-8^{-6+5} \right)} \\
\end{align*} \]

(もう1つの場合) $f(x_1, \ldots, x_n) = m$ 次 homogeneous で $df(x) \neq 0$ と $n \nmid x \neq 0$ （すなわち, 原点でのみ singularity をもつ）

\[N \quad \# \{ \delta \in \mathbb{F}_{8}^{n} \mid f(\delta) = 0 \} \]

\[\begin{align*}
\mathcal{Z}(t) &= \frac{(8^n-N)}{(1-8^{-1}N)(1-t)+(1-8^{-1})(1-8^{-n})t} \\
&= \frac{(1-8^{-n}N)(1-t)}{(1-8^{-1}t)(1-8^{-n}t^n)} \\
\text{(} t = 8^{-S} \text{)}
\end{align*} \]
この二つの例は diagram で表わせるが、一般には complex や平面に書けない。

\[f(x) = \det X \quad (X = 3次行列) \Rightarrow \begin{array}{c}
\end{array} \quad \text{etc.} \]

我々は \(K = p\text{-adic field} \) を与えて、そこから出発してゆくから \(f \in O_K[x_1, \ldots, x_n] \) の Igusa local zeta 関数を計算しようとするとき、6頁の（仮定）が満たされないと Denef の結果は使いにくいので不便である。

（Denef は 6頁の（仮定）がみたされる \(f = \text{homog. of degree } d \) に対して \(Z(s) = \frac{P(T)}{Q(T)} \quad (T = \beta^{-1}, P, Q \text{は } T \text{の多変数} \) に対し \(\deg_T Z(s) = \deg P - \deg Q \) が \(-d \) に等しいという Igusa conjecture を証明したが、そのときに 7頁の結果（仮）を使ったのである。井草先生によると予想の証明よりも、むしろこの仮により Nerve complex で記述されるという発見（これは Denef ではなく井草先生が気付かれた）の方が重要 とのこと）

そこで、実際の計算で役に立つ公式をみつけるため、まず次のことを示す。
Lemma 3. $O_K^n - \{0\} \cong D'_1 \cup \cdots \cup D'_n$ (disjoint union)

$D'_c = \{ (x_1^{(c)}, \cdots, x_i^{(c)}, \lambda; x_i^{(c)}, \cdots, x_n^{(c)}) \in O_K^n : (x_1^{(c)}, \cdots, x_i^{(c)}, \cdots) \in \pi O_K^{c-1}, \lambda; \neq 0 \} (i = 1, \cdots, n).$

Proof. $O_K^n - \{0\} \ni x = (x_1, \cdots, x_n)$ に対して $\exists ! i \in s.t.\\min\{\text{ord} x_1, \cdots, \text{ord} x_n\} = \text{ord} x_i$ ($\neq \text{ord} x_j$ である $\forall j < i$)

のとき, $(x_1, \cdots, x_i, \cdots, x_n) = (\lambda; x_1^{(c)}, \cdots, \lambda; x_i^{(c)}, \lambda; x_i^{(c)}, \cdots, \lambda; x_n^{(c)})$ の関係で $(x_1^{(c)}, \cdots, x_i^{(c)}, \lambda; x_i^{(c)}, \cdots, x_n^{(c)}) \in D'_c$ 逆に D'_c の元に対し, 上の関係で (x_1, \cdots, x_n) を定めるとき $\min\{\text{ord} x_1, \cdots, \text{ord} x_n\} = \text{ord} x_i$ ($\neq \text{ord} x_j$ である $\forall j < i$). (ただし $\text{ord} 0 = +\infty$) //

公式 4. $D_c = \{ (x_1^{(c)}, \cdots, x_i^{(c)}, \lambda; x_i^{(c)}, \cdots, x_n^{(c)}) \in O_K^n : (x_1^{(c)}, \cdots, x_i^{(c)}, \cdots) \in \pi O_K^{c-1} \} \ni \alpha \in K$

$$\int_{O_K^n} | f(x) |_K^s dx = \sum_{i=1}^{m} \int_{D_c \times O_K^{n-m}} | f(\lambda; x_1^{(c)}, \cdots, \lambda; x_i^{(c)}, \lambda; x_i^{(c)}, \cdots) |_K^{s-m} d\lambda_c d\lambda_1^{(c)} d\lambda_2^{(c)} d\lambda_m^{(c)}$$

Proof. $\int_{O_K^n} = \int_{O_K^{n-00}} \int_{D_c \times O_K^{n-m}} = \int_{D_c \times O_K^{n-m}}$ と

Lemma 3 より //
例

\[Z_n(S) \overset{\text{def}}{=} \int_{\operatorname{M}_n(\mathbb{O}_k)} |\det X|^s \, dX = \prod_{i=1}^{\frac{n}{2}} \frac{1 - q^{-i}}{1 - q^{-(s+i)}} \]

\(n \)に関する帰納法で示す。\(n = 1 \)のときは Prop 1 により正しい。1行に関して blowing up する。

\[Z_n(S) = \sum_{i=1}^{n} \int_{D_i \times \mathbb{O}_k^{s-n}} |\det \begin{pmatrix} \lambda x_{11}, \ldots, \lambda, \ldots, \lambda x_{1n} \\ x_{21}, \ldots, x_{2e}, \ldots, x_{2n} \\ \vdots \\ x_{n1}, \ldots, x_{ne}, \ldots, x_{nn} \end{pmatrix}|^{s-n} \, d\lambda \, dx_{11} \cdots dx_{nn} \]

\[= \sum_{i=1}^{n} \int_{\lambda, x_{ke} \in \mathbb{O}_k} \left| \lambda^s \right|_k \cdot \left| \det \begin{pmatrix} 0 & 0 & \cdots & 0 \\ x_{21} & \cdots & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ x_{n1} & \cdots & 0 & \cdots & 0 \end{pmatrix} \right|^s \, d\lambda \, dx_{11} \cdots dx_{nn} \]

（変数変換をしている！）

\[= \sum_{i=1}^{n} q^{-(i-1)} \int_{\mathbb{O}_k} \left| \left| \lambda \right|^{s+n-1} \right|_k \, d\lambda \cdot Z_{n-1}(S) \]

\[= \left(\frac{1 - q^{-n}}{1 - q^{-s}} \right) \left(\frac{1 - q^{-i}}{1 - q^{-(s+n)}} \right) Z_{n-1}(S) = Z_{n-1}(S) \cdot \frac{1 - q^{-n}}{1 - q^{-(s+n)}} \]

\[\Rightarrow Z_n(S) = \prod_{i=1}^{\frac{n}{2}} \frac{1 - q^{-i}}{1 - q^{-(s+i)}} \quad // \]

原点 \(\overline{= 0} \) の singularity があるときは公式を何回かくり返せば、原点で nonsingular な場合の計算に
帰着する。原点以外の singularity についても公式 4 の考え方でやされよう。\(f(x) \) が weighted homogeneous ならば
公式 4（またはそれを modify したもの）をくり返すと積分は
\[
\int_{0_k} |f_i(x)^{N_i} - f_t(x)^{N_t}|^s d\alpha
\]
の形に帰着する。

但し \(C_i = \{ f_i = 0 \} \) は \(K \)-inreducible, nonsingular で \(C_i \ (i \in \mathbb{T} = \{1, \cdots , t \} \) は transversal に交わる。

ここで mod \(\pi \) による reduction \(\overline{C}_i \ (i \in \mathbb{T} \) たちは
もはや同じ条件をみたすとは限らない。

例 2 は \(f_1(x) = x_1, \ f_2(x) = x_1 - \pi, \ f_3(x) = x_1 + \pi y - \pi^2 \)
すると \(C_i = \{ f_i = 0 \} \ (i = 1, 2, 3 \) は 既約, nonsingular で transversal に交わるが \(\overline{C}_1 = \overline{C}_2 = \{ x_1 = 0 \}, \overline{C}_3 = \{ x_1 - x_2 = 0 \} \) となり条件がくずれる。例 2 の特殊な場合として次の公式を得る。証明簡単と仮定しておく。

公式 5 (Denef) \(\overline{C}_i = \{ f_i = 0 \} \ (i \in \mathbb{T} \) たちは
\(K \)-inreducible, nonsingular で \(C_i \) は transversal に
交わると仮定する。

\[
\Rightarrow \int_{0_k} |f_i(x)^{N_i} - f_t(x)^{N_t}|^s d\alpha = g^{-n} \sum_{I \subseteq \mathbb{T}} \prod_{i \in I} \frac{(\delta - 1)^{\delta - N_i} \delta - 1}{1 - \delta^{-N_i} \delta - 1}
\]

但し \(C_I = \# \{ \overline{a} \in F_{g_k} \ ; \ a \in \cap_{i \in I} \overline{C}_i \ , \ \overline{a} \in \cup_{j \notin I} \overline{C}_j \} \)
証明)

\[
\int_{\mathbb{R}^n_{\text{K}}} |f_i(x)|^N - f_t(x)|^N \, dx = \sum_{\bar{\bar{\gamma}} \in \mathbb{F}_{\text{K}}} \int_{\mathbb{R}^n_{\text{K}}} |f_i(x)|^N - f_t(x)|^N \, dx
\]

今 \(\bar{\bar{\gamma}} \in \bigcap_{i \in I} \overline{C_i} = \overline{C_{i_1} \cap \ldots \cap C_{i_k}} \), \(\bar{\bar{\gamma}} \notin \bigcup_{j \notin I} \overline{C_j} \)

\[
\int_{\mathbb{R}^n_{\text{K}}} |f_i(x)|^N - f_t(x)|^N \, dx = \mathcal{B}^{-n} \int_{\mathbb{R}^n_{\text{K}}} |f_i(\bar{\bar{\gamma}} + \pi x)|^N - f_t(\bar{\bar{\gamma}} + \pi x)|^N \, dx
\]

一般に \(f_j(\bar{\bar{\gamma}} + \pi x) = f_j(\bar{\bar{\gamma}}) + \pi (-\cdots) \) と表わせるから

\(\bar{\bar{\gamma}} \notin \overline{C_j} \Rightarrow f_j(\bar{\bar{\gamma}}) \in U_{\text{K}} \Rightarrow \{|f_j(\bar{\bar{\gamma}} + \pi x)| = 1 \text{ for all } x \}

\Rightarrow (**) \quad \int_{\mathbb{R}^n_{\text{K}}} \left| \prod_{i \in I} f_i(\bar{\bar{\gamma}} + \pi x)^{N_i} \right|^s \, dx
\]

\(\bar{\bar{\gamma}} \in \overline{C_i} \Rightarrow f_i(\bar{\bar{\gamma}}) = \pi u_i \) \((u_i \in \mathbb{R}_{\text{K}})\) と表わせる.

nonsingular という仮定により、例えれば \(\frac{\partial f_i}{\partial x_i}(\bar{\bar{\gamma}}) \neq 0 \) と

\(\bar{\bar{\gamma}} \times f_i(\bar{\bar{\gamma}} + \pi x) = \pi u_i + \pi \sum_{j=1}^n \frac{\partial f_i}{\partial x_j}(\bar{\bar{\gamma}}) \cdot x_j + \pi^2 (-\cdots) \)

\(= \left[x_i \left(\frac{\partial f_i}{\partial x_i}(\bar{\bar{\gamma}}) + \pi (-\cdots) \right) + (x_i \text{無関係な項}) \right] \pi \)

と表わす。\(x_i' = \frac{1}{\pi} f_i(\bar{\bar{\gamma}} + \pi x) \leftrightarrow x_i \quad (x_i \text{ 表面関数}) \)

\(x_j' = x_j \) \((\forall j \notin I)\)

13
は $O^n_K \leftrightarrow O^n_K$ の bijection で $dX' = dx$ である。

$
\bar{f}_c (x + \pi I) \text{ が } \bar{s} \text{ で transversal に交わるという仮定から } O^n_K \leftrightarrow O^n_K \text{ bijection,}

\begin{align*}
(x_1 \cdots x_n) &\leftrightarrow (y_1 \cdots y_n) \\
&\text{ におけるものがある存在する。}
\end{align*}

\[\Rightarrow (**) = \left(2 \pi \right)^n \prod_{c \in \mathcal{I}} (\pi y_c)^{N_1 c} dy \]

\[= \left(2 \pi \right)^n \prod_{c \in \mathcal{I}} (\pi y_c)^{N_1 c} dy = \left(2 \pi \right)^n \prod_{c \in \mathcal{I}} \frac{(2 \pi - 1)^{N_1 c}}{1 - 2^{N_1 c - 1}} \]

\[\Rightarrow \int_{\bar{s} + \pi O^n_K} \left| f_t(x)^N_c - f_t(x)^N_c \right| dx = \left(2 \pi \right)^n \prod_{c \in \mathcal{I}} \frac{(2 \pi - 1)^{N_1 c - 1}}{1 - 2^{N_1 c - 1}} \]

公式5

14
さて、公式 \(C \) は \(C \) が \(non-singular \) で transversal に交わる（そして既約）の場合だが、一般の場合の

\[
\int_{O_k^n} |f(x)|^s d\mathbf{x}, \text{ ただし } C = \{ f(x) = 0 \}
\]

は \(K \)-inreducible, non-singular で transversal に交わる、

は どうか？ 結論を先にいうと

\[
\int_{O_k^n} |f(x)|^s d\mathbf{x} = \sum_{\xi \in F^m_k} \int_{(\xi + \pi O_k^n) \times O_k^{n-m}} |f(x)|^s d\mathbf{x} \quad (m \leq n)
\]

という公式を有限回使って 公式 \(\xi \) の場合に帰着させることができる。それの証明をするためにいくつかの概念を導入する。（これは講演では述べなかった部分）

\[
A \overset{\text{def}}{=} O_k[x_1, \ldots, x_n] - \pi O_k[x_1, \ldots, x_n]
\]

\[
A' \overset{\text{def}}{=} \{ f \in A ; (f = 0) \text{ is non-singular} \},
\]

\(\xi \in O_k^n \) に対して 一つの map \(R_\xi : A \rightarrow A \) と

\(L_\xi : A \rightarrow A \) を 次のように定義する。

（lifting）
命题 6: \(R_{\xi} : A \rightarrow A \) 及び \(L_{\xi} : A \rightarrow A \) は共に
bijection で \(R_{\xi} L_{\xi} = L_{\xi} R_{\xi} = id_A \)

さて \(\int_{O_k^n} |f(x)|^s \, dx = \sum_{\xi \in \mathbb{F}_q^n} \int_{\xi + \pi O_k^n} |f(x)|^s \, dx \) に於て

\[
\int_{\xi + \pi O_k^n} |f(x)|^s \, dx = \delta^{-n} \int_{O_k^n} |f(\xi + \pi x)|^s \, dx = \delta^{-rs-n} \int_{O_k^n} |R_{\xi} f(x)|^s \, dx
\]

ゆえに \(\int_{O_k^n} |f(x)|^s \, dx \) の計算は \(\int_{O_k^n} |R_{\xi} f(x)|^s \, dx \) (\(\xi \in \mathbb{F}_q^n \))
の計算に帰着する。従って,
\(f_1(x), \ldots, f_t(x) \) （但し \(C = \{ f_i = 0 \} \) は \(K \)-indecible, nonsingular で transversal に交わる）が与えられたとき \(\mathbb{N} \) が存在して すべての \(f_i \in O_K \) に対して \(R_{f_1} \equiv R_{f_2} \equiv \cdots \equiv R_{f_t} \equiv R_{f_1} \equiv \cdots \equiv R_{f_t} \) は公式 \(5 \) の条件をみたすことを示せば良いことになる。

\[
\exists \exists \in O_K \text{ にまず， } f(x) = \sum \pi^d f_d (x - \bar{x}) \text{ と} \]
\(f(x) \in A \)

表わす。ここで \(f_d (x - \bar{x}) \in A \) は \(x - \bar{x} = (x_1 - \bar{x}_1, \ldots, x_n - \bar{x}_n) \)に関して \(d \)次 homogeneous。このとき

命題 7 \(\deg f = d_0 \) とするとき，次は同値

1. \(\deg R_{\bar{f}} f < \deg \bar{f} \)
2. \(\exists d < d_0 \) s.t. \(a_d + d < d_0 \)

これは明らかである。すると \(\bar{f} \equiv \text{homog w.r.t.} (x - \bar{x}) \)

\(\Rightarrow \deg R_{\bar{f}} f < \deg \bar{f} \) が成り立つ。

\(\deg \bar{f} = 0 \Rightarrow |f(x)| = 1 \)

\(\deg \bar{f} = 1 \Rightarrow \bar{f}(x) \) nonsingular, inedcible
よって \(\deg \overline{f} = d_0 \geq 2 \) のとき \(R_{s_1}, \ldots, R_{s_t} \) たちの作用によって \(\deg R_{s_1} \cdots R_{s_t} \overline{f} \leq 1 \) とすることができる
todo iserea \(R_{s_1} \cdots R_{s_t}f \) noningular, irreducible
まで加える。(transversalityについてはあとで扱う）

定義 8. \(f(x) \in A \) が \(\exists x \in O_K^n \) に関して special type とは、
\[f(x) = \sum_a f_d(x - \xi), \quad a_d + d \geq d_0 \]
\((= \deg \overline{f}) \) が \(\forall d < d_0, \) と書くこと。
これは \(\deg R_{s_1} \overline{f} = \deg \overline{f} \) と同値である。

定理 9. \(F(x) \in A, \deg \overline{F} = d_0 \) とすばとき次の条件は同値。

(1) \(\exists c \in O_K^n \) の無限列 \(\xi_1, \xi_2, \ldots, \xi_m, \ldots \) で
\(\forall m \) において \(R_{s_m} \cdots R_{s_1} F \) は \(\xi_{m+1} \) に関して special type とし、
\(\deg R_{s_m} \cdots R_{s_1} F = d_0 \) が \(\forall m \)
(2) \(\exists \eta \in O_K^n \) での
\[F(x) = \sum_d F_d(x - \eta) \]
\(d \geq d_0 \)

但し \(F_d(x - \eta) \) は \((x - \eta) = (x_1 - \eta_1, \ldots, x_n - \eta_n) \) の
\(d \) 次 homogeneous 多項式。
証明 (2)⇒(1) $\xi_1 = \eta$, $\xi_2 = 0$ (∀$\eta \geq 2$) とすればよい。 (1)⇒(2) が重要である。

$R_{\xi_m} - R_{\xi_1} F$ は ξ_{m+1} に関して special type である

$R_{\xi_m} - R_{\xi_1} F(\xi) = \sum_{d} \pi^{a_{m,d}} f^{(m,d)}_{m,d}(\xi - \xi_{m+1})$

(但し $f^{(m,d)}_{m,d} \in A$, $a_{m,d} > 0$ ならば $d > d_0$,
$a_{m,d_0} = 0$, $d + a_{m,d} \geq d_0$ かつ $d < d_0$）

と表わせる。

このとき $R_{\xi_m} - R_{\xi_1} F = L_{\xi_m}(R_{\xi_m} - R_{\xi_1} F)$ である。

計算しよう。

$\sum_{d} \pi^{a_{m,d}} f^{(m,d)}_{m,d}(\xi - \xi_{m+1}) = \sum_{d} \pi^{a_{d,d_0} + (d_0 - d)} f^{(m,d)}_{m,d}(\xi - \xi_{m+1})$

ただし deg $L_{\xi_m}(R_{\xi_m} - R_{\xi_1} F) = d_0$ に注意すると

($f^{(m,d_0)}_{m,d_0}$ の係数は π^{-d_0} である)

$L_{\xi_m}(R_{\xi_m} - R_{\xi_1} F) = \sum_{d} \pi^{a_{m,d} + (d_0 - d)} f^{(m,d)}_{m,d}(\xi - \xi_{m+1})$

以下くり返して

$F(\xi) = \sum_{d} \pi^{a_{m,d} + m(d_0 - d)} f^{(m,d)}_{m,d}(\xi - \xi_{m+1})$
か $\forall m$ に対して成り立つ。左辺は $m \in \mathbb{N}$ に無関係に
\[F(x) = \lim_{m \to \infty} \sum_{d} \pi_{m,d+m(d_0-d)} \int_{m,d} (x-x_1-y_{x_2} \cdots - y_{x_{m+1}}) \]
今 $\eta = \lim_{m \to \infty} (x_1+y_{x_2} + \cdots + y_{x_{m+1}}) \in \mathcal{O}_K$ とおく。

\[F(x) = \sum_{d} F_d(x-\eta) \] と表わしたとき

\[F_d(x-\eta) = \lim_{m \to \infty} \pi_{m,d+m(d_0-d)} \int_{m,d} (x-x_1-y_{x_2} \cdots - y_{x_{m+1}}) \]

ゆえに $d < d_0$ すなわち $a_{m,d} \geq 0$ ならば

\[F_d(x-\eta) = 0 \]

\[\Rightarrow F(x) = \sum_{d \geq d_0} F_d(x-\eta) \]

Corollary 10. $F(x) \in A'$ (i.e. non-mingular, $\in A$)
かつ $\deg \overline{F(x)} = d_0 \geq 2$ とする。このとき自然数 N が存在して
\[\forall \delta_1, \cdots, \delta_N \subseteq \mathcal{O}_K \]

\[\deg \overline{R_{\delta_1}, \cdots, \delta_N} \overline{F} < \deg \overline{F} = d_0 \]

（証明）このような自然数 N が存在するときを、$\delta_1, \delta_2, \cdots$ なる無限列を適当とし
定理 9 の (1) をみたすようにとるから、$F(x) = \sum_{d \geq d_0} F_d(x-\eta)$ ($d_0 \geq 2$)

と表わせる。これは η が $\{ F=0 \}$ の singular point で
あることを意味するから、$F(x) \in A'$に対する。\

この Cor 10 により、結局

$$\int_{O_K^n} \left| f_1(x)^{N_1} \cdots f_c(x)^{N_c} \right|^2 dx,$$

但し $\{ f_c = 0 \}$ は K-indep, non-singular, transversal K 交わり $\deg \overline{f_c} = 1$ から $\overline{f_c} = 0$ が ined, nonsingular

の計算に帰着した。

注) $R:\alpha' \to A'$, $L_\alpha : A' \to A'$ となっている。

例えば $f \in A'$ に対して $R \alpha f \in A'$ というには

$F(x) = f(3 + \pi x)$ が nonsingular である。

例えば η が $F(x)$ の singular point ならば

$F(\eta) = 0$ ($f(3 + \pi \eta) = 0$) \(\forall \frac{\partial F}{\partial x}(\eta) = 0 \Rightarrow \pi(3 + \pi \eta) = 0\)

$3 + \pi \eta$ が f の singular pt. 矛盾。

注) $f = \text{既約} \Rightarrow R \alpha f = \text{既約}$

\[\therefore R \alpha f = f_1 \cdot f_2 \Rightarrow f = (L_\alpha f_1) \cdot (L_\alpha f_2) \]

命題 11 f_1, \cdots, f_c の $\forall \eta \in O_K^n$ での交わりが transversal ならば、$\forall \eta$ に対して $R \alpha f_1, \cdots, R \alpha f_c$ の

$\forall \eta \in O_K^n$ での交わりも transversal である。
証明） \(f(x + \pi x) = \pi^r \cdot (R^r_f)(x) \) なる \(r \) が存在する。\(x_0 = x + \pi \eta \) に於て, \(f_1(x_0) = \cdots = f_{l-1}(x_0) = 0, \) \(f_{l-1}(x_0) \neq 0 \) とすると \(f_1, \ldots, f_{l-1} \) は \(x_0 \) で transversal に交わるから

\[
\begin{align*}
 f_1(x) &= a_{11}(x_1 - (x_0)) + \cdots + a_{1n}(x_n - (x_0)) + (2 \text{ 次以上 の項}), \\
 \vdots & \quad \vdots \\
 f_q(x) &= a_{e1}(x_1 - (x_0)) + \cdots + a_{en}(x_n - (x_0)) + \{2 \text{ 次以上の項}\}
\end{align*}
\]

とおわればとき, \(\operatorname{rank} \left(\begin{array}{ccc} a_{11} & \cdots & a_{1n} \\ a_{e1} & \cdots & a_{en} \end{array} \right) = \ell \), そして

\[
\begin{align*}
 f_1(x + \pi x) &= \pi a_{11}(x_1 - \eta_1) + \cdots + \pi a_{1n}(x_n - \eta_n) + \left(\frac{x - \eta}{2 \pi \cdot \pi} \text{ 以上}\right), \\
 \vdots & \quad \vdots \\
 f_{l}(x + \pi x) &= \pi a_{e1}(x_1 - \eta_1) + \cdots + \pi a_{en}(x_n - \eta_n) + \left(\frac{x}{\pi} \right)
\end{align*}
\]

従って\(\begin{align*}
 (R^1_{f_1})(x) &= a_{11}(x_1 - \eta_1) + \cdots + a_{1n}(x_n - \eta_n) + (2 \text{ 次以上 の項}) \\
 \vdots & \quad \vdots \\
 (R^r_{f_{r}})(x) &= a_{e1}(x_1 - \eta_1) + \cdots + a_{en}(x_n - \eta_n) + (2 \text{ 次以上の項})
\end{align*} \)

即ち, \(R^r_{f_1}, \ldots, R^r_{f_{r}} \) は \(\forall \eta \) で transversal に交わる. これにより明かに \((R^r_{f_k})(\eta) \neq 0 \) \((l+1 \leq k \leq t) \) が

命題 12 \(f(x) = a_0 + \sum_{e=1}^{\infty} a_e x_e \mod \pi^m \) \((m \geq 1) \)

\(\exists \in \mathbb{Q}_K \) \Rightarrow (1) \(|R^r_{f}| = 1 \), または

(2) \(R^r_{f}(x) = a_0 + \sum_{e=1}^{\infty} a_e x_e \mod \pi^m+1 \) がし \(\forall a \in \mathbb{Q}_K \mod \pi^m \)
証明） \(f(x) = a_0 + \sum_{i,j=1}^{n} a_{i,j} x_i x_j + \pi^n (\sum_{i,j,k} a_{i,j,k} x_i x_j x_k + \cdots) \)
\(\Rightarrow f(\xi + \pi x) = a_0 + \sum_{i=1}^{n} a_{i} (\xi_i + \pi x_i) \)
\(+ \pi^n (\sum_{i,j} a_{i,j} (\xi_i + \pi x_i) (\xi_j + \pi x_j) + \sum_{i,j,k} a_{i,j,k} (\xi_i + \pi x_i) (\xi_j + \pi x_j) (\xi_k + \pi x_k) + \cdots) \)
\(= (a_0 + \sum_{i=1}^{n} a_{i} \xi_i) + \pi \sum_{i=1}^{n} a_{i} x_i \)
\(+ \pi^n (f_0(x) + \pi f_1(x) + \cdots + \pi^r f_r(x)) \)
\(\uparrow \quad \uparrow \quad \uparrow \)
\(0: \text{homog.} \quad 1: \text{homog.} \quad \quad r: \text{homog.} \)
\(= (a_0 + \sum_{i=1}^{n} a_{i} \xi_i + \pi^n f_0) \)
\(+ \pi \left(\sum_{i=1}^{n} a_{i} x_i + \pi^n f_1(x) \right) \)
\(+ \pi^{n+1} \left(f_2(x) + \cdots + \pi^{r-2} f_r(x) \right) \)

もし \(a_0 + \sum a_i \xi_i \in \mathcal{U} \)，ならば \(f(\xi + \pi x) = \mathcal{R}_f(x) \)

\(|f(\xi + \pi x)| = 1 \)，\(\Rightarrow (1) \)になる。

\(a_0 + \sum a_i \xi_i = \pi \mathcal{U} \) のときは

\(\mathcal{R}_f = (\xi + \pi^{n-1} f_0) + \left(\sum_{i=1}^{n} a_{i} x_i + \pi^n f_1(x) \right) \)
\(+ \pi^{n+1} (f_2(x) + \cdots + \pi^{r-2} f_r(x)) \)

\(\Rightarrow (2) \)の場合は \(\text{得る。} \)

\[\]
証明 まず次のLemmaを示そう。

\begin{align*}
\text{Lemma 14} & \quad (1) \forall \xi_1, \ldots, \xi_{m+1} \in O_K^n \text{ にたして} \\
\eta = \xi_1 + \pi \xi_2 + \cdots + \pi^m \xi_{m+1} \quad \text{とする} \\
R_{\xi_{m+1}} \cdots R_{\xi_1} f = R_0^m R_\eta f \quad \forall f \in A \\
(2) \ O_K^n \text{ の無限 pruning } \xi_1, \xi_2, \ldots \text{ に対し } \eta = \xi_1 + \pi \xi_2 + \cdots + \pi^{2m+1} \xi_{m+1} \\
\text{とおくと } \forall f \in A \text{ にたして} \\
R_0^m R_\eta f = R_{\xi_1} R_{\xi_2} \cdots R_{\xi_{m+1}} f \text{ で } \xi = \xi_{m+1}(\pi).
\end{align*}

(2) は \(\xi = \xi_{m+1} + \pi \xi_{m+2} + \cdots \) とおくと

(1) は帰着する。(1) の証明:
\begin{align*}
(f(\xi_1 + \pi \xi_2)) = \pi^2 (R_{\xi_1} f)(x) \\
(R_{\xi_2} f)(\xi_2 + \pi \xi_3) = \pi^2 (R_{\xi_2} R_{\xi_1} f)(x) \\
\Rightarrow f(\xi_1 + \pi \xi_2 + \pi^2 \xi_3) = \pi^{2m+2} (R_{\xi_1} R_{\xi_2} f)(x) \\
= \pi^{2m+2} (R_0 R_{\xi_1 + \pi \xi_2} f)(x) \text{ 以下同様。}
\end{align*}

命題 13 の証明: \(|R_{\xi_{m+1}} \cdots R_{\xi_1} f| = 1 \quad (\forall m) \) という仮定より \(|R_0^m R_\eta f| = 1 \quad (\forall m) \) がLemma 14 よりわかる。
従ってこのとき, \(R_\eta f \) の1次の項と \(R_0^m R_\eta f \) の1次の項は一致する, \(R_\eta f \) の \(x_1 \) \((k+1 \leq k \leq n) \) の係数は
\(\forall m \text{ すべて } \pi^m \text{ でわられることがイミするから } = 0. \)
定義15 作用素 R_∞ を次のように一般化する。

$1 \leq m \leq n$, $\eta = (\eta_1, \cdots, \eta_m) \in O_k^n$ に対しで $R_\eta f$ を
\[f(\eta \cdot x', x'') = \pi^\eta (R_\eta f)(x) \] で定義する。η は
$R_\eta f \in A$ という条件で unique に定まる。ここで
$x = (x', x'')$, $\eta / = (\eta_1 \cdots \ eta_m)$, $\eta /'' = (\eta_{m+1} \cdots \ eta_n)$
である。R_η に関しても 21 頁に述べた性質が成り立ちう。

定理16 $f_c(x) = a_c + \sum_{j=1}^{n} a_{ij} x_j + \pi^m F_c(x) \in A$
$c = 1, \cdots, t$ が個数非特異で transversal に交わるとする。$F_c(x)$ は x の 2 次以上の項。
このとき、自然数 N が存在して (1) $R_{3N} \cdots R_{3N} f_c |_k = 1$
for some c は (2) $R_{3N} \cdots R_{3N} f_c (c \leq c \leq t)$ は
transversal に交わる。
ここで各 $k = 1, \cdots, N$ に対し、自然数 M_k が定まり
$1 \leq M_k \leq N$ で、F_c は $O_k^{M_k}$ の任意の元である。

この定理を示せば 将来の目的は達せられる。

t に関する induction. $t = 1$ から明らかゆえ
$t \leq t - 1$ で成り立つとし $t = t$ のときを示す。
Lemma 17 一般性を失うことなく \(a_1 = \ldots = a_\ell = 0 \)
かつ \((\overline{a}_{ij}) = \begin{pmatrix} I_\ell & 0 \\ \ast & 0 \end{pmatrix}\) としより。

Proof. \(\text{rank} (\overline{a}_{ij}) = \ell \) とする変数の1次変換
と \(f_1, \ldots, f_\ell \) の順番で（必要なら）変えることにより
\((\overline{a}_{ij}) = \begin{pmatrix} I_\ell & 0 \\ \ast & 0 \end{pmatrix}\) としより。 \(z \in \Omega^n_{\nu_\nu}(\nu \text{given})\)
において、 \(f_\nu(z) \approx 0 (\pi) \) とすると \(z \) が存在するため、
\(|R_{\nu}f_\nu|_\nu = 1 \) であり、 \(i_\nu + 1 \) に帰着する。よって
\(f_\nu(z) \equiv 0 (\pi) \) としてより。 Hensel’s Lemma により
\(z' \equiv z (\pi) \) とする \(z' \) で \(f_\nu(z') = 0 \ (1 \leq \nu \leq \ell) \) となるものがある。 \(z \) は \(\text{mod} \pi \) で自由にとれるから最初から
\(z' = z \) としてより。 すると 命題12 より \(R_{\nu}f_\nu (i = 1, \ldots, \ell) \) はこのLemmaの条件をみたす。

Lemma 18 \(a_1 = \ldots = a_\ell = 0, \ (\overline{a}_{ij}) = \begin{pmatrix} I_\ell & 0 \\ \ast & 0 \end{pmatrix}, \) かつ
\(\text{rank} (\overline{a}_{ij}) \geq \ell \) とし、更にある \(\ell \geq l+1 \) に限て
\(\min \text{ord} \overline{a}_{ij} \) において \(\overline{m} \) を十分大きくとるとするとある \(N \) があって
(1) \(|R_{\nu N} - R_{\nu l}f_\nu| = 1 \), すなわち
(2) \(R_{\nu N} - R_{\nu l}f_\nu \) に関して \((\overline{a}_{ij}) \geq \ell \) とる。
ここで Case I と Case II にわける。

Case I では Lemma 18 をくり返して適用できるときで、このとき rank(\(\mathbf{a}_{ij} \)) = maximal が成り立ち、

\(\text{rank}(\mathbf{a}_{ij}) = \text{rank}(\mathbf{a}_{ij}) \) とし、

Lemma 18 が適用できる

Case II は 命題 13 が成立立つときである。

Case I は 次のようにして解決する。

命題 19 \(f_k(x) = a_k x_k + a_{k1} x_1 + \cdots + a_{kn} x_n + \pi^m F_k(x) \)

(1 ≤ k ≤ t), \(a_1 = \cdots = a_t = 0, \text{rank}(\mathbf{a}_{ij})(1 ≤ i ≤ t) \)
232

\[l = \rank (\bar{a}_{ij}) \quad (1 \leq i \leq l, 1 \leq j \leq n) \]. しかし、自动生成するオライオノ \(O_k \) の元 \(\bar{z}_1, \ldots, \bar{z}_n \) に対して

(1) \quad \left| R_{\bar{z}_N} \cdots R_{\bar{z}_1} f_k \right| f_k = 1 \quad \forall k \in \mathbb{N} , \quad \text{又は}

(2) \quad \overline{R_{\bar{z}_N} \cdots R_{\bar{z}_1} f_k} (1 \leq k \leq t) \text{はtransversalに交わる。}

Proof. 有限列 \(\bar{z}_1, \ldots, \bar{z}_m, \ldots, \bar{z}_m \) で \(\forall m \in \mathbb{N}, \forall k \in \mathbb{N} \) に対して \(\left| R_{\bar{z}_m} \cdots R_{\bar{z}_1} f_k \right| f_k = 1 \) のものを存在すると仮定する。Hensel's lemmaにより \(\bar{z}_1 \equiv \bar{z}_1 (\pi) \ldots \equiv \bar{z}_1 (\pi) \) で \(f_k (\bar{z}_1) = \ldots = f_k (\bar{z}_m) = 0 \) のものがある。\(\bar{z}_1 \) はmod \(\pi \) の自由度があるから \(\bar{z}_1 = \bar{z}_1 \) と考えて、同様にくり返して \(\left(R_{\bar{z}_m} \cdots R_{\bar{z}_1} f_k \right) \left(\bar{z}_{m+1} \right) = 0 \) とする。\(\forall m \in \mathbb{N} \) に対応して

これは \(f_k (\bar{z}_1 + \pi \bar{z}_2 + \cdots + \pi^{m-1} \bar{z}_{m+1}) = 0 \) を示す。

\[\eta = \sum_{i=0}^{m} \pi^i \bar{z}_{i+1} \in O_k \] となるとき \(f_k (\eta) = 0 (1 \leq k \leq l) \) はtransversalに交わるという条件と \(\rank (\bar{a}_{ij}) = l \) により \(f_k (\eta) \neq 0 \) (\(l+1 \leq k \leq t \))。しかし \(\bar{z}_1 \equiv \bar{z}_1 (\pi) \) より \(f_k (\eta) = 0 (\pi) (l+1 \leq k \leq t) \)。よって

\[R_{\bar{z}_1} f_k (x) = a_k' + a_k' x_1 + \cdots + a_k' x_n + \pi^{m+1} f_k (x) \quad (1 \leq k \leq t) \] で \(a_k' = 0 (1 \leq k \leq l), a_k' \neq 0 (l+1 \leq k \leq t) \)、\((\bar{a}_{ij}) = (\bar{a}_{ij})' \)。さて、
\(t = l \) なるとき、明らかに \(R_n f_k \) は transversal に変われる。

\(t > l \) のとき、例えば \(a^t = \pi^r u \) \((u \in U_k = O_k - \pi_k)\)

とすれば \(|R_0^{t+1} R_n f_t|_k = 1\)。Lemma 14 により

これは \(|R_5 R_{5r+1} - R_{5r} f_0|_k = 1\) \((5 \equiv 5r+2 (\pi))\)

従って \(|R_{5r+2} - R_{5r} f_0|_k = 1\) と意味す。これは

仮定に反する。∥

最後に Case II の場合を挙う。即ち \(O_k\) の

無限列 \(5_1, \ldots, 5_m, \ldots \) で \(5_m - R_{5_1} f_{5_1} (\delta = 1, \ldots, t)\)

の \(u \equiv (l+1 \leq 5 \leq m) \) の倍数 \(\equiv 0 \mod \pi^m \) \((u \in m)\)

が成り立つとする。\(\gamma = \sum_{i=1}^t 5_i \in O_k \) でおく。

命題 13 より \(R_n f_\gamma = b_\gamma + \sum_{j=1}^\ell b_j X_j + \pi^m \) \((2 \text{ 次以上の}

項}) と表せる。

ある \(b_\gamma \equiv 0 \) する \(b_\gamma = \pi^r u \) \((u \in U_k)\) と表わるが

このときに \(|R_0^{r+1} R_n f_\gamma|_k = 1\)、Lemma 14 により

\(|R_5 R_{5r+1} - R_{5r} f_0|_k = 1\) \((5 \equiv 5r+2 (\pi))\) 即ち

\(t \equiv \pi - 1 \) の場合に帰着する。

\(b_\gamma \equiv 0 \) \((u \equiv 1, \ldots, t)\) のときは、\(R_n f_\gamma \) は 0 で

transversal に変われる \(t = l \) までなければならず、\(\gamma \) によって \(R_n f_\gamma \) は transversal に変われる。

∥
参考文献

