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LATTICES OF A LIE GROUP AND SEIFERT FIBRATIONS

5 &5 K= s =S (Masayuki Yarﬁasaki)

§1. Introduction

Let L be a Lie group with finitely many compaonents, K a
maximal compact subgroup of L, and S a connected closed normal

subgroup of L. Then KS is closed, and we have a fiber bundle
K\KS = K\L - KS\L.

L acts on K\L by right multiplication. L acts also on KS\L by
right multiplication; let N denote the kernel of this action,
i.eey, N = { geL; KSxg = KSx for all xeL }. The action aof N on
K\L leaves all fibers inQariant; in other words, we have a

family of right N—-spaces parametrized over KS\L.

Lemma 1. The right N-spaces K\KSx (x € L) are equivalent.

Proof. Since K is compact, K\L has an L-invariant Riemannian
metric. Fix such a Riemannian metric. Pick two distinct
fibers K\KSx and K\KSy (x,y € L). It suffices to construct an
N-equivariant diffeomorphism from K\KSx onto K\KSy when they
are sufficiently close to each other, because KS\L is

‘connected.



Fix a point p of K\KSx and let d be the distance betueen P
and K\KSy; K\NL is cump]é{e and K\KSy is closed; therefore, d
is positive and can be achieved as the length of a geodesic 7T
connecting p and a point q of K\KSy. S is contained in N and
acts transitively on each fiber. The action of an element s of
S sends 7 to a geodesic 7+s of the same length d connecting p-*s
and q9+s. Thus the distance from a paoint of K\KSx to K\KSy is
independent of the choice of the point, and 7 is one of the
shortest geodesic connecting K\KSx and K\KSy. \Therefure 7 is
perpendicular to K\KSx at p. Let (Tp(K\KSx))* denote the
orthogonal complement of the tangent space TP(K\KSx) of K\KSx
at p in the tangent space of K\L at p. As the expanential map
Exp is a diffeomorphism near the origin, any fiber K\KSz that
meets Exp(V) meets Exp(V) exactly once, where V is a
sufficiently sméll neighborhoad in (Tp(lﬁ(\KSx))'L of the origin.
This implies that 7 is the unique geodesic of length d
connecting p and K\KSy, as long as K\KSy is sufficiently close
to K\KSx. Let us suppose that this is the case. Then the
correspondence p*s ®» q*s (s € S) defines a diffeomarphism
K\KSx - K\KSy, which is obviously N-equivariant because it
sends‘a point in K\KSx to the unique point closest to it in

K\NKSy and N acts on K\L by isometries. O

Remark. The N-equivariant diffeomorphism above defines a local
trivialization of the fiber bundle K\L - KS\L so that the
action of N on K\L is locally a product of the action of N on a

fiber and the actiaon of a trivial group on the base.

If G is a lattice of L, the action of L on K\L restricts
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to an action of G on K\L. H = G is a normal subgroup of G
which leaves the fibers invariant. By lemma 1, we have a fiber

bund]e:
K\NKS/H - K\L/H - KS\L.

The quotient group I'=G/H acts on K\L/H and KS\L such that
(K\L/H)/T = K\L/G and (KS\L)/T = KS\L/G; the‘Fiber bundle map

induces a map:
q: K\L/G - (KS\L).T.

Note that KS\L can be naturally identified with (S\KS)\(S\L),
which has an (S\p)—invariant (and hence L-invariant) Riemannian
metric. Thus I' can be thought of as a subgroup of the group
I(KS\L) of all the isometries of KS\L with respect to this
Riemannian metric.

Suppose that I' is discrete in I(KS\L). Then the isctropy
subgroup FV of ' at veKS\L is Finite for each v, and the
inverse image q 1(LvI1) of the orbit [vl e (KS\L)/T is
((K\KSx)/H)/FV, where v = KSx (x € LY. Thus a "fiber" of q is
homeomorphic to a quotient of the '"general fiber" K\KS/H by an
action of a finite group; i.e., q is a Seifert fibration [23.

In this article, we will prove the following structure

theorem using a suitable closed connected normal subgroup S.

Theorem 2. Let L be a non-compact Lie group with finitely many

components, K a maximal compact subgroup of L, G 3 lattice of

L. Then there is an orbifold Seifert fibration
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K\L/G - 0",

where QT is a Riemannian orbifold of dimension m > O and of

e 4 : . © ~M
non—-positive sectional curvature. If L is amenable, O can b

chosen to be flat.

The proof will occupy the following two sections. Some
secial cases of theorem 2 have been knoun; see Farrell and
Hsiang £3, 43 and Quinn [8J. In §$4, we will rationally caompute
the Wall groups of virtually poly-cyclic groups in terms of

certain homology theory using the Seifert fibratian.

§2. Non—amenable case

Recall that a Lie group L with finitely many components is
amenable if and only if L/R is compact, where R denotes the
radical (= the unique maximal connected naormal solvable
subgroup) of L. See Milnor [é6]. In this section we hahd]e the
case when L is not amenable. UWe use R as S, following [4];

i.e., we are going to show that
K\L/G -» KR\L/G

is a Seifert fibration with the desired property. As in the
previous section,iidentify KRAL with (RAKRONC(RA\L) = R™ (m > O).
R\L is a non—compact semi-simple Lie group, and R\KR is é
maximal compact subgroup of R\L. Using the Cartan

decompasitidn and the Killing form, one can introduce an
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(R\L)-invariant (and hence L-invariant) Riemannian metric g on
R™ with non-positive sectional curvature. In fact, any
(R\L)finvariant Riemanniah metric on R™ has non-positive
sectional curvature. See Helgason [53J. Thus we have a
homomorphism &: L = I(Rm,g). Let T denote the image @(G)’nf G.
To prove the theorem, it suffices to show that I' is discrete in
IM®R™,g). Let T denote the natural projection L » R\L. If the
image 7(G) aof G in R\L is discrete, then I' is obviously
discrete; Unfortunately 7(G) may not be discrete in general.
We remedy this situation as follous.

Let L0 denote the identity component of L. GﬂL0 is a
subgroup of G with finite index. Therefore it suffices to shou
that @(GﬂLO) is discrete in IR™,9). As (R\(NWLO)R)\(R\LO) can
be naturally identified with R™, we may assume from the
beginning that L is connected.

Now there is a semi-simple Lie subgroup S of L such that L
= SR and such that SR is discrete (Levi decomposition). Let
ot S - Aut(R) denote the action of S on R. A sufficient
condition for 7(G) to be discrete in R\L is that the identity
component (ker a)o of the kernel of o has no compact factors
(Raghunathan[9], p.150). Let C denote the unique maximal
compact normal subgroups of (ker a)o. It is a characteristic
subgroup of (ker a)g, and hence it is normal in ker ¢ and in S.
On the other hand, C commutes with elements of R. Therefore C
is normal in L. Let z:L = L/C denote the natural projection,
and let L’=r(L), S*=r(S), R*=xn(R), G’'=x(G), K'=r(K). Then S is

semi-simple, R’ is the radical of L*, G* is a lattice of L’,
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and K* is a maximal compact subgroup of L’. Let o’:S’ - AutR’
denote the action of S’ on R’. Then it is easily observed that
ker g’ = (ker 0)/C, since ONR is finite. So the identity
component of ker o' has no campact factors, and this implies
that the image G" of G* in R’\L’ is discrete.: Thus the action
of G on R™ factors through a properly discontinuous aétion of
G" on K’R’\L = KR\L. Thererre, ' is discrete in I(Rm,g).

This completes the proof of theorem 2 when L is not amenable.

Remark. Let q:K\L/G - KR\L/G be the Seifert fibratiaon

constructed above. Then the "fiber" q_l(KRxG) over the point

KRxG € KR\L/G (x € L) is homeomorphic to

1

(x TN (T TKR%) /7 (x " YKRx N 6) .

1

It is easily observed that x KRx N G is a uniform lattice (=

1

discrete cocompact subgroup ) of x "KRx. In particular, we

have

Corollary 3. Let L be a Lie group with finitely many

components, K a maximal compact subgroup gf L, R the radical of

L, and G a lattice of L. Then KR G is a uniform lattice of

KR.

§3. Amenable case

Now let us assume that L is non-compact and amenable. Let

K be'a maximal compact subgroup and R the radicai af L as



béfure. Since L is amenable, L = KR.

We define a sequence N(J) € J g -1 ) of closed

characteristic subgroups of L as follows:

(-1)

(1) N is the radical R,

(o)

(2> N'®’ is the nil-radical, i.e., the maximal connected

normal nilpotent subgrhup, of L,
€Jj)

(i-1) -1
]

(3) N is the commutator subgroup [N N ] of

NG e s 0.

It may not be so obvious that N(j)’s are closed when § > 0; in
general, the commutator subgroup of a Lie group may not be
closed. This will be observed later, and we continue the
construction. There exists an integer k such that N'K) = (1},

Consider the following sequence:

L=k 5 k@ 5 kv ... 5 kv = k.,

There exists an integer i ( 2 0 ) such that

PN CS DRNVNI(C BN £ D IS O

because L is non—-compact. Let us write M = N(l—l) and N =

N(i). We introduce a flat L-invariant Riemannian metric on
KN\L .

Let us study the action of L on KN\L defined by right
multiplication. An element ky of KM = L (ke€K, yeM) acts on an

element KNx (xe€M) of KN\L as follows:

KNx« (ky) KNxky

1

1]

KN(Kk “xk)y.



Note that we have [M,M] C N; we identify the coset space KN\L
‘with the simply—connected abelian Lie group (WIMIN\M = R™

(m>0). Now the induced action of L on R™ is:

1

(KNMINx -+ (ky) = (KOMIN(k™ “xk)y.

The following are easily observed: (1) this actiaon, when
restricted to K, defines a homamorphism a: K » Aut( R™ ) énd
its image a(K) lies in the orthogonal group O(m) with respect
to some inner product of R™, and (2) if k € KM, then (KMINx-k

1 1 -1

= (KOMINKk *xk = (KMNCk “xkx )x = (KM)Nx for x € M, and so

KM acts trivially on R™. Let 8: M » (KWIN\M denote the
natural projection. UWe now define abmap $: L = KM -

a (K)x CCKOMNAMD € 0(mxR™ = I(R™ by sending ky (keK, yeM) to
(@(k),B(y)) € O(mR™. This is a well-defined hnhnmurphism.
Here x’s denote the obvious semi-direct products. Let I' denote
the image of G by & in IL(R™. |
It remains to ﬁbserve that N(j)’s are closed and that I' is

a discrete subgroup of IR™. To do this we use the following

lemma:

Lemma 4. f N is a connected nilpotent Lie group and H is a

discrete cocompact subgroup of N, then the commutator subgroup

CN,NJ is closed in N and HILN,NJ is cocompact in [N,N1.

Proof: This is well—=known if N is simply—connected, sao
consider the universal cover p:U - N of N; it can'be identified

with the natural projection U - U/, where I is the kernel of
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p. To see that [N,NJ is closed in N, it suffices to show that

1

N/CN,N] is Hausdorff. As p ~(CN,NI) = NCU,U], we have

homeomorphisms:

- N/CN,NJ = UusnLu,Uul

n

(Ustu,udd/qLy,uvl1/tu,udd.

Here U/LU,U] is a Lie group, because U is simply-connected and
hence its commutator subgroup CU,U] is closed. Note that the
preimage p—l(H) of H is discrete and cocompact in U. Since U
is simply-connected, p—l(H)ﬂEU,UJ is cocompact in [U,U3. |
Therefore, the image p L (H)LU,UI/CU,UT of p L(H) by projection:

U » U/LU,U] is discrete. As T C p 1

(H), NCU,U1/CU,UT is also
discrete and hence clased in U/[U,U]. Therefore
(u/CLU,U/aMLCU,V1/CU,UT) is Hausdorff. This proves the first
statement as observed above.

Since we have homeomarphisms:

IN,NI/HNIN,NT = 1CU,Ul/p” L dMacy, U3
cu,ulsp L aneu,us,

114

the second statement is obvious. [

Now we prove

¢jd .

*s are closed subgroups of L, and T is a

Lemma 5. N

crystallographic subgroup of IR™.

(-1) (0)

Proof: If GNR is cocompact in R=N , then GMNN is a

(0)

discrete cocompact subgroup of N and we can apply lemma 4 to
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prove that N(J)’S‘are closed for j21. Unfortunately, GNR may
not be cocompact in R, in general. To remedy this situation we
introduce a quotient Lie group L’ of L as in the pPrevigus
section. We may assume that L is connected. We have Levi
decomposition L = SR, where S ié a connected semi-simple (and
hence compact) subgroup, R is the radical as above, and the
intersection SR is finite. Let 0:S = Aut(R) denote the action
of S on R. The identity component (ker 0)0 of ker o is a
connected compact normal subgroup of L, because it commutes
with elements of R. In particular, (ker 0)0 C ker a € K. Let
nil - L/(kgr a)o be the natural map. Now define: L’=L/(ker
0)0, G’ ==(G), KW=r(K), S’=r(S), R*=r(R). Then G’ is a lattice
of L’, K* is a maximal cnméact subgroup of L’, S’ is a
semi-simple subgroup of L’, R’ is the radical of L’, and the
action o’:S’” =2 Aut(R’) of S on R’ is almost faithful, i.e.,
ker o is finite.

(j)

Let us define a sequence N’ (j 2 1) of characteristic

subgroups of L’ by:
(-1

(1) N = R’
2> N9 = the nil-radical of L’
3 NG = e GTD e Gy e s g,

»then G*MR’ and G’ﬂN'(O) are cocompact in R’ and N’(O)

respectively. By successively using lemma 4, we know that all

(J)’s are closed. Note that #zIR: R-> R’ is a Finite;covering

()

N’

map; this implies that N
1 (J)

is the identity component of

(rIR) (N’ ) -for each j. Therefore N(J)’s are closed in L.



- Next, we show that I' is a discrete cocompact subgroup of

I@®R™ . Note that we have

(-1)_ (0)

L, - K’N’ K!N’ = .o =K’N’(i_1)# K,N’(i)

for the same i and that K'N'\K’M’ = KN\KM, where M = N» (1710
No= N e Y2 s cocompact in N9 for all j. In
particular G’MMM’ is cocompact in M*. So the image of G’ in
M*\L* is discrete; furthermore, it is finite, because M’\L’ is

compact. Looking at the diagram:

S —— > Finite
N N
2 ey ———— L > 27 oot
R =
Vv Vv v
M — > L > ML
U U

G*? ———— > finite

we know that Gﬁx_l(ﬂ’) has a finite index in G. So it
suffices to show that the image @(Grh—l(ﬂ’)) is a discrete
cocompact subgroup of IR™ . As ker ¢ C ker «, & sends
elements in z_l(ﬂ’) = (ker U)OH to elements in R™ € I®R™ . Now
consider the following commutative diagram:

L > 0(m)xR™
g e

g tary ¢ Tl y=cker 0) M —> R™=(KOM\M

0]

- 11 -
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.4 ' (IMy

Y Vv B X v
G’nM’ c M’ ; > (KM OIN\M?

where &’ is the natural map and (IM), is the map induced by
the restriction of = to M, zIM: M= M. KM and KM’ are
maximal compact subgroups of M and M, respectiveiy, and = (KM
= K'(M*; therefore, I Ly = kM. Using this, it is

Lok A )N®Y = (KOMON.  Therefare

easily verified that (zlIM)~
(1M, is an isomorphism. Since (G’MM XN’ =G’ N’ is cocompact.
in N*, (G’MM"OHNCK’ MM’ IN’ _is cocompact in (K’MMIN’; so
$*(G’MM*) is a discrete cocompact subgroup of (KM IN’\M’.
Therefore @(er‘1<n’>> is'a discrete cocompact subgroup of R™

(and hence in I@®RM). ‘This .completes the proof of lemma 5. O

Thus K\L/G » KN\L/G is a desired Seifert fibration as
observed in the first section. This cdmpletes/the proof of

theorem 2.

Remark. A fiber of the Seifert fibration above has the form

K\NKNxG/G, and is homeomorphic to

-1 1 1

(x "Kx)\(x "KNx)/(x "KNx NG).
If G is a lattice of L (which is automatically uniform), thén

x YKNx N G is a uniform lattice of x KNx.

§4. A rational computation of Wall’s L-groups
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Let L be an amenable Lie group with finitely many
companents, K a maximal compact subgroup of L, and G a uniform
lattice of L. Such a discrete group G is virtually po]y—cyc]ic/
[61. Conversely, any virtually poly-cyclic group can be
embedded discretely and cocompactly in some amenable Lie group
[1]. In this section we compute rationally the L-groups of G
in terms of certain generalized homology of K\L/G.

| K\L is diffeomorphic to some euclidean space R" and the
isotropy subgroup Gy_= x—le NG of G at y=Kx (xelL) is finite.
The action oF‘G on R" is free if G is torsiaon—free; in general,
R"/G is an orbifold, which is Seifert fibered over some flat
orbifold as observed in the previous section.

Let WG be a contractible free G-complex, and p denote the
projection: (R"xWG) /G - RnZG, where G acts on R™xUWG diagonally.
The preimage p—l(EyJ) of an orbit Cyl € R"/G by p is
homeomarphic to UG/Gy, and p is a sort of Seifert fibration.
(It is called a "stratified system of fibrations" in [73.)

Let L™ (G) denote the limit of Ranicki’s lower L;groups
L97@6) £1031. Modulo 2-torsian, it coincides with Wall’s
surgery obstruction group. We have a functor L™ (=) from the
category of spaces to the category of Q-spectra such that the
homotopy group of L™ (X) is equal to L (x,X). Applying L™ (=)
to each fiber of p, we obtain a sheaf of spectra, denoted
L™(p). F. Quinn defines the homology group He (R"/G;L™" (p)) of
R"/G with coefficients L™ (p). See [7], [101. The following

is a rational computation of L:a(G) in terms of this homology.

- 13 -
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Theorem 6. Let G be as above, then there is a natural

isomorphism

He (RM/G3L 7 (p))0ZL1/21 = L, (G)®Z[1/21..

The map is induced by the following map between stratified

systems of fibrations.

(R"xWG) /G id. > (R"xWG) /G
P
\" ‘ AV
R"/G —>  pt.

Note that (RPxWG)/G

BG is a classifying space for G and that

He (Pt 3L (BGpt.)) = Ly (6) [103.

It is to be noted that theorem 6 says that the L (p)
coefficient homology of R"/G is independent (modulo 2 torsion)
of the action of G on R". It is conceivable that the orbifold

R"/G has a certain strong rigidity.

Proaf of theorem 6. The proof is by induction on the dimension
n of K\NL. Let q:Rn/G +‘Rm/r denote the Seifert fibration

constructed in §3. Modulo 2-torsion, we have

He R"/Gs L (p))

-1

e

H, R™/T3 U Hea sl prlq tew))

UERm/F

e

H*mﬁ¢;uum”(mpf1wn>'

- 14 —
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= He R™T; L (ap))

by induction hypothesis; where H denote the hamology theory
spectrum Cibid.J. We can prove that H*(Rm/r; L_m(qp))GZEI/ZJ
is ‘naturally isomorphic to Ly (G) using the proof of the main
theorem of [Cibid.J with only some obvious modifications, and

this completes the proof of theorem 6. [

Corollary 7. (Novikov Caonjecture) Let G be as above, then

the assembly map

Hy (BG; L (1)) = Lo (6

is rationally split injective.
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