<table>
<thead>
<tr>
<th>Title</th>
<th>LATTICES OF A LIE GROUP AND SEIFERT FIBRATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Yamasaki, Masayuki</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (1987), 633: 132-147</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1987-10</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/100058</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>
LATTICES OF A LIE GROUP AND SEIFERT FIBRATIONS

Masayuki Yamasaki

§1. Introduction

Let L be a Lie group with finitely many components, K a maximal compact subgroup of L, and S a connected closed normal subgroup of L. Then KS is closed, and we have a fiber bundle

$$K\backslash KS \rightarrow K\backslash L \rightarrow KS\backslash L.$$

L acts on $K\backslash L$ by right multiplication. L acts also on $KS\backslash L$ by right multiplication; let N denote the kernel of this action, i.e., $N = \{ g \in L; KSxg = KSx \text{ for all } x \in L \}$. The action of N on $K\backslash L$ leaves all fibers invariant; in other words, we have a family of right N-spaces parametrized over $KS\backslash L$.

Lemma 1. The right N-spaces $K\backslash KSx$ ($x \in L$) are equivalent.

Proof. Since K is compact, $K\backslash L$ has an L-invariant Riemannian metric. Fix such a Riemannian metric. Pick two distinct fibers $K\backslash KSx$ and $K\backslash KSy$ ($x, y \in L$). It suffices to construct an N-equivariant diffeomorphism from $K\backslash KSx$ onto $K\backslash KSy$ when they are sufficiently close to each other, because $KS\backslash L$ is connected.
Fix a point p of $\mathbb{K}\backslash KSx$ and let d be the distance between p and $\mathbb{K}\backslash KSy$. $\mathbb{K}\backslash L$ is complete and $\mathbb{K}\backslash KSy$ is closed; therefore, d is positive and can be achieved as the length of a geodesic γ connecting p and a point q of $\mathbb{K}\backslash KSy$. S is contained in N and acts transitively on each fiber. The action of an element s of S sends γ to a geodesic $\gamma \cdot s$ of the same length d connecting $p \cdot s$ and $q \cdot s$. Thus the distance from a point of $\mathbb{K}\backslash KSx$ to $\mathbb{K}\backslash KSy$ is independent of the choice of the point, and γ is one of the shortest geodesics connecting $\mathbb{K}\backslash KSx$ and $\mathbb{K}\backslash KSy$. Therefore γ is perpendicular to $\mathbb{K}\backslash KSx$ at p. Let $(T_p(\mathbb{K}\backslash KSx))^\perp$ denote the orthogonal complement of the tangent space $T_p(\mathbb{K}\backslash KSx)$ of $\mathbb{K}\backslash KSx$ at p in the tangent space of $\mathbb{K}\backslash L$ at p. As the exponential map Exp is a diffeomorphism near the origin, any fiber $\mathbb{K}\backslash KSz$ that meets $\text{Exp}(V)$ meets $\text{Exp}(V)$ exactly once, where V is a sufficiently small neighborhood in $(T_p(\mathbb{K}\backslash KSx))^\perp$ of the origin. This implies that γ is the unique geodesic of length d connecting p and $\mathbb{K}\backslash KSy$, as long as $\mathbb{K}\backslash KSy$ is sufficiently close to $\mathbb{K}\backslash KSx$. Let us suppose that this is the case. Then the correspondence $p \cdot s \leftrightarrow q \cdot s$ ($s \in S$) defines a diffeomorphism $\mathbb{K}\backslash KSx \to \mathbb{K}\backslash KSy$, which is obviously N-equivariant because it sends a point in $\mathbb{K}\backslash KSx$ to the unique point closest to it in $\mathbb{K}\backslash KSy$ and N acts on $\mathbb{K}\backslash L$ by isometries. □

Remark. The N-equivariant diffeomorphism above defines a local trivialization of the fiber bundle $\mathbb{K}\backslash L \to KS\backslash L$ so that the action of N on $\mathbb{K}\backslash L$ is locally a product of the action of N on a fiber and the action of a trivial group on the base.

If G is a lattice of L, the action of L on $\mathbb{K}\backslash L$ restricts
to an action of G on $K \backslash L$. $H = G \cap N$ is a normal subgroup of G which leaves the fibers invariant. By lemma 1, we have a fiber bundle:

$$K \backslash KS/H \to K \backslash L/H \to KS/L.$$

The quotient group $\Gamma = G/H$ acts on $K \backslash L/H$ and KS/L such that $(K \backslash L/H)/\Gamma = K \backslash L/G$ and $(K \backslash S/L)/\Gamma = KS/L/G$; the fiber bundle map induces a map:

$$q: K \backslash L/G \to (KS \backslash L)/\Gamma.$$

Note that $KS \backslash L$ can be naturally identified with $(S \backslash KS) \setminus (S \backslash L)$, which has an $(S \backslash L)$-invariant (and hence L-invariant) Riemannian metric. Thus Γ can be thought of as a subgroup of the group $I(KS \backslash L)$ of all the isometries of $KS \backslash L$ with respect to this Riemannian metric.

Suppose that Γ is discrete in $I(KS \backslash L)$. Then the isotropy subgroup Γ_v of Γ at $v \in KS \backslash L$ is finite for each v, and the inverse image $q^{-1}([v])$ of the orbit $[v] \in (KS \backslash L)/\Gamma$ is $((K \backslash KSx)/H)/\Gamma_v$, where $v = KSx (x \in L)$. Thus a "fiber" of q is homeomorphic to a quotient of the "general fiber" $K \backslash KS/H$ by an action of a finite group; i.e., q is a Seifert fibration [2].

In this article, we will prove the following structure theorem using a suitable closed connected normal subgroup S.

Theorem 2. Let L be a non-compact Lie group with finitely many components, K a maximal compact subgroup of L, G a lattice of L. Then there is an orbifold Seifert fibration
\[K\backslash L/G \to \Omega^m, \]

where \(\Omega^m \) is a Riemannian orbifold of dimension \(m > 0 \) and of non-positive sectional curvature. If \(L \) is amenable, \(\Omega^m \) can be chosen to be flat.

The proof will occupy the following two sections. Some special cases of theorem 2 have been known; see Farrell and Hsiang [3, 4] and Quinn [8]. In §4, we will rationally compute the Wall groups of virtually poly-cyclic groups in terms of certain homology theory using the Seifert fibration.

§2. Non-amenable case

Recall that a Lie group \(L \) with finitely many components is amenable if and only if \(L/R \) is compact, where \(R \) denotes the radical (= the unique maximal connected normal solvable subgroup) of \(L \). See Milnor [6]. In this section we handle the case when \(L \) is not amenable. We use \(R \) as \(S \), following [4]; i.e., we are going to show that

\[K\backslash L/G \to KR\backslash L/G \]

is a Seifert fibration with the desired property. As in the previous section, identify \(KR\backslash L \) with \((R\backslash KR)\backslash(R\backslash L) = R^m \) (\(m > 0 \)). \(R\backslash L \) is a non-compact semi-simple Lie group, and \(R\backslash KR \) is a maximal compact subgroup of \(R\backslash L \). Using the Cartan decomposition and the Killing form, one can introduce an
(R\L)-invariant (and hence L-invariant) Riemannian metric g on \(R^m \) with non-positive sectional curvature. In fact, any (R\L)-invariant Riemannian metric on \(R^m \) has non-positive sectional curvature. See Helgason [5]. Thus we have a homomorphism \(\Phi: L \to I(R^m, g) \). Let \(\Gamma \) denote the image \(\Phi(G) \) of \(G \). To prove the theorem, it suffices to show that \(\Gamma \) is discrete in \(I(R^m, g) \). Let \(\tau \) denote the natural projection \(L \to R\backslash L \). If the image \(\tau(G) \) of \(G \) in \(R\backslash L \) is discrete, then \(\Gamma \) is obviously discrete. Unfortunately \(\tau(G) \) may not be discrete in general. We remedy this situation as follows.

Let \(L_0 \) denote the identity component of \(L \). \(G\backslash L_0 \) is a subgroup of \(G \) with finite index. Therefore it suffices to show that \(\Phi(G\backslash L_0) \) is discrete in \(I(R^m, g) \). As \((R\backslash(G\backslash L_0)R)\backslash(R\backslash L_0) \) can be naturally identified with \(R^m \), we may assume from the beginning that \(L \) is connected.

Now there is a semi-simple Lie subgroup \(S \) of \(L \) such that \(L = SR \) and such that \(S\cap R \) is discrete (Levi decomposition). Let \(\sigma: S \to \text{Aut}(R) \) denote the action of \(S \) on \(R \). A sufficient condition for \(\tau(G) \) to be discrete in \(R\backslash L \) is that the identity component \((\ker \sigma)_0 \) of the kernel of \(\sigma \) has no compact factors (Raghunathan[9], p.150). Let \(C \) denote the unique maximal compact normal subgroups of \((\ker \sigma)_0 \). It is a characteristic subgroup of \((\ker \sigma)_0 \), and hence it is normal in \(\ker \sigma \) and in \(S \). On the other hand, \(C \) commutes with elements of \(R \). Therefore \(C \) is normal in \(L \). Let \(\pi: L \to L/C \) denote the natural projection, and let \(L' = \pi(L), S' = \pi(S), R' = \pi(R), G' = \pi(G), K' = \pi(K) \). Then \(S \) is semi-simple, \(R' \) is the radical of \(L' \), \(G' \) is a lattice of \(L' \),

- 5 -
and K' is a maximal compact subgroup of L'. Let $\sigma':S' \to \text{Aut}R'$ denote the action of S' on R'. Then it is easily observed that $\ker \sigma' = (\ker \sigma)/C$, since $C\cap R$ is finite. So the identity component of $\ker \sigma'$ has no compact factors, and this implies that the image G'' of G' in $R'\setminus L'$ is discrete. Thus the action of G on R^m factors through a properly discontinuous action of G'' on $K'R'\setminus L = KR\setminus L$. Therefore, Γ is discrete in $I(R^m, g)$. This completes the proof of theorem 2 when L is not amenable.

Remark. Let $q:K\setminus L/G \to KR\setminus L/G$ be the Seifert fibration constructed above. Then the "fiber" $q^{-1}(KR\times G)$ over the point $KR\times G \subset KR\setminus L/G \ (x \in L)$ is homeomorphic to

$$(x^{-1}Kx)\setminus (x^{-1}KRx)/(x^{-1}KRx \cap G).$$

It is easily observed that $x^{-1}KRx \cap G$ is a uniform lattice (= discrete cocompact subgroup) of $x^{-1}KRx$. In particular, we have

Corollary 3. Let L be a Lie group with finitely many components, K a maximal compact subgroup of L, R the radical of L, and G a lattice of L. Then $KR \cap G$ is a uniform lattice of KR.

§3. Amenable case

Now let us assume that L is non-compact and amenable. Let K be a maximal compact subgroup and R the radical of L as
before. Since \(L \) is amenable, \(L = KR \).

We define a sequence \(N^{(j)} \) \((j \geq -1) \) of closed characteristic subgroups of \(L \) as follows:

1. \(N^{(-1)} \) is the radical \(R \),
2. \(N^{(0)} \) is the nil-radical, i.e., the maximal connected normal nilpotent subgroup, of \(L \),
3. \(N^{(j)} \) is the commutator subgroup \([N^{(j-1)}, N^{(j-1)}]\) of \(N^{(j-1)} \), for \(j > 0 \).

It may not be so obvious that \(N^{(j)} \)'s are closed when \(j > 0 \); in general, the commutator subgroup of a Lie group may not be closed. This will be observed later, and we continue the construction. There exists an integer \(k \) such that \(N^{(k)} = \{1\} \).

Consider the following sequence:

\[
L = KN^{(-1)} \supset KN^{(0)} \supset KN^{(1)} \supset \ldots \supset KN^{(k)} = K.
\]

There exists an integer \(i \) \((i \geq 0) \) such that

\[
L = KN^{(-1)} = KN^{(0)} = \ldots = KN^{(i-1)} \neq KN^{(i)},
\]

because \(L \) is non-compact. Let us write \(M = N^{(i-1)} \) and \(N = N^{(i)} \). We introduce a flat \(L \)-invariant Riemannian metric on \(KN/L \).

Let us study the action of \(L \) on \(KN/L \) defined by right multiplication. An element \(ky \) of \(KM = L \) \((k \in K, y \in M) \) acts on an element \(KNx \) \((x \in M) \) of \(KN/L \) as follows:

\[
KNx \cdot (ky) = KNxky
= KN(k^{-1}xk)y.
\]
Note that we have $[M,M] \subset N$; we identify the coset space KNL with the simply-connected abelian Lie group $(KMN)N/M = \mathbb{R}^m$ $(m>0)$. Now the induced action of L on \mathbb{R}^m is:

$$(KMN)N \cdot (ky) = (KMN)N(k^{-1}xk)y.$$

The following are easily observed: (1) this action, when restricted to K, defines a homomorphism $\alpha: K \to \text{Aut}(\mathbb{R}^m)$ and its image $\alpha(K)$ lies in the orthogonal group $O(m)$ with respect to some inner product of \mathbb{R}^m, and (2) if $k \in KMN$, then $(KMN)N \cdot k = (KMN)Nk^{-1}xk = (KMN)N(k^{-1}xk^{-1})x = (KMN)Nx$ for $x \in M$, and so KMN acts trivially on \mathbb{R}^m. Let $\beta: M \to (KMN)NM$ denote the natural projection. We now define a map $\Phi: L = KM \to \alpha(K) \ltimes ((KMN)N\backslash M) \subset O(m) \ltimes \mathbb{R}^m = I(\mathbb{R}^m)$ by sending ky ($k \in K$, $y \in M$) to $(\alpha(k), \beta(y)) \in O(m) \ltimes \mathbb{R}^m$. This is a well-defined homomorphism. Here \ltimes's denote the obvious semi-direct products. Let Γ denote the image of G by Φ in $I(\mathbb{R}^m)$.

It remains to observe that $N^{(j)}$'s are closed and that Γ is a discrete subgroup of $I(\mathbb{R}^m)$. To do this we use the following lemma:

Lemma 4. If N is a connected nilpotent Lie group and H is a discrete cocompact subgroup of N, then the commutator subgroup $[N,N]$ is closed in N and $H \cap [N,N]$ is cocompact in $[N,N]$.

Proof: This is well-known if N is simply-connected, so consider the universal cover $p: U \to N$ of N; it can be identified with the natural projection $U \to U/\Pi$, where Π is the kernel of
p. To see that $[N,N]$ is closed in N, it suffices to show that $N/[N,N]$ is Hausdorff. As $p^{-1}(N,N) = \pi[U,U]$, we have homeomorphisms:

$$N/[N,N] \cong U/\pi[U,U]$$

$$\cong (U/[U,U])/(\pi[U,U]/[U,U])$$.

Here $U/[U,U]$ is a Lie group, because U is simply-connected and hence its commutator subgroup $[U,U]$ is closed. Note that the preimage $p^{-1}(H)$ of H is discrete and cocompact in U. Since U is simply-connected, $p^{-1}(H)\cap [U,U]$ is cocompact in $[U,U]$. Therefore, the image $p^{-1}(H)[U,U]/[U,U]$ of $p^{-1}(H)$ by projection: $U \to U/[U,U]$ is discrete. As $\pi \subset p^{-1}(H)$, $\pi[U,U]/[U,U]$ is also discrete and hence closed in $U/[U,U]$. Therefore $(U/[U,U])/(\pi[U,U]/[U,U])$ is Hausdorff. This proves the first statement as observed above.

Since we have homeomorphisms:

$$[N,N]/H\cap [N,N] \cong \pi[U,U]/p^{-1}(H)\cap [U,U]$$

$$\cong [U,U]/p^{-1}(H)\cap [U,U]$$,

the second statement is obvious.

Now we prove

Lemma 5. $N^{(j)}$s are closed subgroups of L, and Γ is a crystallographic subgroup of $I(\mathbb{R}^m)$.

Proof: If $G\cap R$ is cocompact in $R=N^{(-1)}$, then $G\cap N^{(0)}$ is a discrete cocompact subgroup of $N^{(0)}$ and we can apply lemma 4 to
prove that $N^{(j)},$'s are closed for $j \geq 1$. Unfortunately, $G\cap R$ may not be cocompact in R, in general. To remedy this situation we introduce a quotient Lie group L' of L as in the previous section. We may assume that L is connected. We have Levi decomposition $L = SR$, where S is a connected semi-simple (and hence compact) subgroup, R is the radical as above, and the intersection $S \cap R$ is finite. Let $\sigma : S \to \text{Aut}(R)$ denote the action of S on R. The identity component $(\ker \sigma)_0$ of $\ker \sigma$ is a connected compact normal subgroup of L, because it commutes with elements of R. In particular, $(\ker \sigma)_0 \subset \ker \alpha \subset K$. Let $\pi : L \to L/\ker \sigma_0$ be the natural map. Now define: $L' = L/(\ker \sigma)_0$, $G' = \pi(G)$, $K' = \pi(K)$, $S' = \pi(S)$, $R' = \pi(R)$. Then G' is a lattice of L', K' is a maximal compact subgroup of L', S' is a semi-simple subgroup of L', R' is the radical of L', and the action $\sigma' : S' \to \text{Aut}(R')$ of S' on R' is almost faithful, i.e., $\ker \sigma'$ is finite.

Let us define a sequence $N'_{(j)} (j \geq -1)$ of characteristic subgroups of L' by:

1. $N'_{(-1)} = R'$
2. $N'_{(0)} =$ the nil-radical of L'
3. $N'_{(j)} = [N'_{(j-1)}, N'_{(j-1)}]$ for $j \geq 1$,

then $G' \cap R'$ and $G' \cap N'_{(0)}$ are cocompact in R' and $N'_{(0)}$ respectively. By successively using lemma 4, we know that all $N'_{(j)},$'s are closed. Note that $\pi|_R : R \to R'$ is a finite covering map; this implies that $N^{(j)}$ is the identity component of $(\pi|_R)^{-1}(N'_{(j)})$ for each j. Therefore $N^{(j)},$'s are closed in L.

- 10 -
Next, we show that \(\Gamma \) is a discrete cocompact subgroup of \(I(\mathbb{R}^m) \). Note that we have

\[
L' = K'N'^{(-1)} = K'N'(0) = \ldots = K'N'^(i-1) \neq K'N'^(i)
\]

for the same \(i \) and that \(K'N'\backslash K'M' = KN\backslash KM \), where \(M' = N'^(i-1) \), \(N' = N'^(i) \). \(G'\cap N'^{(j)} \) is cocompact in \(N'^{(j)} \) for all \(j \). In particular \(G'\cap M' \) is cocompact in \(M' \). So the image of \(G' \) in \(M'\backslash L' \) is discrete; furthermore, it is finite, because \(M'\backslash L' \) is compact. Looking at the diagram:

\[
\begin{array}{cccccc}
G & \longrightarrow & \text{finite} \\
\cap & \cap & \\
\pi^{-1}(M') & \longrightarrow & L & \longrightarrow & \pi^{-1}(M')\backslash L \\
\downarrow & & \downarrow \pi & \downarrow \cong & \\
M' & \longrightarrow & L' & \longrightarrow & M'\backslash L' \\
\cup & \cup & \\
G' & \longrightarrow & \text{finite}
\end{array}
\]

we know that \(G\pi^{-1}(M') \) has a finite index in \(G \). So it suffices to show that the image \(\Phi(G\pi^{-1}(M')) \) is a discrete cocompact subgroup of \(I(\mathbb{R}^m) \). As \(\ker \sigma \subset \ker \alpha \), \(\Phi \) sends elements in \(\pi^{-1}(M') = (\ker \sigma)_{0}M \) to elements in \(\mathbb{R}^m \subset I(\mathbb{R}^m) \). Now consider the following commutative diagram:

\[
\begin{array}{cccccc}
\Phi & \longrightarrow & O(m)\times \mathbb{R}^m \\
\cap & \cap & \cup & \cup & \\
G\pi^{-1}(M') \subset \pi^{-1}(M') = (\ker \sigma)_{0}M & \Phi & \longrightarrow & \mathbb{R}^m = (K\cap M)\backslash M
\end{array}
\]

- 11 -
where \(\phi' \) is the natural map and \((\pi|M)_* \) is the map induced by the restriction of \(\pi \) to \(M, \pi|M : M \rightarrow M' \). \(K \cap M \) and \(K' \cap M' \) are maximal compact subgroups of \(M \) and \(M' \), respectively, and \(\pi(K \cap M) = K' \cap M' \); therefore, \((\pi|M)^{-1}(K' \cap M') = K \cap M \). Using this, it is easily verified that \((\pi|M)^{-1}((K' \cap M')N') = (K \cap M)N \). Therefore \((\pi|M)_* \) is an isomorphism. Since \((G' \cap M') \cap N = G' \cap N' \) is cocompact in \(N' \), \((G' \cap M') \cap (K' \cap M')N' \) is cocompact in \((K' \cap M')N' \); so \(\phi'(G' \cap M') \) is a discrete cocompact subgroup of \((K' \cap M')N' \cap M' \). Therefore \(\phi'(G' \cap M') \) is a discrete cocompact subgroup of \(\mathbb{R}^m \) (and hence in \(I(\mathbb{R}^m) \)). This completes the proof of lemma 5. \(\square \)

Thus \(K \backslash L/G \rightarrow KN \backslash L/G \) is a desired Seifert fibration as observed in the first section. This completes the proof of theorem 2.

Remark. A fiber of the Seifert fibration above has the form \(K \backslash KN \times G/G \), and is homeomorphic to

\[
(x^{-1}Kx \backslash (x^{-1}KNx))/(x^{-1}KNx \cap G).
\]

If \(G \) is a lattice of \(L \) (which is automatically uniform), then \(x^{-1}KNx \cap G \) is a uniform lattice of \(x^{-1}KNx \).

§4. A rational computation of Wall's L-groups
Let L be an amenable Lie group with finitely many components, K a maximal compact subgroup of L, and G a uniform lattice of L. Such a discrete group G is virtually poly-cyclic [6]. Conversely, any virtually poly-cyclic group can be embedded discretely and cocompactly in some amenable Lie group [1]. In this section we compute rationally the L-groups of G in terms of certain generalized homology of $K\backslash L/G$.

$K\backslash L$ is diffeomorphic to some euclidean space \mathbb{R}^n and the isotropy subgroup $G_v = x^{-1}Kx \cap G$ of G at $v = Kx$ ($x \in L$) is finite. The action of G on \mathbb{R}^n is free if G is torsion-free; in general, \mathbb{R}^n/G is an orbifold, which is Seifert fibered over some flat orbifold as observed in the previous section.

Let WG be a contractible free G-complex, and p denote the projection: $(\mathbb{R}^n \times WG)/G \to \mathbb{R}^n/G$, where G acts on $\mathbb{R}^n \times WG$ diagonally. The preimage $p^{-1}([y])$ of an orbit $[y] \in \mathbb{R}^n/G$ by p is homeomorphic to WG/G_y, and p is a sort of Seifert fibration. (It is called a "stratified system of fibrations" in [7].)

Let $L^{-\omega}(G)$ denote the limit of Ranicki's lower L-groups $L^{(-j)}(\mathbb{Z}G)$ [10]. Modulo 2-torsion, it coincides with Wall's surgery obstruction group. We have a functor $L^{-\omega}(_)$ from the category of spaces to the category of Ω-spectra such that the homotopy group of $L^{-\omega}(X)$ is equal to $L^{-\omega}(\pi_1 X)$. Applying $L^{-\omega}(_)$ to each fiber of p, we obtain a sheaf of spectra, denoted $L^{-\omega}(p)$. F. Quinn defines the homology group $H_*(\mathbb{R}^n/G; L^{-\omega}(p))$ of \mathbb{R}^n/G with coefficients $L^{-\omega}(p)$. See [7], [10]. The following is a rational computation of $L^{-\omega}(G)$ in terms of this homology.
Theorem 6. Let G be as above, then there is a natural isomorphism

$$H_* (\mathbb{R}^n/G; \mathbb{L}^{-\infty}(p)) \otimes \mathbb{Z}[1/2] \to L_*^{-\infty}(G) \otimes \mathbb{Z}[1/2].$$

The map is induced by the following map between stratified systems of fibrations.

$$\begin{array}{ccc}
\mathbb{R}^n/G & \overset{id.}{\longrightarrow} & \mathbb{R}^n/G
\\
\downarrow p & & \downarrow
\\
\mathbb{R}^n/G & \longrightarrow & \text{pt.}
\end{array}$$

Note that $(\mathbb{R}^n \times \mathbb{W}G)/G = BG$ is a classifying space for G and that $H_* (\text{pt.}; \mathbb{L}^{-\infty}(BG \rightarrow \text{pt.})) = L_*^{-\infty}(G)$ [10].

It is to be noted that theorem 6 says that the $\mathbb{L}^{-\infty}(p)$ coefficient homology of \mathbb{R}^n/G is independent (modulo 2 torsion) of the action of G on \mathbb{R}^n. It is conceivable that the orbifold \mathbb{R}^n/G has a certain strong rigidity.

Proof of Theorem 6. The proof is by induction on the dimension n of $K \setminus L$. Let $q: \mathbb{R}^n/G \to \mathbb{R}^m/\Gamma$ denote the Seifert fibration constructed in §3. Modulo 2-torsion, we have

$$H_* (\mathbb{R}^n/G; \mathbb{L}^{-\infty}(p))$$

$$\cong H_* (\mathbb{R}^m/\Gamma; \bigcup_{w \in \mathbb{R}^m/\Gamma} H(q^{-1}(w); \mathbb{L}^{-\infty}(p|q^{-1}(w))))$$

$$\cong H_* (\mathbb{R}^m/\Gamma; \bigcup_{w} L^{-\infty}((qp)^{-1}(w)))$$

- 14 -
\[= H_* (\mathbb{R}^n / G ; L^{-\infty}(q\mathbb{P})) \]

by induction hypothesis, where \(H\) denote the homology theory spectrum [ibid.]. We can prove that \(H_* (\mathbb{R}^n / G ; L^{-\infty}(q\mathbb{P})) \otimes \mathbb{Z}[1/2]\) is naturally isomorphic to \(L^{-\infty}_\mathbb{R}(G)\) using the proof of the main theorem of [ibid.], with only some obvious modifications, and this completes the proof of theorem 6. \(\square\)

Corollary 7. (Novikov Conjecture) Let \(G\) be as above, then the assembly map

\[H_* (BG; L^{-\infty}(1)) \rightarrow L^{-\infty}_\mathbb{R}(G) \]

is rationally split injective.

References

