Review of A. Hatcher & J. Wagoner's paper
'Pseudo-isotopies of compact manifolds' (Part II)

長賴服子 (Teruko Nagase)

Let M^n be a connected compact smooth manifold and $P = P(M, \partial M)$ be the pseudo-isotopy space of M.

The aim of the paper [1] by A. Hatcher & J. Wagoner is the computation of $\pi_0(P)$. As "Part II" of the introduction, we shall explain how the first obstruction $\Sigma \colon \pi_0(P) \longrightarrow \operatorname{Wh}_2(\pi_1 \mathbb{M})$ is constructed.

 $\pi_0(P)$ is replaced by $\pi_1(F,E:p)$, so we start from $\pi_1(F,E:p)$.

Theorem 1. There is a surjection $\Sigma: \pi_1(F, E:p) \longrightarrow Wh_2(\pi_1M)$.

Our target group $\operatorname{Wh}_2(\pi_1 \mathbb{M})$ has another presentation. For simplicity, let $\Lambda = \mathbb{Z}[\pi_1 \mathbb{M}]$ and $G = \pi_1 \mathbb{M}$.

Proposition 0. Wh₂($\pi_1 M$) \cong U(Λ)/U($\pm G$), where U(Λ) = {x \in St(Λ) | π (x) = (a_{pq}), π : St(Λ) \longrightarrow E(Λ) (1) a_{pq} = 0 if qpp</sub> = $\pm g_p$ for some g_p \in G }, (This is a subgroup of St(Λ).) U($\pm G$) = the subgroup of U(Λ), generated by $\underset{Tag}{\text{wpq}}(\pm g) \cdot \underset{Tag}{\text{wpq}}(-1)$ g \in G $\underset{Tag}{\text{Ng}}(\Lambda)$ with p<q, $\Lambda \in \Lambda$.

 $[f_t] \in \pi_1(F,E:p) \quad \text{be a one parameter family of functions}$ $f_t \colon \text{M} \times \text{I} \longrightarrow \text{I,} \quad t \in [0,1], \quad \text{where} \quad f_0 = p \quad \text{:the standard projection}$

and f_1 = f are in E. We make the following deformations, keeping both ends fixed and without changing the homotopy class of $[f_t]$. The geometrical details are complicated so we give only a rough sketch.

<u>lst step.</u> By the stratification theory of the function space F, we can approximate the one parameter family by a generic family. Here the generic family consists of the Morse functions f_t except for finite t, and for finite t, f_t is a function with a birth (or a death) point and some non-degenerate critical points.

2nd step. Choose a one parameter family $\{\eta_t\}$ of gradient like vector fields for $\{f_t\}$.

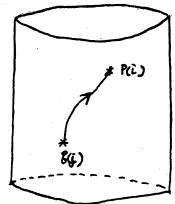
Then we can consider the trajectories.

Let p and q be the two critical points of f_t . If there are no trajectories leading up from p to q (or q to p), we say p and q are independent.

Proposition 1. If p is a birth (or a death) point, then $\{n_t\}$ can be deformed, for which p is independent of all the other critical points.

Next, let p and q be the two non-degenerate critical points of index i and j. The trajectory from q to p is called the i/j-intersection. Using the general position methods, we deform the path $\{\eta_t,f_t\}$, then by the dimensional reason,

there are no i/j-intersections for i<j, and there are only a finite number of i/i-intersections, they are important for us and they are also called "gradient crossings" or "handle additions".

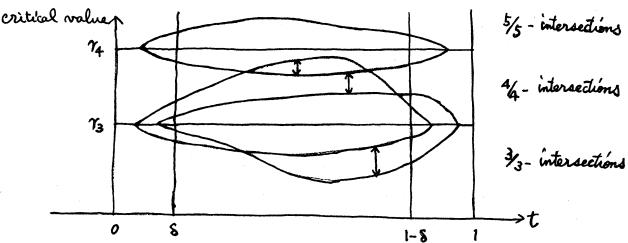


For fixed $\,$ t, there are a finite number of $\,$ i/(i-l)-intersections, they are the incidence points.

3rd step. By the independent trajectory principle, we make $\{\eta_t, f_t\}$ to be an ordered family. That is, for $0 < r_0 < r_1 < \dots r_n < 1$, if p is a degenerate critical point of f_t , of index i, then $f_t(p) = r_i$ and if p is a non-degenerate critical point of f_t , of index i, then $f_t(p) \in [r_{i-1}, r_i]$.

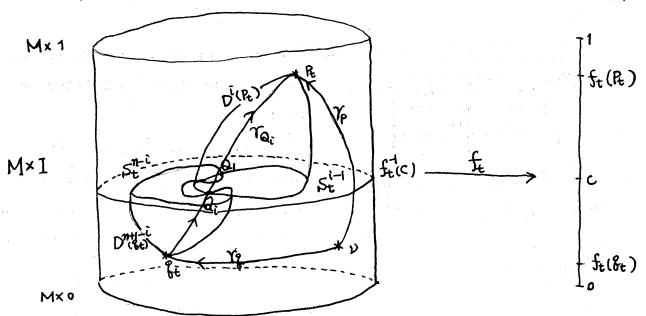
For small $\delta>0$, we make more deformations, so that all the birth points occur in $[0,\delta]$, and all the death points occur in $[1-\delta,1]$, and there are no i/i-intersections in $[0,\delta]\cup[1-\delta,1]$.

For example, the graphic will be:



Let us explain more about the i/i-intersections.

For finite t, there are finitely many i/i-intersections from q_t to $p_t.$ Let $S_t^{n-i} \cap S_t^{i-1} = \{Q_1,Q_2,\dots,Q_k\}$, where S_t^{n-i} is the unstable sphere of q_t and S_t^{i-1} is the stable sphere of p_t , the both are in the middle level surface $f_t^{-1}(c)$, for $f_t(q_t) < c < f_t(p_t)$. Let ν be the base point of M×I, and choose the base paths γ_p and γ_q , and γ_Q be the i/i-intersection. Then the composition $\gamma_p * \gamma_{Q_i}^{-1} * \gamma_q^{-1}$ decides an element in $G = \pi_1 M$.



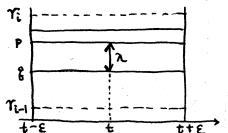
If we give the orientations to $W(p_t)$ and $W(q_t)$, there exists an intersection number $\varepsilon_{Q_i} \in \{\pm 1\}$, and $\Sigma_{i=1}^k \varepsilon_{Q_i} [\gamma_p * \gamma_{Q_i}^{-1} * \gamma_q^{-1}]$ = $\lambda \epsilon \Lambda$. This $\lambda \epsilon \Lambda$ is the algebraic intersection number. We call this set of i/i-intersections "i/i-intersection λ ", and describe on the graphic by a vertical arrow as follows:

If we give p_t & q_t , the indices of Steinberg group, for example, p_t and q_t , then a Steinberg symbol $x_{pq}(\lambda) \in St(\Lambda)$ corresponds to each i/i-intersection λ .

Next, we give the algebraic property of the i/i-intersections. For (n_t,f_t) , where f_t is a Morse function, there is a chain complex, which is defined in the following way.

Let $(V_i; \partial_-V_i, \partial_+V_i) = (f_t^{-1}([r_{i-1}, r_i]), f_t^{-1}(r_{i-1}), f_t^{-1}(r_i))$. Let $p: \widetilde{M \times I} \longrightarrow M \times I$ be the universal cover of $M \times I$ and for any subset $ACM \times I$, let $p^{-1}(A) = \overline{A}$. Choose paths from a fixed base point to each critical point and orient the stable manifold of each critical point as in the s-cobordism theory. We have (C_*, ∂_*) , where $C_i(f_t) = H_i(\overline{V_i}, \overline{\partial_-V_i})$ is a free Λ -module, whose basis are determined by the liftings of the stable disks of index i critical points of f_+ .

Proposition 2. In the graphic, $\epsilon>0$ be small enough so that



there are no other i/i-intersections.

Let $\epsilon_1, \dots, \epsilon_p, \dots, \epsilon_q, \dots$ be the basis of $C_i(f_{t-\epsilon})$ determined by

the stable disks of index i critical points of $f_{t-\epsilon}$, then $\epsilon_1, \ldots, \epsilon_p^{+\lambda \epsilon}_q, \ldots, \epsilon_q^{-\lambda \epsilon}$, are the basis of $C_i(f_{t+\epsilon})$ determined in a similar way.

So there is a transformation of basis $C_{i}(f_{t-\epsilon}) \leftarrow C_{i}(f_{t+\epsilon})$, expressed by the elementary matrix $\pi(x_{pq}(\lambda)) = e_{pq}(\lambda)$.

To treat everything at once, we introduce the standard complex $(\omega,\sigma),$ which is defined in the following way.

For i>0, let C_i be the free left Λ -module over $\{b_i^{\alpha}, z_i^{\beta}\}_{\alpha, \beta \in \mathbb{Z}}$, and C_0 be the free left Λ -module over $\{z_0^{\beta}\}_{\beta \in \mathbb{Z}}$. We call b_i^{α} "the boundary indices" and z_i^{β} "the cycle indices".

Define the boundary operator and the contraction operator

by
$$\omega = \{ \omega_{\mathbf{i}} : C_{\mathbf{i}} \longrightarrow C_{\mathbf{i}-1} \}$$
 $\sigma = \{ \sigma_{\mathbf{i}} : C_{\mathbf{i}} \longrightarrow C_{\mathbf{i}+1} \}$

$$\omega_{\mathbf{i}}(b_{\mathbf{i}}^{\alpha}) = z_{\mathbf{i}-1}^{\alpha} \qquad \sigma_{\mathbf{i}}(b_{\mathbf{i}}^{\alpha}) = 0$$

$$\{ \omega_{\mathbf{i}}(z_{\mathbf{i}}^{\beta}) = 0 \qquad \sigma_{\mathbf{i}}(z_{\mathbf{i}}^{\beta}) = b_{\mathbf{i}+1}^{\beta}.$$

In the graphic, $\{p_1, p_2, \ldots, p_m\}$ be the set of all birth points of $\{n_t, f_t\}$ such that p_i is a birth point of f_{α_i} , of index k_i , where $\alpha_1 < \alpha_2 < \ldots < \alpha_m$. The graphic near time $t = \alpha_i$ looks like: for small $\epsilon > 0$.

Here $b_i(t)$ and $z_i(t)$ are the couple of non-degenerate critical points, born at p_i .

Choose (a) a base path $^{\gamma}{}_{\text{i}}$ from $_{\text{V}}$ to p $_{\text{i}}$ ($_{\text{V}}$ is the base point in M×I.)

- (b) the orientations of $W(b_i(t))$ and $W(z_i(t))$ so that $\partial_i(b_i(t)) = +z_i(t)$
- (c) for b_i(t), some boundary index b_k^{\alpha} and for z_i(t) the corresponding cycle index z_k^{\alpha}.

Then each i/i-intersection λ has a symbol $x_{pq}(\lambda) \in St_1(\Lambda)$, $p,q \in \{b_1^{\alpha},z_1^{\beta}\}_{\alpha,\beta \in \mathbb{Z}}$ $\lambda \in \Lambda$.

For each i, in the graphic read the Steinberg symbols from left to right and multiply and write it down by $x_i \in St_i(\Lambda)$.

The multi-Steinberg word is defined by $x = (x_0, x_1, ..., x_i, ...)$ $\in \bigoplus_{i} St_i(\Lambda).$

 f_{δ} and $f_{1-\delta}$ are the Morse functions, so we have the chain complexes $C_*(f_{\delta})$ and $C_*(f_{1-\delta})$ and the chain transformation between them, because of Proposition 2.

$$C_{\mathbf{i}}(f_{\delta}) \leftarrow \pi(\mathbf{z}_{i}) \qquad C_{\mathbf{i}}(f_{1-\delta})$$

$$\sigma_{i-1} (\downarrow \mathbf{w}_{i}) \qquad S_{i-1}(\downarrow \mathfrak{F}_{i})$$

$$C_{\mathbf{i}-1}(f_{\delta}) \leftarrow \pi(\mathbf{z}_{i-1}) \qquad C_{\mathbf{i}-1}(f_{1-\delta})$$

$$\downarrow \qquad \qquad \downarrow$$

$$\{ \partial_{\mathbf{i}} = \pi(\mathbf{x}_{\mathbf{i}}) \omega_{\mathbf{i}} \pi(\mathbf{x}_{\mathbf{i}-1})^{-1} = \mathbf{x} \omega_{\mathbf{i}} \} = \mathbf{x} \omega$$

$$\{ \delta_{\mathbf{i}-1} = \pi(\mathbf{x}_{\mathbf{i}-1}) \sigma_{\mathbf{i}-1} \pi(\mathbf{x}_{\mathbf{i}})^{-1} = \mathbf{x} \sigma_{\mathbf{i}-1} \} = \mathbf{x} \sigma.$$

After the above choice, we can regard $C_*(f_\delta) = (\omega, \sigma)$, and $C_*(f_{1-\delta}) = x(\omega, \sigma)$. Here is the operation of $x \in \bigoplus_i St_i(\Lambda)$ on (ω, σ) .

As $f \in E$ (i.e. f_1 has no critical points), all the critical points of $f_{1-\delta}$ will be cancelled in some death points.

Proposition 3. In the following graphic, p and q can be cancelled, if and only if, $\partial(base(p)) = \pm g(base(q))$ for some $g \in G$.

Then,
$$(x_{\omega_{\dot{1}}})$$
(basis element) =
$$\begin{cases} \pm g(basis \ element) \\ or \\ 0 \end{cases}$$

As $x(\omega,\sigma)$ is almost the standard complex, by the permutation of the indices of each Steinberg group $\operatorname{St}_{\mathbf{i}}(\Lambda)$, which is realized by some element $u = (u_0, ..., u_i,) \in \bigoplus_{i} W_i(\pm G) \subset \bigoplus_{i} St_i(\Lambda)$, we have the following formula

(*)
$$\left\{ \begin{array}{ll} (ux)\omega_{\mathbf{i}}(b_{\mathbf{i}}^{\alpha}) &= \pm gz_{\mathbf{i}-1}^{\alpha} \\ (ux)\omega_{\mathbf{i}}(z_{\mathbf{i}}^{\beta}) &= 0. \end{array} \right.$$

Like the Whitehead torsion of the chain complex, $(\mathrm{ux})\omega_{\mathrm{ev}} + (\mathrm{ux})\sigma_{\mathrm{ev}} \colon \bigoplus_{\mathbf{i} \geq \mathbf{0}} \ \mathrm{C}_{2\mathbf{i}} \longrightarrow \bigoplus_{\mathbf{i} \geq \mathbf{0}} \ \mathrm{C}_{2\mathbf{i}+\mathbf{1}} \quad \text{is an isomorphism and}$ expressed by the matrix

		$\begin{bmatrix} c_1 \\ b_1^{\alpha} & z_1^{\beta} \end{bmatrix}$	ος bα z s b3 z3	^C ₅ b ₅ z ₅ .	
$^{\text{C}}$	z_0^{β}	δ ₆	0	0	
^C 2	b ^α 2 zβ2	∂₂	82	0	
С4	b ^α 14	0	794	84	
•	•	0	0		
			7		

This matrix is the desired upper trianguler matrix in $\pi(U(\Lambda))$ because of the formula (*) and the contraction formula induced by (*). This matrix is $\pi((\Pi_{\substack{i\geq 0}} u_{2i} \cdot x_{2i})(\Pi_{\substack{i\geq 0}} x_{2i+1}^{-1} \cdot u_{2i+1}^{-1}))$, where $\pi: \bigoplus St_{i}(\Lambda) \longrightarrow \bigoplus E_{i}(\Lambda)$.

We define
$$\Sigma: \Pi_1(F, E:p) \longrightarrow Wh_2(\pi_1 M)$$
 by
$$\Sigma([f_t]) = (\Pi_{i \ge 0} u_{2i} \cdot x_{2i})(\Pi_{i \ge 0} x_{2i+1}^{-1} \cdot u_{2i+1}^{-1})) \mod U(\pm G).$$

Our first obstruction $\Sigma \colon \pi_0(P) \longrightarrow \operatorname{Wh}_2(\pi_1 \mathbb{M})$ is defined by the formula $\Sigma([g]) = \Sigma([\operatorname{path\ from\ } p \ \text{to\ } p \circ g])$ for $g \in P(\mathbb{M})$.

The proof of well-definedness is not easy. We have to consider the two-parameter families, and their generic families have some codimension 2 singulalities (dovetail points).

To show the Σ is surjective, for an element z in $Wh_2(\pi_1 M)$, represented by $\Pi x_{pq}(\lambda) \epsilon K_2(\Lambda)$, we construct a path from p to f, where $f \epsilon E$. The constructions are realized by the embeddings of the standard path models. This is done for dim $M \geq 5$.

The first obstruction describes the i/i-intersections, then the kernel of Σ consists of the one parameter families without i/i-intersections.

Let
$$\mathcal{D}=\{[f]\in\pi_0(E)\geq\pi_0(P)\mid \text{ path from } p \text{ to } f \text{ has}$$
 a graphic like:

<u>Proposition 4.</u> \mathcal{D} is a subgroup of $\pi_0(E)$, for dim $M^n \ge 4$.

Theorem 2. Ker $\Sigma = \mathcal{D}$, for dim $M^n \ge 5$.

The birth and death points are crucial in this theory, but they are tame and easy to treat.

A. Hatcher has defined in [2], the 2nd obstruction for $\pi_0(P)$, $\theta \colon \pi_0(P) \longrightarrow \operatorname{Wh}_1(\pi_1^M \colon \mathbb{Z}_2 \times \pi_2^M)$, which describes the kernel \mathcal{D} . But it has mistakes, those problems are solved by K. Igusa in [7].

References

- [1] A. Hatcher and J. Wagoner: Pseudo-isotopies of compact manifolds, astérisque, 6, 1973, Soc. Math. de France, Paris.
- [2] A. Hatcher: The second obstruction for pseudo-isotopies, astérisque, 6, 1973, Soc. Math. de France, Paris.
- [3] J. Cerf: La stratification naturelle des espace de fonctions différentiables réelles et le théorèm de la pseudo-isotopie, Publ. Math. I.H.E.S. 39(1970).
- [4] J. Milnor: Lecture on the h-cobordism theorem, Princeton Mathematical Notes (1965).
- [5] J. Milnor: Introduction to Algebraic K-theory, Annals Study #72, Princeton University Press.
- [6] M. Kervaire: Le Théorème de Barden-Mazur-Stallings, Comm.

 Math. Helv. 40(1965), p.31-42.
- [7] K. Igusa: What happens to Hatcher and Wagoner's formula for $\pi_0(C(M))$, when the first postnikov invariant of M is nontrivial ?, Springer Lecture Note, 1046.