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" Existence of equivariant h—cobordisms

with given Whitehead torsions

Ak-9L B A AR (hisuho Acki)

In the present paper, we prove an equivariant
version of the existence theorem of an h—cobordism with
a given torsion. Let G be a Lie group acting properly
and smoothly on smooth manifolds W and M "which is a
submanifold of W, and we suppose that M,/G and VW/G
are compact. We note that G, M and V¥ are possibly

non—compact.

Theorem 1 (G-Existence Theorem). LLet G be a Lie

group and M be a G-manifold as above. Suppose that M
satisfies the conditions (1) and (2).
(1> (Codimension 2 3 condition).

1f MHi, DMHig, then

dim MHi, - dim i, nG-MHjgy 2 3

for any pair of components MHiy and MHjg.

2 (Highep dimension condition).

dim Miav/WaHi > 5 for any components MHfa.
Then for each ¢ & WhgM), there exists a
G-h—cobordism (W;M,M’) such that t (W, M) = .

Thé notlons appeared in above theorem will be

defined below in § 2 and § 3.



In (5) S.Illman introduced a general equivariant
simple homotopy theory when G is a compact Lie group.
Furthermore he defined the equivariant Whitehead group

Who(X) of a finite G-CW complex X and the equivariant
Whitehead torsion 1t (f) € Whg(X) of a G-homotopy

equiva}ence f : X > Y between finite G-CW complexes.
The group Whg(X) is defined in a geometric way in
analogy with the geometric definition of the ordinary
Whitehead group. In (4) H.Hauschild gave an algebraic
description of Whg(XD>. To prove the existence theorem
we take advantage of thiis method that it gives the chain
complexes from which the torsion invariants are to be
computed, see § 4. By the analogous-method, S. 1llman
proved that equivariant Whitehead torsion is a
combinatorial invariant in (6). This is impotant to
know since equivariant Whitehead torsion is not a
topological invariant.

In (1), Araki and kawakubo proved an equivariant
version of the s—cobordism theorem when G is a compact
Lie group and M is a compact G-manifold.

Unfortunately the G—s—cobqrdism theorem does not hold in
general, so they need to add some assumptions for the .
theorem. These results hold under our situation, and we
can replace these assumptions with the conditions (1)
and (2) above in the Theorem 1. It follows from the G-s
~cobordism theorem and Theorem 1 that the C—h—éobordism
is unique for a given Whitehead torsion. So we can
classify G-h—cobordisms in terms of the equivariant

Whitehead torsions.
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§ 2. Preliminaries

We denote by Gy the isotropy group of G at
XxEM, i.e., Gy = { g€G | gx = x ). For any isotropy
group Gy, we denote by G the conjugacy class of
Gy in G, and we call it type of x. Since M/G is
compact, there is a only finite number of isotropy
types, as we now prdve:

We prove by induction on the dimention of M.
Suppose that dim M = 0, there is a only finite number
of isotropy types, since a compact O-dimensional
manifold M/G consists of finite number of points.
Next we assume that it holds for the case where the
number of the dimension of M is less than k. Let M
be an arbitrary smooth G-manifold with dimension k
such that M/G is compact. It follows from the slice
theorem that an open tubular neighborhood of any orbit
space is G-diffeomorphic to G Xg,Sy, where S, is a
slice of x. Then we have an open covering of M
{ G)(GXSX }xe.M’ and an open covering of M,/G;
.{( GXG)‘SX > /G Yxe M- Since M/G is compact we can .

choose a fihite number of x € M such that

{C G X, Sy Y /G ) is also an open covering of M/G.



So it is enough to show that there is an only finite
number of isotropy types appearing in G)<GXSX; We now
dencte

v o= GXG)(SX'
The isotropy group of G at (g,v) & » is of form as
follows,

Geg,vd) = g Gy g™l
Sihce Gx acts Sy linearly, we have that

Gy = Gty
for any t&E0® e R , i. e.,

Geg,vd = Gqg, tvd»

for any t&E0) e IR . As is well known, there is a G-
invariant Riemannian metric on %, see (8). LLet SCw»)
be a unit sphere bundle. Obviously we have that

{ type appearing in v }
= (vtype appearing in SC») } U ( Gy ).
SC») is a k-1 dimensional smdoth G-manifold. Thus we
have shown that there is a finite number of isotropy
types appearing in S(w»). It follows the result.
Then we denote
(G | xeM ) = ((H, Hy), « -+, (HY.
It is possible to arrange ((H{d) in such an order that
H{d> D (Hj) implies i<j, where H{) > (Hj) means
that a conjugate of Hj is contained in Hj.
Next we recall the definition of so called the
Kawakubo filtration of (G,M), M =My DO Mg D = DM,
in (2), which consists of G-manifolds with corners such

that



(G | xEeM)={HP, Hysepd, -, HY
as follows. We may identify the equivariant nﬁrﬁal
bundle vi of MHD g My with an open tubular
neighborhood of M) in Mi and impose a G-invariant
Riemannian metric on » 1, see (6). Concerning the
metric on v 1, we set o |
Mg = M- 3 D),
where 31(5) stands for the open disk bundle of
radius ¢ in % 7. Note that
{(Gy) | xE Mg} = ((Hod, (H3), =+, (Hpd).
Suppose that we get a filtration f =My D Mg D> == ,DMi
of M such that |
(G | xEM=tMHP, Hijwp), =, HY.
We may identify the equivariant normal bundle v ; of
MiHD  in M; with an open tubular neighborhood of
M;MHD in M; and impose a G-invariant Riemannian
metric on % ;. Concerning the metric on v i, we setl
Mi+; = Mj— % ; (D).
Note that
(G | xeMjsp) = {(Hyj+), Hi+d), - (Hpd).
This completes the inductive construction.
Putting Xj; = G\Mj;, we have a filtration
X =X12X9D * DXy of X.
Let H; be an isotropy group appearing in M. Ve
denote |
MHI> = ( xeM |Gy = Hi )
MAHD = xeM| (G = HDY = G-M<HI>

MH1 = { xeM|hx = x for any h&H; }.



Let MHi= 4%bﬂﬁx be the decompositions of MH: into
connected components.. We denote by WH; the quotient
group of the normalizer of H; in G by Hj. The WH;
—action on MHU induces the WHi—action on the set of
connected components of mH1 Taking WH; orbits of
the induced action, we get a decomposition
MO = AL wH; -MHi
as a tqpological sum of WH;-subspaces, where MHQI’S
are connected components of MHL. We denote
WoHi = (wewH; | w-Mti, < MHC)
which is a closed subgroup of WH;. Then we put
Mj o = M;NnM<Hi>
Xiq = X;NXHO 0 where xHO = vHO g,
It is easy to see that
x (Hid o« = M<Hi>a /W Hy,
Xia = Mjq /VWeoHj.
We now replace M by W, and consider two conditions.
(1>’ (Codimension > 3 condition).
1t wHi, D wHig, then
dim wHi, - dim wHiy NnG-wHjg) > 3
for any pair of components WHQI and WHfB.
(2>’ (Higher dimension condition).
dim W; o /WyuH; 2 6 fo‘r 'any components VJH{a.
Note that H; is a maximal isotropy group appearing in
Wi If W satisfies the conditions (1)’ and (2)’, the
G—-s—cobordism theorem holds. Furthermore an equivariant
version of the s—cobordism theorem holds under our

situations that G is a Lie group acting properly and



smoothly on smooth manifolds M and W, and that M/G
and W,/G  are compact. .

(W; M, M) is called a smooth G-h—cobordism, if W

is a-G-manifold with boundary oW = MIM ({disjoint
union) and the inclusion maps

i: M W and i': M - W
are G-homotopy equivalences. Then we consider other

conditions.

(1) (Codimension 2 3 .condition).
1f MHi, o MHig, then
dim MHi, - dim Hi, ne-Mig) > 3
for any pair of cbmponents MHﬂ, and MHi@.

(2) (Higher dimension condition).

dim Mj o /WoH; 2 5 for any components MHL, .

It should be noted that a G-h—cobordism W;M, M’

satisfies the conditions (1)’ and (2)* if and only if it

satisfies the conditions (1) and (2).

§ 3. Equivariant Whitehead torsions

In.this section we first define the equivariant

Whitehead group Whg M for a smooth G-manifold M and

try to decompose WhgM), refer to (3).
For a compact Lie subgroup H of G, (G/H xDn
is a G—-space together with a proper G—action.

(G/B) XD is called an n=G—cell, and (Hm is called

(isotropy) type of the n—G-cell Q}/?{X)Dn; Here DI



is a unit n-disk of RN, and G acts D" trivialy.
By a finite relative G-CW complex (V,M>, we shall mean
a G—space togéther with a proper G—action such that V
is obtained from a smooth G-manifold M by attaching a
finite number of G—cells. We now consider the set,’
Ag D = (W, M | (V,M s a finite relative G-CW
complex, and M is a G~deformation
retract of V }.
Let Vi, M and (Vo,M) be elements of AgOD. If
there is a formal G-deformation from Vy; to V2\ we
write V1/QV2. This is clearly an equivalence relation
and we let T (V,M) denote the equivalence class of
(V,M). An addition of equivalence classes is defined by
setting
T (Vi,M + 1 (Vo,M) = ¢ (VlLAVZ, M
where VILLVZ is the disjoint union of V; and Vg
identified by the identity map on M.

The equivariant Whitehead group for a smooth G-
manifold M is defined to be the set of equivalence
classes with the given addition and is denoted WhgM);

Whg M) = Ac M /~ ,

and a element T (V,M) of WhgOD is called the
Whitehead G—torsion of vV, M.

If f : My = Mg is a G-map, we define

fg ¢ WhgMypd - Whg M9)
‘ W w
T (V,M)) = ¢ (VL{sz,Mz).

It is known that fyg = g if f, g : My = Mo are G-

homotopic, refer to (3). et r : V - M be the G-



retraction and M. be the mapping qylinder of r. Ve
put

M, = M/~
where ~ means an equivalence relation that MXT and
M ?gentified by the projgction map p‘: MXI - M
Then we have

-1 V,MpP =g ot MV,
refer to (3. So WhgM is an abelian group.

Now we review an algebraic decompo#ition,of
Whg (M. We have a Lie group I'j, for each WHi,,
satisfying the following short exact sequence;

1 » zyiy,) > Ty, - W H; - I

Then we have that

Whe M = LL Whe M, (H;))
(Hj)

= Whyy - (MHC, (e)) (see (4))
Hjd WHi

= 1 Whyy - (WH; -MHO | {e))
Hp, o WH; i (3

= 1l Wh -MHE , (e}
A, o HeleTHa

= 1l Wh .. (MHC |, (e})
(Hp, o Llie @
)

= 1l
(

1 Wha1g(mg(T o2, (see (1))
i, @

where
Whg M, (H{d) = (¢ (V,M) & Whg M I(Gx)=(Hi)

for any x&€V-M}.



§ 4. Proof of G-Existence theorem

At first we will show that

W Who1,CzgCT 3,0 = L WhyjoCmqXs 50D,
Hp, a alg 0 ia Hp ) o alg 1 ia
Lemma 2. If M satisfies the codimension = 3

condition (1) above, then there is a natural

isomorphism,

a 1 Xj o2 2 mglTl ).

Proof. It follows from the codimension 2 3
condition (1), and definition of Mj o that
g MHL ) = = <H> ) = nl(Mi‘a).
Since I, acts freely on the universal covering space
Mi, of M;j, and since Wy H; acts freely on Mj,,
we have a fibration | |

MH

w 2 Mjg P Tig
i

MHa D Mj, e VWoHj
1
Xiq

From tHe homotopy exact sequence

5w M )2 2 (T g \Hjg) 2 np(Ta) > mglM 0
u | u | u
{1} w1 Xy o? {0}

follows the result.
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Thus we can write that ¢ = T 3¢ for

cHi)J,’La'
Tia € Whalelmj&Xj 2.

NoQ, each vMia isgarprincipal. W(xHi—bundle over
Xi - Let V 'be a W, ,H;-CW . complex such that
TV, My o) € Why,Hy Mj o {ed). Note that a fixed point.
free formal Wy H;—-deformation of -the total space
(V,Mj o) induces a unique formal deformation of
VW H, My o /WeHD = (K, Xy 4> and vice versa. It
'follows that the projection mép Mi(i’—9 X @ -induces
an isomorphism

¢ :WhyoHMj ¢+ {€3) = Whg Xj 40 = Wha1g(m 1 Xy ).

Then we have

Lemma 3. The inclusion map n:Mjo MHﬁx
induces an isomorphism
7%: WhyoHy Mj o» &)) = Why g My, (e))

for any a and i, making the following diagram commute

7 -
Whyony Mj o » () =7 Why_ gy iy, ()
1 ¢ L ¢

Whapg(my(Xj o)) B Whyyg(mg(T g2

Here @& s« 1is an isomorphism induced by the isomorphism
8 obtained in Lemma 2 and ¢ is appeared in

algebraic decomposition, in (2).

Proof. For any t (V,Mj o) € Why,y;Mjq, (e)), the

image © ¢ Ct (V,M{ 4)) is nothing but the torsion ¢ (O

11
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of the chain complex C = (Cj};

Il

Cjy = H; RIUX; o, KI"TUR;

Hﬂ_( 1 7:1(X1 ) XEJkl,( 1J’L---nr%(xi «) XDEID

Z((n Xy 0 ®ledy,edg, ,ed

where K is the universal covering of K, K is the
underlying topological space of the j—skeleton of R,
EJ is a j-cell of K - Xi(x’ and m .is the number of j-
cells which are contained in K - X; 4.

On' the other hand
PxCt (VM o)) = o (vuUMily Moy e why yo oy, (),
Hence ¢ . 7% (1t (V,M; 4)) is the torsion ¢ (C’) of
the chain complex -C* = {C’;}; A

c’; = HyWiudHi, , ¥i—lufHi»

= R Ty i o XEIL,

Sy=1, li. T X3EH M

k=1, ==, m
‘=2(n0<ria>)®{8i1, ---,EJ‘m>,

where Vjv is ihe underlying topolog&cal Space of the

WyHi—~i-skeleton of V, jof) is a j—cell of VjLJﬁHQ,

which is a 1lift of Ej, and m is the number of

WoH;—J-cells which are contained in V - Mj,, see (2).

It suffices to prove that Oxt (CO = 7 (C’). Put

©C" Hy VI UM; 4, Vi-1uM; 4

1l

Hj ¢ LL rlaxﬁflk, Lk T XdEILD

k=1, -, m s T, M

1l

Z(mg(T j )] ®<Ei1,---,53'm}.
Let I a,0 be the component of I'i @ including the
unit element. Since V/’Fi %0 is a covering space of

K and =1V /T o0 is trivial, we may regard K as

12



the quotient space of \Y by the action of - LG a,0 Let
q V - K be the quotient map. Then we rhay regard g
as a fiber preserving map between the I' { ¢ "bundle v
and the n 1 (X5 ¢ )-bundle R which have the same base
space - K. The resfriction of q to Mia is a fiber
preserving map between the sub T'j o ~bundle M;, and
the sub = (X 4 )-bundle ?i o» SO0 we have the followingk
commutative diagram between two exact sequences.

- a1 M) 2 X 3 7 (T { o) -

' I ot

5 21 ®; ) 2 11K ) lﬂé rg(r Xy g)) =

Thus f:z2qg(l 42 2 zwgln 1 Xjg))=xm1W&;4) is the
isomorphism oL The action of z1Xjq) on K can
be identified that of mg(Iljg) via the‘homomorphism

F'jie ~ r}a,O\Fiazno(Fia)
which is induced by q. So the quotient map gq induces
a Z(nmg(I'jg2)~homomorphism- q : C"5 = Cj;, if we
‘regard C; as a Z(mg(Tjg))-module via f. On the
other hand we have an excision iSomorphism
ig C’;j - C’j induced by the inclusion map
VuM, @ ™ VuMHi,, since

(Vi) uby o)y —tVi—hH ul; o

= (W) UML) - (1) UiHE, ).

We may identify two Z(no(Fia)]—module_s C’j and
C"j; by ig.

We now put t (C) = (ajy) € Why)g(m (X5 4)) where

ajk€Z(m 1 (X{42). Let T and 3 be isomorphisms

13



between the integral group rings induced by f and 2,
respectively., Then

bt (V,Mj o0 = (F71capp)

(S(alk)] € Whalg("to(ria))'

This completes the proof of Lemma .3. O

We now construct an (n+l1)-dimensional smooth G-
manifold W with t (W,M) = ¢, where dim M = n. From
the higher dimension cdndition.(Q), we have an
h—cobordism (Y; o 3X5 o2 with Ty 4:Xig) T T
Yi{ o is obtained from X;, XI by attaching handles of
indices 2 and 3 to Xj, X {1}, see (8), where
I = 0,1, Let

I'ia Yie 2 Xjq
be a smooth retraction. VWe have an induced smooth
bundle r*(G'Mi al- By the projection

Tig ¢ FXGMjga) = G-Mj,,
we have again an induced bundle T ia’k(v 1o (1720,
where Y ia a/2> is a closed tubular neighborhood of

GMj,. Note that =z 4%(w 4 (1/2)) is an (n+1)-

dimensional smoocth G-manifold. Let

’—I .
r'ia = rjo | Xjgq X1
Tia = T e | i o G -M; o

Then we have that
rio ¥ -Mjo) D rjg ¥GMjga) =GMj, XI
g Ty g (/2D 7 o K w o (1/72))
| v g (1/2) X1

and a commutative diagram with fiber bundles in the
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vertical:
v (1/72) & m i o F (w4 (/2> D my o, F o, (1/2))

d d _
T i .
G-Mj o & rj a*(G'Mia) D 1 a’XCG'Mia)
{ !
ri g
Xia = Yieg

By the definition of the Kawakubo filtration, we have

M = U ve D =1l vy, /o~
HPD, et ? M), e
MXT = U v, WMXI =M 2, (v, D)/~ XI
HPD, et ? My, e Lo
and thus

W=l tan; o v g (/20U o o % Cw i (1Y /~ X1
Hp, @

(see figure 1).

Tl ( Loe ()
V*(G'Miw)

_x

Mia(Lia(D)) UTI Y (Dioal)

Figure 1.
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By smoothing the corners, we may assume W to be
smoo th.
Finally we will show that T (W,M) = ¢, We put

v =<Hl)_L Crj g @My OV mjg vy () /~ XTI
ll

Since v {q (172 collapses to G-Mj 4, for all i and

a, W, M collapses to W ,M), C(compare figure 2).

qu*(GrM;o,)

r=—\yw-— -1
| = &
] !
v\ /l
- - T + ! T -
I ! ! !
! ! 1 1
! 1 1 !
- - - 1 N i 1 e — -
o
G-Mio

¥ p; )/

r—— T1T--"
! i
! !
! 1
H !
—— —_—- l...._..l _______ l o e e - - - _'
! ! ;— ]
' ] i '
] f I, h
| J &
G-Mio G Mo
Tia (Lia (£)) U Thiar (Liall)) Vio (6+Mis) UTTIF(Lialh)
figure 2.
Thus we have
By Lemma 2, we get
¢t (W ,M = T 5,
Hpd, e '°
This completes the proof of Theorem 1. (]
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In the ‘same manner as in the non equivariant case,

we can prove

Theorem 4 (G-Uniqueness Theorem). let WysM, M

and (Wo;M,M9) be two G-h—-cobordisms which satisfy the
conditions (1) and (2) above. If « Wy, M = 1 (Mg, M),
then we have a G-diffeomorphism

Wi = Wo rel M.

So we can classify G-h—cobordisms in terms of the

equivariant Whitehead torsions.
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