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On vector bundles and complete

intersections of finite order

By

Takeo OHSAWA

1. Introduction.

The present paper will bean introduction to the theory of M.Cornalba

and P.Griffiths [ 1] on holomorphic vector bundles of finite order, with

a proof of the following result.

Theorem Any smooth algebraic curve in ¢® is the intersection of

two surfaces of finite order meeting transversely.

This result is an affirmative answer to a conjecture of Cornalba and
Griffiths (cf+ §26 in [ 1 ]). For a detailed proof with a relevant generali-

zation, see the paper of-O.Forster and the author [2 ].

2. Functions of finite order on affine algebraic manifolds.
Let X be an affine algebraic manifold of dimeﬁsion n embedded in
a complex number space GN. A holomorphic function f on X is said to
be of finite order if there exist a holomorphic function F on EN and
a polynomial P of real one variable such that F|X = f and fF(Z)I(eP("z“),

where 2z denotes the coordinate and ||z[| denotes the norm of =z=.

More intrinsic definition of a function of finite order is the following.

Definition. A holomorphic function f on X is of finite order
if there exists a polynomial P of real one variable satisfying

P(ix|)

f(x) < e for any x € X.

Equivalence of these definitions can be seen by using a cohomology
vanishing theorem with growth conditions (cf. L.Hormander's book '"An Intro-

duction to Complex Analysis in Several Variables'").
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Another method of defining functions of finite order is the following.
By Hironaka's theorem there exists a projective smooth compactification X
of X such that D = X\X is the union of smooth divisors with normal
:crossihgs: for every point »p D one can find a neighbourhood U 3 p such

that (U,U\X). 1is biholomorphic to (AP,An\{zl-m-zk=Qj), where zﬁn = i(zl,..,zn)

é(f% [zi[< 1 lek A function f on X 1is of finite order if it
) k
satisfies, for every pe D, an estimate of the type ,f(z)l < exp( ZZ]‘zirr)
' . i=1

near p, for some r&N. We shall denote by RX the ring of holomorphic

functions of finite order on X.

Proposition 1. Let X be an affine algebraic manifold and let Ul""’Um

be a Zariski open affine covering of X. Then a holomorphic function f on

X belongs to RX if and only if f Ui € RU for all 1i.
i

A classical theorem of Weierstrass asserts that every nowhere vanishing
holomorphic function of finite order on € is the exponential of some polynomial.
As its immediate consequence, we get that an element of RC is invertible if

and only if it has no zeroes. The following generalization is immediate.

Proposition 2. Let X be an affine algebraic’manifold and f a fuhction

of finite order on X without zeroes. Then 1/f is also a function of finite

order.

Let Qr denote the trivial bundle of rank r. For any subbundle E C 6
a holomorphic section s,e/”(X,E) is represented by an r-tuple (sl,...,sr)
of holomorphic functions. The section s is said to be of finite order, if
all functions Sj are of finite order. If E is an algebraic vector bundle,
then there exist r and an algebraic embedding E C T, 1t is easy to verify
that the set of finite order sections is independent of the (algebraic)

embeddings, and we denote it by f} ° (X,E).VProposition 2 1is generalized

to the following.

Proposition 3. Let LC #° be an algebraic subbundle of rank one over
an affine algebraic manifold X. Let s = (sl,...,sr)e l} o (X,L) be a
section such that Sys+-+sS, have no common zeroes. Then there exist fl,...,

f.€Ry such that fisyt...+f s ="1.
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‘Cornalba and Griffiths have shown that topologically trivial algebraic
line bundles on affine algebraic manifolds are trivial in the finite order
category. In the following section we shall state it more accurately after

explaining the notion of holomorphic vector bundles of finite order.

3. Holomorphic vector bundles with growth conditions.
Given a holomorphic vector bundle E over an affine algebraic manifold
X embedded in CN, we say that E has finite order if there exists a fiber

metric for this bundle whose curvature form () satisfies the inequality

K)(x)|<: (2+Nx!|)r for some r € R. The following is immediate from the
definition.
Proposition 4. Given two finite order vector bundles E, E' over X,

Hom(E,E'), E® E', E®QE' and EX are of finite order.

It is easy to show that every algebraic vector bundle is of finite order.

To state Cornalba-Griffiths' theorem in a precise form, let E—>X
be a holomorphic vector bundle of finite order. Using the given fiber metric
of E, we define holomorphic sections of finite order (of exponential growth

in the L2—sense) by
L (X,E) := €7 (X,E); |2e'”X"kdv < oo for some k
f.o. ’ ‘ (3 ’ ’ ‘{5’ X T »
X

where dvX denotes the volume element of X with respect to the ambient
euclidean metric. By Proposition 4, the notion of finite order isomorphism
between two finite order bundles is defined. Thus the set of equivalence
classes Vect§.o.(X) of finite order vector bundles of rank r over X has
a meaning. In particular, for r=1 we define the finite order Picard variety

. _ 1
by Plcf‘o.(X) = Vectf.o.(X).

Theorem 1. Let X be an affine algebraic manifold. Then the Chern class
2
map cy Picf -(X) ——> H7(X,2) is an isomorphism.

.0

For the proof, the reader is referred to §14 or §§19-20 of [1].



361

Remark . Our way of defining the set Lf o (X,E) 1is slightly different
from that in [ 1 ]. But the two notions of finite order sections coincide,
because the volume form dvx in the definition may be replaced by any

other volume form dv' satisfying (2+[x|)  dvy < dv' < (2+]x|)Tdv, for

gsome T > 0.

The following is a consequence of Theorem 1.

Theorem 2. . Let L be an algebraic line bundle over an affine algebraic
manifold X. Suppose L is topologically trivial.‘Theﬁ there exists a finite

order section s ¢& f} o (X,L) without zeroes on X.

Proof. Let & 'be the trivial line bundle over X equipped with the

trivial metric. Since L¥* 1is also topologically trivial, by Theorem 1 one

has a finite order section s € L; (X, (LY L o (X,L) without zeroes.
Here one may take as the fiber metric of L the restriction of the trivial
metric with respect to some algebraic embedding L C 01: It is clear that

Lf o (X,L) ==f} o (X,L) for such a metric. Thus we have the assertion.

4, An extension and division theorem.

We are going to prove the following.

Theorem 3. Let X be an algebraic submanifold of EN of pure dimension
n such that the projection p : X ——> €® to the first n coordinates is
proper. Let {gl,...,gr}<: ¢[z1,...,zN] be a set of generators of the ideal

of polynomials vanishing on X. Then the natural restriction map

T ch[zn+1"‘f’ZN] _— RX
is surjective and its kernel is generated by S RRREY -

Our proof will be done by the L2 method. First we need to interpret
2
the problem into the L language.

2
Let X and p : X ——> € be as above. We put 77(z) = log (1 +Hzl™).
Then, 85? defines the Fubini-Study metricvof PN, whose volume element we

shall denote by dv . The volume element on X for the metric 3§Y7|X

P,X

will be denoted by dv Comparison of va X with the euclidean volume
’

pix
. . (n+1)
element dvx is given by: va,X < dvX { const e ¢ dvf,X'

%
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~Definition. A C® plurisubharmonic function YRS >R is
called a controlling function if there exists a Ve N such that

l ?(x) - 7(y)l < 1 whenever ” X -y ”<(2fﬂx“)‘%

Note that for any controlling function 7 on X and for any L € N,

7 + V}‘a is again a controlling function. We put, for a controlling function 7 ,

RX(7) = {f e Ry SupIf(x)lzexp(—7(X)—l)f(X)) < oo for some V& N}.

For the special controclling functions "z"zr, we have

Ry = Uax(a{z T,

rée N
For the controlling functions z,br(z) = (’zllz + o0+ lznlz)r we have
RonlZy, g0zl = L/ RoNCY)

réN

Since the projection p 1is proper, we have also

Ry = U By(ppd-

réN

Allpying a standard L2 method for extending holomorphic functions from

a complex submanifold we obtain the following (cf.[2 ] or [g 1).

Proposition 5. Let M be an affine algebraic manifold, and let

XC M be an algebraic submanifold. Then, for any controlling function ?
on M, there exists a € N such that each f e/}(x, @X) has an

extension F in F7+y§o(m’@M)'

Corollary 6. For any controlling function 7 on M, the restriction

map 7T : RM(7) _— RX(7) is surjective.

To determine the kernel of ¢ : RM(7) —_— RX(7), we need Skoda's
division theorem for holomorphic vector bundles over weakly l-complete
manifolds (cf. [ 4] Théordme 4). We describe it for the trivial bundle

over Stein mgnifolds since we only need that special case.
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Theorem 4. Let M be a Stein manifold of dimension m and let
fl’.v..,fq be holomorphic functions on M with g < m+ 1. Let @ be
a C¢? strictly plurisubharmonic function on M. Then, given a plurisubharmonic

function % on M and a holomorphic m-form u such that

lj ZZ']f{) AT | < oo, o

there exists a q-tuple of holomorphic m-forms (hl""’hq) such that

q
u = J-Z;lfjhj

and

"/’ @(é lf , ) q+1h /\hJ < e—‘%‘@(él]fi]z )fqu.\_ﬁ .

M M

As a direct consequence of Theorem 4 we obtain the following.

Proposition 7. Let X C M c €" be algebraic submanifolds and
{gl,....,grj be a set of generators of the ideal of X in the affine
algebraic coordinate ring of M. Then, for any controlling function 7

on M, the kernel of the restriction map ¢ : RI\-I(7) - RX(7) is

T
2=1RM(7)gi.
Proof. Let f € Kert =~ and let q be the codimension of X in
M., If rank(dgil,...,dgiq)(x) = q, then |:t'l2 (Eq: lg 12 )—q is integrable
on a neighbourhood of x. Since iy are algebraic we can choose an algebraic
m-form () on M such that |f!2 (élgll ) N is locally integrable.
Hence we can apply Theorem 6 for = f,) and (fl,,,fq) = (8 »eve18y ),
and get a g-tuple (h ”"’hiq) of holomorphic m-forms on M such that
o £l = é h, B
*k
and
f e'-7—ufahi/\'fx—i < oo for all k, for some ¢ N.
M k k
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Since x is arbitrary, one can find a finite number of algebraic
m-forms a&,....,dg on M without common zeroes, such that fdﬁ is a

linear combination of g; as in (T),.which shows that f must lie in

the ideal generated by SRR - S

Combining Proposition 7 with Corollary , we obtain Theorem 3.

4. Curves in ".

In this section we shall prove Cornalba-Griffiths' conjecture in the
affirmative.

Let X < €" be a smooth affine algebraic curve. By a linear coordinate
change of Gn, we choose a coordinate such that the projection p : X ———7-6

to the first coordinate is proper. We shall show the following.

Theorem The ideal of X 1is generated by n-1 elements F . F

10 n-1

é;Rm[zz,...,zn].

Proof. This is trivial for n « 3. Suppose n =2 3. Then there exist

two linear functions 11 and 12 on €% such that (p,ll,lz):"x _— m3

is an embedding. So we may assume that p factors as

n pz 3
X < " —=—>¢
p C

where pl, p, are projections and p, maps X isomorphically onto the

smooth algebraic curve Y := pz(X). Since X C Y X m“‘3 is a graph over Y,
there exist polynomials Gl""’Gn—B egm[zl,...,zn] such that the restrictions
Gj\Y><®n—3 generate the ideal of X in Y><¢n_3. Therefore if we could show
that there exist functions Fl,F2€E Rl[ZZ’ZS] which generate the ideal

of Y Cl¢3 the proof is complete, because then Fl’FZ’Gl""’Gn—B generate

the ideal of X in €". Thus we may assume n=3.

Let Jy, < ()3 be the ideal sheaf of X. Then //; admits a finite set
_N+1

of polynomial generators g,,...,g & Clz,2492,]. Let g : e at

178N 1222223 g€ :0 .3 X

be the epimorphism defined by (gl,...,gN+1). Since X is of codimension 2,



the kernel of g 1is locally free, hence globally free (algebraically) by

the -theorem of Quillen-Suslin{3,5]. Hence we have an exact sequence

N +1 g .
o) 0 (C’cs s oy 0,
T
where
1,1 e pl,N 1
p =] : :
PN+1’1....‘.... PN+1,N

is an (N+1)xN matrix with coefficients in m[zl,zz,zs]. Restricting the

sequence (X) to X, we get an exact sequence

0 H——Cx — =0y —> o,

where K is an algebraic subbundle of (@g and P = P[X.
Since every vector bundle over a noncompact Riemann surface is topologically

trivial, by Theorems 1 and 2 there exists a finite order section

— —— "N
(Fpseees Py € [ o (XK < /‘;.o.(x,(f/}g

without zeroes. By Proposition 3 there exists an N-tuple (?i,...,?h)ei
,aN . ) - = _— -
[§.0.%,0%) with @I+ ... + g = 1. Let f;,...,fy &€ Rglzy,23] be

functions with fj}X = f, (cf. Theorem 3). We put £ = (fl,...,fN) and

()

Then Q is an (N+2)XN matrix with coefficients in A.:=Rm[z2,zs].

N+2

Lemma 8. The cokernel of the map Q :AN —_—> A is a free

A-module of rank 2.

For the moment let us admit Lemma 8 and show how it implies Theorem.
Since 'CokerQ is free" ¢:::>'53an A-valued matrix h s.t. det(Q,h)=1,

we have the following diagram:
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——~
Hh g
S

N N+1
" @0
(A > 03 Cma
| o
WV
N P N SN+1 g N4
@ 3 > Q'ms TUAX > 0

where pr 1is the projeétion to the first N+1 components. Thus we obtain
an epimorphism geprch :6923 ————————73;[%, which proves our assertion.
C

For the proof of Lemma 8 we first show the following.
Lemma 9. Coker Q@ 1is a projective A-module of rank 2.

Proof. It suffices to show that Q is of rank N at every point

of Spec(A). This follows immediately from Theorem 3.

In order to deduce Lemma 9 from Lemma 8, we apply the following theorem

of Quillen-Suslin [3 ,5 ].

Theorem 5. Let B be a commutative ring and A:=B{T]; the polynomial
ring in one indeterminate over B. Let E be a finitely generated projective
A-module. If there exists a monic polynomial g & A such that the localized

module Eg is free over Ag, then E is free over A.

We apply Theorem 5 to B = Rm[zz], A=R¢[zz,z3] and E = CokerQ . Let
g be a polynomial, monic with respect to Z3s which vanishes on X. Then

there exist ai,...,aN+16§ (E[zl,zz,zB]g such that

Therefore we have also

det
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The latter matrix has coefficients in Ag. This implies that Eg is

a free Ag—module of rank 2. By Theorem 5, E is free over A.

Q.E.D.
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