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Differentials of Prym maps and counterexamples of
the infinitesimal Torelli theorem
Masa-Hiko Saito
In this note, we shall announce new examples for which the
infinitesimal period map (for the definition, see §3) is not
injective. These are certain smooth (n+l1)-folds X for n > 1 which

have the structures of the fibre spaces t:X ——C over hyperelliptic
curves of genus g > 1. In case n = 1, these examples give surfaces

of general type or elliptic surfaces for which the infinitesimal
Torelli theorem does not hold even if they have sufficiently high
geometric genera. We also éxplain the relation between these example
and the (co-)differential of the Prym maps for hyperelliptic curve.
All the varieties in this note will Be defined over the field

of complex numbers € and by a hyperelliptic curve of genus g > 1 , we

mean a smooth complete curve which has a linear system g;.

Details will be published elsewhere.

1. Prym maps and its (co-)differentials.

In this section, we shall review some known facts on Prym

varieties due to Mumford [M] and some results on (co-)differential
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of Prym maps due to Beauville [B].

Let
(1.1) n:C — Cc

be a double covering where €T and C are nonsingular complete curves
and n is a morphism of degree 2. To each such double covering, we

associate the data (C,5,¢) consisting of

(1.2):
(i) C ; a nonsingular complete curve of genus g
(ii) & ; an effective divisor of degree 2m of C without
muiiiple componenis, ‘the ramification divisor of mn,
(iii)lz ; an invertible sheaf on C such that ¢ L 6(3) and
(1.3) | ng(0g) = 05 @ 271,

(We say that the data (C,8,¢) in (1.2) is of type (g,m).)
Conversely, if the data (C,a,z),is given as in (1.2), we can
construct the double covering n:C —— C branched at the divisor 3
which satisfies (1.3). Since genus of C = g and degree of § = 2m, by
Hurwitz’s formula, the genus g of C is equal to 2g+m-1.

Let J = Pic9(C) and J = Pic®(¥) be the Jacobians of the curvés C
and € in (1.1) and let 8 and § be the theta divisors of J and J which

give canonical principal polarizations:

(1.4) gt d — Pic®(J),

> >

Pic®(7).

(1.5) I J —_—

(Here for any divisor D on an abelian variety A, we define Ap tA —
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A = Pic®(A) by ap(x). = [divisor class of T (D) - D I.)

The double covering {(1.1) induces two homomorphisms of Jacobians
o = ] — J and Nm = n,:J —— J.

s x
and it is easy to see that Nmo-g = ZJ and ¢@°Nm = 13 + 1 where
;1:0 ——C is the involution corresponding to the double covering
(1.1). The Prym variety of the double covering (1.1) is

the odd part of J defined by

(1.6) P = (ker Nm)© = ker(ly + :*)° = Im (13 -27).

Since dim.J = g and dim.J = 22 + m -1, we have dim.P = g + m -1.

If o = (¢,1):IJxP — J is the canonical isogeny, the polarization

A
p:P —— P defined by the condition o¥(xy) = 2agx p. In [M],

Mumford proved that if m = 0 (unramified case) or m = 1 there exists

A
a theta divisor 2 which gives a principal polarization i, :P = P

1

and such that p = 2x.,. Thus if m = 0 or 1, the Prym variety (P, E)

is a pricipally polarized Abelian variety.

Let Rg denote the set of isomorphism class of the double

coverings n:C — C which correspond to some data (C,s,¢) of type

(g,m) in (1.2), A the set of isomorphism class of principally

g+m-1

polarized Abelian varieties of dim. g+m-1. For m = 0 or 1, we can
define the natural map

.

(1.7) Prym: Ry —— Agyn 1
by Prym(n:C —C) = (P,E), which we call the Prym map. (We will
assume that m = 0 or 1 for a moment.) It is well-known that both Rg

" and Agim-1 have natural structures of algebraic varieties and Prym is
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the morphism of algebraic varieties. But since both R: and Ag+m—1

have singularities, when we calculate the differencial of the Prym

map, it is more convenient to consider the following moduli functors:

R {8 ——— (isomorphism class of smooth cufve g and € over S

m

g
and S-morphism ¢:¢§ ——¢g of degree 2 such that
for each s € S the fibre ¢ 8 —E is of type
(g,m) in (1.2)

and

A

g4m-1 S — (isomorphism class of principally polarized Abelian)

variety of rel.dim.= g+m-1 over S

Then we have a natural morphism of functors

. m

. . X
For any functor F, we denote by TF p (resp. TF p) the tangent
H ?

'space (fesp. cotangent space) at p € F(C) (cf. 7.2,[B]). Then as in

7.3 in [B] at we can show that for a point (C,8,¢) € Rg (C) = RE
and (P,E) = Prym (C,S,f) € Ag+m_1k((ﬁ) = Ag+m_1 there exist
isomorphisms
(1.9) T,m ~ Hl(ce ® 6(-8))

Rg 7(01552) - 'EC

~ s?ulc,e!

(1.10) T (P,z) =

A )) (symmetric tensor).

g+m-1"

Moreover, by Serre duality, we have

b 3

(1.11) Tq

0 2
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2,..0

(1.12) T* ~ ST (H (C,mC‘Q ¢ )) {(symmetric tensor).

Agimoqr (Pr8)

({Here we denoted by BC and ®c the tangent sheaf and the dualizing;
sheaf respectively.) The following proposition was proved by
Beauville (cf.Proposition 7.5 in [B]) for the case m = 0 (unramified

case) and can be proved for the case m = 1 in the same way. .

Proposition 1.1

For m = 0,1 the codifferential of the Prym map Pr: Rg —_—— Ag+m—'

at (C,8,2)= (n:C ——C) € RE(C) can be identified with the natural

cup product map

(1.13) o :52m%(C,a0 @ £ ))—— HO(C,(0p)? @ 0(5))

induced by the isomorphism (coC (o) Z)z ~ wcz ® 6(8).

Remark 1.2. Considering the moduli space of Abelian varieties with

a polarization (not always principal), we can define the Prym map fo:

m > 2 and get the same result as in Proposition 1.1.

2. Infinitesimal Torelli theorem for Prym maps

We say that the infinitesimal Torelii theorem for the Prym map

holds for n:C —C = (C,5,2) € Rg(c) = Rg if the differential of
the map Pr in (1.8) is injective at the point. By Proposition 1.1,

the infinitesimal Tore;li for the Prym map'holds for (C,8,%) € R:(C)
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if and only if the cup product °C . 5 in (1.13) is surjective. In case
, .

m = 0, Beauville proved the following theorem (cf. Proposition 7.8 in

[Bl).

Theorem 2.1.

If g > 7, there exists a member (n:0 — C)=(C,5,¢) in Rg(C)
such that ¢, 1 in (1.13) is surjective. In particular, the
’

infinitesimal Torelli holds for this member and hence for general

members in Rg(@) for g = 7.

In case m = 1, we can prove the following theorem.

Theorem 2.2

If g > 8, there exists a member (n:C — C) = (C,8,¢) in R;(C)
- such that . n in (1.13) is surjective. In particular, the
’

infinitesimal Torelli holds for this member and hence for general

members in R;(C) for g > 8.

Remark 2.3, Our proof of Theorem 2.2 is based on the proof of

Beauville in [B] but we need a little change to complete the proof.

Next let us consider the data (C,8,¢) € R1 where C is a

g
hyperelliptic curve of genus g with the morphism ©:C —— P1 and
5= P +QeDiv(C) and £ € Pic(C) such that g ~ (s). The

following theorem gives counterexamples of infinitesimal Torelli
theorem of Prym map and we shall use this theorem to construct

counterexamples of infinitesimal Torelli theorem for higher
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dimensional varieties.

Theorem 2.4.

Let ¢:C — P1 be a hyperelliptic curve of genus g and let

n:C —— C be the double covering constructed from the data (C,35,%)

P R; as above. Then we have
. . 0
, { g if dim H (g) = 1
codim.of Im. ¢ in =
0 2 ©im 2 if dim H%(2) = 0
HY(C,ac"® 0(5))
(See (1.13))
Remark 2.5, Let C be a hyperelliptic curve of genus g and consider

the unramified double covering n:C —— C constructed from a data
(C,8,¢2) where § = ¢ and 22 o GC. In this case, we can also prove

that the map ?C, n in (1.13) is never surjective.

Remark 2.6 We should mention that even if infinitesimal Torelli

theorem for usual period maps does not hold for hyperelliptic curves
local Torelli thoerem holds for them, that is, the period map

p:Mg————»Ag is immersion at the hyperelliptic locus. But in this

case, the Prym map Prvm = Pr(C): R; —_— Ag really has a positive
1

dimensional fibre through the point (C,8,¢) € Rg in theorem 2.4.

The reason why Prym has positive dimensional fibres in this case was

studied by Dalaljan in [D] in view of the towers of curves.
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3. Certain fiber spaces over curves and counterexamples of the

infinitesiaml Torelli theorem.

Let X be a smooth projective variety of dimension n + 1.
The cup product map Hl(X,BX)Q HO(X,KX) ———A‘Hl(X,Qg) induces

the infinitesimal period map
' 1 : 0 1 n
(3.1) Py: H (X,85) ——— Hom (H (X,Ky), H (X,Qg)).

It is wellknown that the map Py is the edge part of the differential
of period map (with respect to the middle cohomology of X) and by

Serre duality the dual of (3.1) is given by the cup product
0 1 0 1
(3.2) H(X,Ky)® H'(X,0y) —— H (X,0; @ Ky) .

X As we mention in introduction, we construct the examples for
which the map (3.1) are not injective, or equivalently the map (3.2)

are not surjective. First we shall give some technical lemmas.

Let t:X —— C be a proper surjective morphism from a smooth
(n+1)-fold X to a smooth complete curve C. Let S denote the set
of points of C such that n: X - r_l(S) —— (C-S8 is smooth. Set D =

t*(S) (pull-back of the divisor S) and let D = % m, D. be the

i
irreducible decomposition of D. Moreover we assume that the reduced
structure Dred = 3 Di is a normal crossing divisor. . The following

lemma isreasy to prove (see for example [S]).

Lemma 3.1. Under the same notation as above, set D=5 (mi—l)Di-



Then we have an exact sequence

‘ o . X = 1 ‘
(3.3) 0 — T (25)® 0(D) — 9y — F — O.
Here % 1is the sheaf of X satisfying ?IX—t“I(S) x Q%/le—t_l(S)'
Next we have the following lemma.
Lemma 3.2, Under the same notation as above, let us assume moreover

that:

(i)the fibre space !X —— C is a locallyktrivial fibration,

(ii) the sheaf R"t,0(D) (resp. R” vy oy, (D) ) is torsion free.

Then we have a natural injection

1

1 =
(3.4) 0 — 9y ®R"t,0(D) —— R 0y

(3.5) (resp. 0 —— (Qé) Q)Rn Ty wX/C(B) — Rn‘t*(Qi Q)mX/C)).‘

Proof. Tensoring e to the exact sequence (3.3) and taking the

direct images of it, we get the long exact sequence

tX/C

1 1 = 1
T 7 @ ay/c — 9 ® R tyay,c(D) » Rit,@y @ oy g

Rn‘lt*Q}I{ @ wX/C__)Rn_

’ : .
On C = C-8, by relative duality theorem, this sequence is dual to
X
t
X/C 1

Tx8x T 8¢ T BTy By 0 T Ry

' -1 1 =
(Note that on X - v "(S), F =~ % /c and,wX/C(D) ~ wX/C') But
X

the map tX/C

is nothing but a Kodaira-Spencer map and therefore =zero
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map by assumption (i). Hence its dual tX/CIC-S is also zero map, sgo
the support of the image of tX/C in Qé 8>Rn Tx0x/C is contained in
S. Then by assumption of the torsion freeness (ii), the image of

t is zero and this completes the proof of the second assertion.

X/C

A proof of the first assertion is similar and left for the reader.

Now let us construct a smooth (n+l)-fold X which have a
fibration t:X —— C over a curve. For nonnegative integers g and m,

take a data (C,8,2) € Rg as in (1.2) and construct a corresponding
2m
double covering n:{ ——— C and put § = X p; . We take a smooth
: i=1
double cover f:Z — P" whose branch locus is a smooth hypersurface

of degree 2d and assume that ¢ = (Zz) = dim.«HO(Z,KZ) is positive.

Pg
(Note that this is equiavalent to the condition that d 2 n+l.) There

exist the involutions :,:Z —Z and 12:6 —— € coresponding to

these double coverings and hence Z/(zl)z P? and C/(zz) ~ C.,

Now if we set X = (Zx @)/(11X12) and X = the blowing ub of X along
the image of T D x p; » we get a smooth (n+l1l)-folds X and a
natural fibration

(3.6) «:X —— C.

Then we have the following theorem.

4
Theorem 3.3 Under the same notaion as above, if the cup product map

9 n in (1.13) is not surjective, the cup product map (3.2) is not
]

surjective and hence the infinitesimal period map in (3.1) is not

injective.

10



proof. Considering the Leray spectral sequence of the morphism

;X —— C, we get the following exact sequences:
(3.7) |

0 — H'(c, B" e 05) —— HU(X,05) —— HO(C, R"t,05)— O

(3.8)

1 1

0 — H'(c, R lr 040K, )—H"(X,05 @ Ky) — HO(C, Rt ) @Ky )—

and an isomorphism

(3.9) " HO(X,KX) ~ HO(C, v Ky )

The natural map Rnt*9§<8 t*KX————A»Rnt*(Qétg KX) induces the map
(3.10) 10(C, R"t,05) ® HO(C Ky ) —— 30(0; Rl Q%LQKX ).

Moereover by an easy argument, we can show the following

isombrphishs;
® ¢
{3.11) Ty0x /0 = £z )
(3.12) R%c,0(D) = £ , RMryoy,c(D) =2 & 0(s).

By definition, t:X ——— C is a local trivial fibration. Thus

together with (3.12), by Lemma 3.3, we have the following commutative

diagram:

1"



(3.13) 0 0
o . N
HO (g x tyay,0)® H(af x R%t,0(0)) — H0((95)%® R ry0y (D))

l A1 | 1 -2
P2

1O (r k) @ HO(RPey(05)) —— HO(R"c, (0} @ Ky))
By exact sequences (3.9) and (3.10), if the cup product Py in (3.12)
is not surjective, the map (3.2) is not surective. 'In (3.13), éince
Xqr X9 is injective, if Pq is not surjective, Po is not surjective.
But by (3.11) and (3.12), the map Po is nothing but the cup product

Haloz)1®ter’ (ler) — ()% 2? ),
But the last is nothing but ¢{-times repetition of ¢c,x in (1.13) and

this compléetes the proof.

Corollary 3.4, Let C be a hyperelliptic curve of genus g and

consider a data (C,8,£2) in Rz for m = 0 or 1. For all double cover

f:12 — Pn, let ©t:X —— C be the corresponding fibre space as in

(3.6). Thén‘the infinitesimal’pefiod map in (3.1) is not injective
for X.
Remark 3.5 The infinitesimal period map (3.1) is a part of the

differential of period map. So the failure of the injectivity of
(3.1) does not imply the failure of the injectivity of period map

if n > 2. In case n = 1, the map in (3.1) coincides with the whole

of differential, so the examples in corollary 3.4 give counterexample
of the infinitesimal Torelli theorem for surfaces of general type and

elliptic surfaces.

|Z



Example 3.6, We conclude this note by giving two examples.

(i) Let f:Z ————ﬂ‘Pz be a K3 surface of degree 2 and C a

hyperelliptic‘cﬁrve of genus 2. We take § as the empty set. Then

the constructed X has pg(X) = 1 and the fibration t:X —— C is

smooth.

. (ii) Let f:E ———ePl be an elliptic curve and C another elliptic curv:e

and take § as distinct two points P + R € C. Then the corresponding

X —— C is an,elliptib,surface with pg(X)vz q(X) = 1. In [S],‘

the author found that the peripdvmap has one dimensiohal fibre for

this surface. Moreover this surface appears as a main component of :

degeneration of Kunev surface ( a surfaoe of general type with pg =
2

c, = 1 and special automorphisms). Such a phenomenan was recently

studied by Usui in [U]. By using the correspondence of curves, we
can show that there exists another elliptic curve C’ such that the

Hodge structure of X above is isomorphic to that of the Kummer

surface Km(ExC’) of ExC’.
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