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ON THE DEFORMATION OF A CERTAIN TYPE OF ALGEBRAIC VARIETIES

Mutsuo OKA

Dedicated to Professor I. Tamura for his 6oth birthday’

§1. Introduction

Let A = (aij) (1 £ i, £ n) be an upper triangﬁlar

integral matrix with a non-zero determinant and a; 2 0 for

each i,j. Let A be the n-simplex in R" which is spun by
AO = 6 and Ai = (ai1,...,ain) (i=1,..., n), Let An+1’
An+2”"’ AQ be the other integral points in A, For an
integral wvector v = (Vi""'un)' we denote the monomial
v v .
yli...ynn by yv. For t = (tU""'tQ) of CQ+1, we define
. Q A
(1.1) hiy.t) = t; + S t.y’
j=1 7

N defined by

and let ME be the affine wvariety in C
h(y,t) = 0, There exists a toric variety W of dimension n
which depends only on A and a Zariski open subset U of CQ+1
such that W o> c" > Mi and the closure My of M% in W is non-
singular for each teU. This type of algebraic variety Mt

appears as an exceptional divisor of a resolution of an



isolated hypersurface singularity ([121 ). The purpose - of

this paper is to study this deformation {M;} in W.

t

In §5, we prove the surjectivity of the infinitesimal dis-

placement map

. 0
§ TtU > H (Mt,vt)._

In §6, we give a criterion about the injectivity of the

Kodaira-Spencer map

5.6+ T, U® —> nlu

t ).

£

In §7, we will apply the results in §§5,6 to construct a

complete deformation of a Godeaux surface,

§2, Infinitesimal displacement

Let W be a compact complex manifold of dimension n and

let {Mt} (teU) be an analytic family of non-singular hyper-

surfaces where U is an open set of CQ+1. Let {(Ua,za)} (aes)

be 1local coordinate systems of W such that (i) W = U U
' aes

and (ii) there exists analytic functions fa(za,t) on U

a
o x U

such that MtnU = {z_ € Ua v f

. o (z,,t) = 0 1. Let

[ed

). The line
1

*
haB = fa/fB’ We may assume that h , O‘(UanU

B
bundle [MtJ is defined by the cocycle {ha

B

} of Hi(w, &) and

B
the normal bundle Nt of Mt in W is the restriction of [Mt]

- to Mt' Let Vi be the sheaf of the germs of the holdmorphic
sections of Nt' Take a holomorphic tangent vector v e TtU‘

As fa = hanB’ we have_

(2.1) v(fa) = haﬁ v(fﬁ) on UanUBth'
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This defines .a canonical linear mapping

)

(2.2) ¢ 1T > HO(u

t'Vt

where £§(v) = {v(fa)}(aeS). ¢(v) is called the infinitesimal

digplacement along v.

Let ew and at be the sheaves of the germs of holo-
morphic vector fields of W and Mt respectively. We have the

exact sequence of sheaves:
(2.3) _ 0 » et > ew]Mt > vy > 0.

This induces the following exact seguence,

0 0 0
(2.4 0 » H (Mt,et) > H (Mt,OWlMt) > H (M )

t'Vt

25 yley y —> gt

t’et (Mt,ewlMt)-——é

The composition

(2.5) T,U 4> HO(Mt,ut) Oy gley )

t t-%%¢

is equal to the infinitesimal deformation map. See

Kodaira-Spencer [6] or Kodaira [7] for details.

§3. Resolution of a hypersurface singularity

We recall basic properties about the resolution of a
hypersurface singularity through the toroidal embedding

theory. We use the same notation as in [121, Let

f(ZO,...,Zn) =2 a, z be an analytic function defined in a
v



neighborhood of the origin and we assume that V = £71¢0) has

an lisolated‘singular‘pOint at- the arigin.. Let F+(f) be the

convex hull of u . {y + (R+)n+1}

au¢0

. The Newton boundary I'(f)

ig the union of Ehe:compact faces vof ;+(f). We éssume that
f is non-degenerate on each face Avof f(f). Let N be the
dual space Hom (Rn+1,R). 'We identify N with Rn+1<through
the standard‘inner product and we denote the duél vectors by
column vectors to avoid confusion. Let N* be the set of
non-negative dual vectors. We introduce an equivalence rela-
tion ~ in N* by P ~ Q if and only if A(P) = ACQ). Here A(P)
is the loéus where the restriction of P on I' (f) takes its
minimal value which we denote by d(P). This induces a
cone-like polyhedral decomposition of Nt and we denote this
by F*(f). Let 2* be a unimodular simplicial subdivision. For

each n-simplex ¢ = (PO,...,P ) = (pij) which is a wunimodu-

n

. . , +
lar matrix, we associate an affine space ch 1

» with coordi-

nate Y, < (yoﬂ""'yon)' Let nd’: C2+1 > Cn+1 be the bira-
tional morphism defined by x(y,) = (zy,...,z,) where

z; = I y,5". Let X be the complex manifold of dimension

n+l which is obtained by gluing the affine spaces C2+1 where

¢ moves in the n-simplices of 2* and let T : X » Cn+1 be the
projection map. Let v be the proper transform of V and let
m : V> V be the restriction of % to V. By the non-
degeneracy assumptidn, oV +‘V is a good resolution of V,

For each strictly positive vertex P of 2* with dim A(P) 2 1

’

there are corresponding exceptional divisors EB(P) and E(P)
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of © and n respectively so that E(P) is a hypersurface 'in
gep), £(P) is a toric variety. Let ¢ = (Pg,..:,P) with P
= Py. Then in the coordinate chart c!*!, B(P) is defined by
Yy, = 0 and Egp) is defined by E(P)Nn{ h (Y qreee,¥gy) = 00

an
where hd(yg) is defined by

d(Pi)

0 Yoi ho(yal""'ycn)'

Nl s

(3.1 fA(p)(no(yo)) = .

§4. Compactification of MJ.

Let h(y,t) be as in (1.1), Let o' be the unimodular

matrix (P’Rl""'Rn) - where P = t(l,...,1),

R, = Y0,1,...,00, Let n, : ™15 c™! be as in §3. Let

Ygreroo Y be the coordinate of the source. Then we have
z2g =Yg and zZ; = Yg¥y for i =1,..., n, Let k be the degree:
of h and we define fg(z,t) = htx l(z,t)) 2K =
h(zl/zo,...,zn/zo,t) zg. Then fE(z,t) is a homogenequs
polynomial in Zgsees 2, and we can write

] B
(4.1) fo(z,t) = S t.z 7

= i=0 J

for some integral vectors BO""' BQ. Note that

. n
By = (k,0,...,00. Let f(z,t) = f.(z,t) + § z7 for a suffi-
= i=0

ciently large L. The notation f_(z) ié the same as in [12]

if we set £ = A(P). There exists a Zariski open subset U of

CQ+1 such that f(z,t) has a non-degenerate Newtbn boundary

for each t € U, | Let ¢ = (P,P+R1,...,P+Rn). If L is



sufficiently large, A(P+Pi) > By for each i ='1,..., n, Thus
G is an admissible simplex of F*(f). (¢’ is not necessarily
Aﬁ admiséible simplex.) Thus we can take a unimodular sim-

biicial subdivision = which has ¢ as an n-simplex by §3 of

[121.
Assertion. The defining equation of E(P) in
Co n {YGU = 0} isg equal to h(ya,t? 0.
Proof. E(P) is defined by ho(yo,t) = 0 where
. d(P)+d(R,)
_ ~ acpy i
ha(yo't) = fA(no(yg),t) / Y50 igiyai
d(R.)
- d(py) 1 i
= fA(no,(y)) / {CYOO"'ycn) iglyai }
= h(y,t) = h(yo,t)
Here we have wused the equality nggono =Ry and
g’ "o
Yg T Yg0-+--Y and Yi = Yg5i for i = 1,..., n.

aon o1

Thus we take E(P) as‘the compactification Mt of M: and

B(P) as W hereafter. Note that nl(Mt) is a finite cyclic

group by Theorem (7,3) of [12]1. Let S be the set of the-

n-simplex 71 of 2* such that P is a vertex of . Then it is

obvious that {Cg} (0eS) is an open covering of W where

cl = cg+1 N {y,o=0?.

Remark. To study the deformation of Mt in W, we only

need the information about S,

77



78

§5. Main theorem

We are réady to state the main theorem, Let Vi be the
sheaf of the germs of the holomorphic sections of the normal

bundle Nt of Mt in W, Let 0 be as in §1.

Theorem (5.1). (i) dim HD(Mt,vt) = 0 and the infini-

tesimal displacement map ¢ : TtU > Ho(Mt,vt) is surijec-

"
tive., The kernel of ¢ is generated by § t. -i—,

j=o 3 3ty
(ii) Let wi,.;., wQ be a system of the generators of
HO(Mt,vt) and let ¥ Mt > PQvl‘gg the associated mapping.

Then ¥ is a birational morphism.

Let W = ﬁ(P) and Mt = E(P) as in §4. For each n-simplex

T = (Qo(t),...,Qn(t)) of S, we may assume that
(5.2) Qglz) = P,

Let hT(yT,t) be the defining polynomial of Mt in
¢! =c™ln ¢y 4= 0. h_ is defined by the equality
d(Qi(r))

(5.3) £y ln (y ), ) = ) Yui

nes

‘ ht(yt,t).
i

Take two simplices a« and B8 in S and let a_lB = (lij)

(0 £ i,7 £ n). By (5.2), we have AOO = 1 and AiO = 0 for i

=1,..., n. Recallbthat CE and CE are glued by

ai 1 Yg 5

,\
wn
-
St
<
|
s

j



Now we consider the line bundle [Mt] which 18 defined

by the cocycle {haB} where haB = ha / hB' By (5.3), we have
n o d(Q,(8)) n chi<d>>
(5.5) h oy, 8) = T y,, /0y, .
aB '8 i=0 B1i j=p ol

Here the right hand is considered as a monomial of Ygqrereo

Yon through (5.,4)., The exponent of Ygo ig zero. - We can

write hr(yr’t) more explicitly as

Q AL(T)
(5.6) . h (y.,t) = 5 t.y?

j=0 J
where the posgitive integral wvector Aj(r) is characterized by

B

. dCQ. (1))  A.(1)
(5.7) oy T = ¢ ! J

Y, )y
o t?! _

nel s

. T
1

Combining (5.7) and (5.5), we obtain

Aj(a) Aj(B)
(5.8) Y, = hyg ¥g
A.(a)
(5.8) says that {yaJ Y aes) is an element of
HO(W,O([Mt])). Thus we get the inequality
dim HO(W,8([M, 1)) 2 ¢ + 1. On the other hand, take a mono-

mial yg where u # Aj(c) for j = 0,...,0., ( Here o is fixed.)
Let Hk  be the hyperplane which contains
{Ai(a) 1 # k, 0£1i25n}, Then there is an integer k
(0 £ k £ n) such that Ak(o) and u are sgeparated by Hk. Take

a gsimplex 8 = (P,Ql(B),...,Qn(B)) such that

(5.9) B, € 4(Q (8 for i# k, 1i=20,...,n
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» U v - : : \
Assume. that Yy = hoB Yg for v (vi,...,vn). . Then by the
assumption, we have vy < 0. This implies that the section yg
of HO(CQ, ([MtJ)) cannot be holomorphically extended to W.

Thus wusing GAGA-principle [13], we have proved the follow-

ing.
Lemma (5.10). dim HO(W,OKEMt])) =0 +1 and
A.(a)
{yaj }(aeS), (j = 0,..., 0) gives a canonical basis.

This is a special case of §6 of [1] and Lemma 2.3 , of
[10]1, For the further geometry of the toric variety W, see

(s, 2, 1, 9, 31.

We are ready to prove (i) of Theorem (5.1)., From the

exact sequence of sheaves on W

0 — 0 — 0(M, 1) — vy —> O,

t

we have the exact sequence

0 6 0

(5.11> 0~» C — H (W,O([MtJ)) —> H (Mt,vt) 2> 0.

Here we have used the fact that Hl(w, ) = 0 because W is
0

simply connected (C11 ). Thus dim H (Mt,ut) =0 and

0 Aj(a) v
H (Mt,vt) is generated by ¢j = {Ya }aeS (3 = 0,..., ).
_ -0
They satisfy the obvious relation > tj ¢j = 0. Now we
. i=0 ,
study the infinitesimal displacement map

¢ 1 T > HO(Mt,ut). By the definition of ¢, we have

3 aha Aj(a)
€(atj) = {atj}aes =y, Yaes = #5-



Thus § is surjective and the kernel of ¢ is generated by
L 3 . | : -
S tj Tt This completes the proof of (i) of Theorem

j=0 i

(5.12.

Now we will prove (ii) of Theorem (5.,1), Let ¢0;..., %0
be as above and define ¥ :wo PQ by
J(x) = [og(x)s. ey (x)T, Let 7 € S. As the polynomial

ht(yt) contains a non-zero constant term, there exists an

integer 0 k<£n such that Ak(T) = «(0,...,0). Az
. Ao(r) AQ(T) n R
W(yz) = [Yr U 4 ]l on Ct, this implies that ¢ is a

morphism, We have to prove that ¢ is generically injective.

Note that {Ao(t),..., AQ(T)} is equal to the set of the

nl.

.

integral points of the simplex spun by Aj(r) (3 = 0,..

By Lemma (3.8) of (121, there exist 0 £ i1 < ... < in £

such that Yt = ¢ *a, «>,..., 'a, @) is a unimodular
S| n

matrix. Let £ 1 = (¢;4). The image of @]C? is in the coordi-

- ] - ,

nate chart Uk = {Xk # 0} of P". Let Yj = Xj / Xk (j#k).
- ¥ N .

Assume that @(yt) = (Yj) gy for y, e (COV. Then vy is

) n Cm' .

determined by Yem = I Yi 3otmo= 1, ..., ). This proves

j=1 J ‘

that ¢ is injective on (C:)n. Therefore the restriction of

¥ to Mt is also a morphism and is injective on Mt n (C:)n.

The image of \?IMt is in the hyperplane H:

MY

. . = 0 of
j=0 ?J.XJ °

p! Q_l, we have @lMt =¥, This com-

Identifying H with P

pletes the proof of Theorem (5.1),.

Remark. If A = dIn' W is the projective space of

_10_
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dimension n and {Mt} are projective hypersurfaces of degree ~

d. This case is studied in [61],

§6. Canonical vector fields

Let T € S. Then GWIC? is a free -module of rank n with

. . ) ) ;
a canonical basis e, ..., } We define
ayti aytn
3 ) . . :
=y for i=1,...,n, Similarly wve define
3ei T 9Yr; : ' :
dy._ . - {
ay . = —L1, Let B € 5 and let 8 11 = (XA,.) and let
Ti Yoi : ij?
(“ij) = T—1E. Then we have

Proposition (6.1). (i) We have the formula

ER i g g 3
= Ao oo, Yo = 2 M., dy,..
ayti j=1 J1 ayBj T1 i=1 1] B3
(ii) | aa -, 1i=1,..., n } can be holomorphically extended
Ti
to W
n A.i
Proof. Recall that yg, = [ y,1 . Thus the assertion
i=1
(i) is obvious. The assertion (ii) follows from (i),
Definition (6.2). {2 . 93 generates a subspace

ayti'."ayrn

0

of dimension n of H (W,Bw) which we denote by Can(w,ew). The

restriction of Can(w,ew) to HO(Mt,GWIMt) ig denoted ‘by

Can(Mt,ew). We <call wvector fields in Can(w,ew) or in

Can(Mt,ew) canonical vector fields. These vector fields

come from the torus action on W. It is easy to see that

._'11 -



dim Can(Mt;ew) = n,

Cordllary‘(6.3). We have the inegualities
dim HU(W,SW) > n and dim HOm, 6 10,0 2 n.

Now we. characterize the image of
6 : Can(M, 6. > HQ(Mt,V ). Let o be the fixed simplex so

that ha(yo’t) = h(ya,t) where h is as in (1.1). Let X

9 on C!. Then it is

0 ' n
€ H (M, 8.1 > and let X = § X_.
, LWy iZ1 TR Yy T

easy to see that

n
} . _ e _ T
(6.4) 8CX) = (8CX)) g where 6CX), = 5 X, T

Let Xi,..., X" be the canonical vector fields defined by

1 ) 9 n .
(6.5) X" = =y . on C (i =1,..., n),
ayai oi ayoi c

Then we have

B io 3h o
(6.6) exhy, =y, o (i =1,... n).

We claim that {G(Xi)} (i =1,..., n) are linearly indepen-—

n ,
dent, In fact, assume that § Aie(xl) = 0, Then we must
i=1
q Aj . n
have j§1tjbjyo = 0 modulo h(yo,t) where b. = iéikiaji.

This implies that Ai = 0 for each i. Thus we have shown

Theorem (6.7). G(Xl),..., 8(X") are linearly indepen-

dent. They are characterized by

iy _d
0CX™ )y = Fo h(ygq, v e 8Yg 0 en e Yo )l gag

_12 -
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Now we consider the following subfamily of '{Mt}“ Let .

U = {teuU: tg = ... =t =11, We call (M} (teU®) the

embedded deformation. Let £® : 7,u® > HO(M_,v,) be the res-
triction of £ to TtUe. Then we have
Theorem (6.8). Assume that HO(Mt,Ow{Mt) = Can(M 8,
1

Then the Kodaira-Spencer map 8°§e : TtUe > H (Mt'eﬁ) is
0 ‘

).

injective and H (M ) = 0,

t- %

Proof The second assertion is immediate from Theorem

(6.7), (2.4) and the assumption., Assume that 8°§e(v) =0

0
where v = S A —i—. Then by (2.4), we can write
. j ot
j=n+1 J
(£8v)) = 3 3h  ¢or some complex Thi
c .; Hi Y514 dY _ . or some comp Hgreeesr Hpe is
i=1 ci
implies that
n n By 2 n "
e 0y wya )y, +t 5 QA+ Fu.a )y, =0
k=1 j=1 & ki o k=m+1 k i2q i ki o

modulo h(yo,t). This implies that kk = 0 for k = n+1,...,
0 and By o= 0 for 1i=1,...,n, because the left side hés no
constant term. This completes the proof. It seems that the
assumption in Theorem (6.8) is satisfied in many cases if W

is not projective space P", The following 1is an example

where the Kodaira-Spencer map is not injective,.

Example (6.9). (Hashimoto- Okal41 ) Let M be the alge-

braic surface which is the compactification of
yq ¢ y?y%6 + y?yg + 1 = 0., Then M has the following invari{
ants: K° =0, p_ =1 and n,(M) = 2/2Z. M has 27 dimensional

- 13 -



effective - deformation and dim H1

hand, - HO(M,OWJM) =-12- and the dimension :'of the image of

(M,@Q{M) = 20. On the other

effective deformation is 18,

§7. Deformation of a Godeaux surface.

In this section, we study the case of n = 3, Recall
that = = AC(P) is spun by By,..., By. Let 5, be the 2-face
of £ with By ¢ 2, for i=0,...,3. Let Py,..., P; be the
vertices of E* which are adjacent to P such that A(Pi) o Ei'

We define divisors @i of W by B(P) n ﬁ(Pi) and divisors C,

of M by E(P) N E(Pi) for i=0,..., 3. Let o be as in §4 and
we denote Ysi by Y for simplicity. Let A = C[yi,y1
1,...,y3,y51]. For a polynomial g(y) of A, we define an

integer orde g(y) by the order of the zeros (or poles) of
' i

VQ(y) along the divisor ei. Similarly we define ordclg(y)‘by
i

the order of the zeros of (glMt) along Ci' In general, we

have the inequality orde g £ ordC g.

. 1
1

Definition (7.1). We say that g(y) has a reqular form

on Ci if orde gly) = ordcig(y).

1

We fix an index a  for 0 £ a £ 3. Let

Tt = (P,Ql(r),Qé(r),Q3(t)) be a simplex of S- such fhat

Ql(r) = Pa and let 0—1-1 = (Aij). Then by the definition, we

3 v \ A.
~ have orde y"'= 2 Vv Ajl' We  define ha(y,t) =3 tj Yy J

a J

- 14 -
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where the sum is taken for j such that Bj € E,

ha(y,t) is homogeneous with respect to the weight

(1

. Note that

(A A A31) and

11721~

(7.2) orde y &> ord h%,

a a

Note also that h® is irreducible in A, Dbecause Ca is an

irreducible curve and the defining polynomial of Ca is h® up
to the multiplication of a monomial. Take g € A. Let

k = orde g and let Iy be the leading term of g with respect
i | |

to the above weight. Then we have

Lemma (7.3). g has a reqular form on C_ if and only i

=1 a ==

9 is not zero modulo he

Proof. We can write 9 (y(y, )) = y¥1 g'(yT2,yI3). As

g(y(y, ) = g, (y(y,>)) modulo (y¥i1), it is easy to see that

0 modulo h?

g’tCa = 0 iff Ik

3 ~ )
Now let X = § X. gi- be a rational vector field on W

=t 2 Y
such that X, e 2. We define ord X = minimum ord X and
J A
C; 1£3j£3
ord X = minimum ord X Let X = ; X_. 3 on C3 Then
Ci 15§ 3 C; 73 j=1 T3 ¥ T
we have minimum ordC Xt- = minimum ordC X. by Prop031—
15 3£3 a '] 135£3 a )
tion (6.1). In particular, if X is an element of
HO (n

t,ewlMt), we have 'ordci X 2 -1 for each i. Simila:ly

3 .
let w = 3 Y, dyj be a rational 1-form such that Y, e A, We

._'15_



define ord w and ordc_w in the same way. Then we have
_ ) i
i

Lemma (7.4), (i) Let X be as above and assume that {Xj

}oo(]

1,2,3) have reqular forms on Ca and agssume that

I

ord~ X
Ca

-2 for gsome a. Then X is not a holomorphic sgection

of 6, over M.

3
(ii) Let D = % U Ci + D’ be a divisor on Mt such that the
i=0 '

support of D’ does not include any of Ci (i=g0, ..

., 3). Let

w be as above. Assume that {Yj} (j=1,2,3) have reqular forms
on C, for some a. If ordC w £ - N, the restriction of w to
. Ta
. . : 0 1
Mt is not contained in H (Mt,leMt(D)).

For the rest of the section, we consider the following

example, Let

=2 4 2 4 2 4 2 4
fA(z) =25 24 2, * 27 25 245 %+ 25 25 29 + 25 25 24
3 11 t
and let f(z) = fA(z) + 3 z; . Let P = “(1,1.1,1)., As
i=0

F*(f) is invariant under the canonical Z/4Z-action, we can

take Z* to be Z/4Z-invariant and E* is canonical in the

sense of [121. Namely we have Py = t(1,2,3,1),
P,= Y1,1,2,3), Py = t3,1,1,2) and Py = t2,3,1,1).  Let
o = (P’PO’Pl’R) where R =

(P, + 2Py + 3P, + 2P) / 5 = %(2,2,3,3). Let N = E(P). The

defining equation of M in Cg is

5 2 5 o3

h(y)=y1y3+y2y3+y3+1=0.

_16_
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We have shown in Example (9.11) of [121. that nl(M)

i

7/52

and q = pg = 0, This surface is known as a Godeaux surface,

As f is 11, the dimension of the embedded deformation is 8,
The .corresponding embedded monomials are: Yo¥q, ygyg, YqY3,
2 2,22 3 2

YqY,Y¥3, yiygyg, YiY¥3, Y{Ypy3 and yjy,y3. See [11]1. = Let

h(y,t) be as before. As numerical data, we have K ~ 2C, -

3
2 2

C2 ~ 2C1 - C0 and Ci = 1 and K® = 1, Here K is a canonical

divisor, By the Riemann-Roch theorem, we have y(8,) = -8,

t
We will show that

0 2

Theorem (7.5). We have H (Mt,et) = H (Mt,et) =0,

8 and the Kodaira-Spencer map

1 .
H (Mg ,8,) = C

5-£€ . TtUe > vl )

t-9¢

i n isomorphism.

Compare with the construction of the moduli space of
the Godeaux surfaces by Miyacka [81, Note that Z/4Z acts

canonically on U® =0 that Mt ~ Mgt'for g € Z/47,

0 w 3 2 -
Lemma (7.6).\ H (Mt,ewlMt) * C” and H (Mt,OwlMt) = 0,
Proof. Let r = (P,P, P,,R') where R* = %(3,3,2,2). We
. . - =2
denote Yri by uy for simplicity. Then we have Yq = Ut ou,,
Yo = u13 ug and y, = u? UES ugi. Let X € HO(Mt,GwlMt).,» By

the GAGA-principle, X can be expressed in Cg n Mtb as

3 3
S X, 37— where Xj € A,

Assertion. We can assume that Xj has a reqular form

- 17 -



on C, and C, simultaneously.

Proof., We may first assume that ord X. = ord X.,
- ¢ 1 C3 i
3
using the . irreducibility of h® in A. Assume that X, has
not a regular form on C2. We substitute hz(y)yv by
2

(h(y,t) - h (y,t))yv to change Xi in a regular form on C2 in

a finite steps; Note that this operation does not decrease

ord Xi' Thug if we change Xi in a regular form X’i on C2,
3
we have
.ordC Xi = ordC X’i 2 ord X'i 2 ord Xi.
3 3
3 3
This implies that orde X'i = ordC X'i by the regularity
3 3
assumption on C3. Assume that the monomial yv has a non-
zero coefficient in Xi‘ As we have
v o —2v1-3v2+5v3 uv1+2v2—5v3 U—v3
y =y 2 3 -
we must have vy 2v2 + 1 2 5v3 2 2v1 + 3u2 - 1. Combine

this wiﬁh V4 2 —611, Vo 2 _6i2 where 3ij is the Kronecker’'s

symbol., The possible cases are yg Y3 5%— (i=1,2,3), yf yé
i
13 -1 3 -1 3 3 : . .
aYz' Y1 Yo ayz, Y Yy ay1 and.ayi. After checking their
linear combinations in detail, we conclude that
0 _
H (Mt,ewlMt) = Can(Mt,Gw).
2

Now we consider H (Mt,ewlMt). By the Serre duality,

this 1is isormophic to HO 0

1 ~ ul¢x ol -
(My ,@u(K)) = H (M ,Qu1M,(2C,-Cy))

_18..
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where Qé is the sheaf of the germs of 1-forms on W, Let
3 N |
w = 3 Y dy; be a rational 1-form with Y, € A and assume
i=1
. Co 0 1 _
that the restriction of w is in H (Mt,leMt(ZC1 CO)). Let

yv be a monomial with a non-zero coefficient in Yi’. Then by
Lemma (7.4), we have vy 2 -2 + 311, v, 2 1 + 512 and
vy * 2v2 2 5v3 2 2v
This implies that H

1 + 3u2. This has no integral solution,
2(Mt,ewlMt) = 0, completing the proof of
Lemma (7.6).

Proof of Theorem (7.5), We consider'the exact sequence

(1.4). Considering the section ¢ of HO(Mt,vt) such that

s = 1, we see that Nt = [5C3]. Thus by Riemann-Roch

)

N

theorem, we have x(ut) = 11, y(®

t -8 and x(ewlMt) = 3.

. . . 1 1 -
This implies  that H (Mt,ewlMt) = H (Mt,ut) =0 and
H2(Mt,6t) = 10, ,8,) = 0 and H'(M_,8,) = c®.  This com-

pletes the proof by Theorem (6.8).
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