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LINEAR REPRESENTATIONS OF BRAID GROUPS
VIA LOGARITHMIC CONNECTIONS

by Toshitake KOHNO

(Nagoya University)

In this note we discuss monodromy representations of braid
groups arising from certain connections with regular singularities.
In Section 1, we give an expression of our monodromy by means of
Chen's iterated integrals and show a Riemann—Hilbert type
correspondence in our situation. In Section 2, we focus a
typical example of our connection, which gives classical Burau
representations. The integrability condition of our connection is
revelent to the classical Yang-Baxter equations. In Section 3, we
deal with the monodromy representations of our connection associated
with the rational solutions of the classical Yang-Baxter equation
which contains the Jones representation as the simplest case.

Recently, a remarkable relation between the monodromy

" representation of braid groups obtained in this way and the
vertex operators on the conformal field theory was discovered
by A. Tsuchiya and Y. Kanie [TK]. They obtaied the irreducible
representations of Hecke algebras due to H. Wenzl [W] as the

monodromy.



: Nofationsr

B braid group on n: strings with generators oi , 1£i<n-1

’

represented by a braid interchanging strings 1  and i+1.

P : pure braid group on n strings with generators Yij'=
n
2 -1 -1 . ..
09541 *°° oj-lajaj—l cee 9y ’ 1£1<1$§
. n . . .
X, = ( (zy, +vvs 2 ) €00 5 2z, & z; it 1 # ).

1. Holonoﬁy Lie algebras and a Riemann-Hilbert type

correspondence

41

First we give an intrinsic definition of the holonomy Lie algebra for

a simplicial complex X . The cup product is considered to be a

1 2

linear map U : A® HI(X ;@ — H%(X ;@) , which induces by

duality the homomorphism 7 : H2(X Q) — A2 H, (X ;&)

Let LHl(X ;@i be the free Lie algebra generated by H1(X ;&

over Q@ . Let J be the homogeneous ideal-of LHl(X ;@) generated

by image n . Here we identify A2 H, (X ;@) with the degree two

1

part of LHl(X ;@) . The quotient Lie algebra LHI(X 4O DWANN |
is called the holonomy Lie algebra of X over @ , which we

shall denote by Gy
Let us discuss the meaning of the holonomy Lie algebra in the
case of the complement of a hypersuface in Cn . Let Di , 1£Li<Ls ,

b? a finitely many family of irreducible hypersurfaces defined by

-fi . We consider a matrix vélued 1-form QV= > Pidlog fi with
i
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some constant matrices P, . Let X be the complementary space
of the union VU Di . The l-form Q is considered to be a connection
of a trivial vector bundle of rank m over X in a natural way.
This connection is integrable if and only if the condition
(1.1) SR aA Q =0
is satisfied. Let e : H; (X ;€ — gl(m, €©) be the linear
map defined by e(Xi) = Pi , 1<i<s , where Xi denotes the homology
class of the hypersurface Di . Then we observe that the
integrability condition (1.1) is satisfied if and only if e can
be lifted to a Lié-algebra homomorphism of GX®C

In the case of the complement of the union of finitely many
complex hyperplanes Hj , 1<j<s , in Cn , the holonomy Lie algebra

is generated by Xj , 1£j<s , with relations :

(1.2) [ X. ,X. + ... +X.1=0 , 1<v<p ,
) i, iy ip
for any maximal family { Hj s e e ey Hj } such that codimc ( Hj\n .ed
1 p ' 1
NH, )=2 (see [K11) .
P

To describe basic results on a relation between holonomy Lie
algebras and fundamental groups, we recall several notations.

Let ;. (X)) o ... > rmn (X) o ... denote the lower central series

171 1
of nl(X) Adefined inductively by Flnl(X) = nl(X) . Fm+1n1(X) =
[ nl(X), anl(X) ] , m22 . The lower central series of GX is

defined in the same way by using the bracket products. The graded
Lie algebra [ gr m (X) 18 Q@ is defined to be

ej [ anl(X) / rj+1n1(X) 10
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with the bracket products induced from the commutator produsts
(see [MKS1). The graded Lie algebra gr G, is defined to be
o, [ TGy / Ty, 6y

Let us denote by ['nl(X)/ ani(X) 1 ®Q the Malcev Lie

]

algebra associated with the nolpotent group nl(X)/ anl(X) ,
which is a nilpotent Lie.algebra over . @ defined inductively by
means of the central extensions

anl(X)/ Fj (X)) — . (X)/ Fj+ N, (X) — = (X)/anl(X)

+17°1 1 11 1
(see [M] for a precise definition).

Theorem 1.3 ([K11). Let X be the complement of
a compler hypersurface in. C° . Then we have the following
igomorphism of milpotent Lie algebras over Q :
(1.3.1) L Kl(X)/ rjnl(x? 10 =« GX / erX , J=1
In paticular, we have an isomorphism

(1.3.2) [ gr i, (X) 1 @@ =~ gr Gx

1
The proof is based on a Sullivan's result [S] which describes a
relation between the nilpotent completion on fundamental groups
and 1-minimal models and the Morgan's mixXed Hodge structure on the
1-minimal model [M]

Let us go back to thé situation of an integrable connection
Q=73 P.dlog £, on the trivial bundle E on the complement of a
hypersurface. This defines a foliation transversal to the fibers

on the tatal space. of E ,‘which’gives a linear representation of
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the fundamental group

8 1 m (X, ¥ — Aut(E))

1
as the holonomy. We recall the notion of iterated integrals
due to K.T. Chen [C] , which gives an expression of our monodromy

representation 6 .

(1.4) Definition. Let X be a smooth manifold and let. ®;
1<i<r , be matrix valued 1-forms on X . For a path ¥y : [0,1]1 — X

we put Y*mi = Ai(t)dt and we define the iferated integral by

1 ‘tl tr--l o
fy 00, ... O, = f Al(tl)f Az(tz) . f Ar(tr)dtr"'dtl
v} 0 0
Lemma 1.5 ( K.T. Chen [Cl). Let us suppose that the connection

Q 18 integrable. Then the monodromy reprasentation 80 is given by
6eyy = 1 + fya . f&nn»+ IYQQQ N

We see that for each 7 there exists M>0 such that
I IYQ = QI = oMi/ryy , therefore the.above Series is convergent.
As a universal expression of (1.5) , we obtain a homomorphism
6~ @ m (X %) — UGe0
by the iterated integral of the Chén5s formal connection
Qv = I X,® dlog I,
Here U(GXGC)" denotes the completion of the universal enveloping
algebra of GXQC with respect to the natural filtration by degrees
and Xi is the homology class correspdnding to the hypersurface
Di |
For a group G we denote by CIG]l its group algebra over T .

Let €& : CIG] — C denote the augmentation homomorphism and we put

IG = Ker € . Let CIG]" be the completion of CI[G] with respect to



the topology defined by (1%G), .. , where 16 signifies the k-th
power 0of IG . Let j : G — CIG]" be the natural homomorphism.
Theorem 1.6 ¢ [A11[H]1 ). We have an isomorphism of

complete Hopof algebras
Ct T, (XY ] & U(GXQC)
such that the following diagram is commutatlive.

CL n, (X) 17

. 1
J
7, (XD {2
&
U(G,e0)
(1.7) Remark. By taking the primitive part P of A =
U<6X®€)“ , i.e., P= { X €A : Ax =3x8 + 18x } , we obtain

the Malcev Lie algebra of the nilpotent completion of nl(X) over

£ . This describes a relation between Theorem 1.3 and Theorem 1.6

In the case X = ( (2, ..., 2 ) € ¢t o 2%z, if i#j ) , the

fundamental group of X 1is the pure braid group on n strings.k

The holonomy Lie algebra G

X is generated by Xij , 1£1<j<n , with

the relations
[ Xij . Xik + Xjk 1 = [ Xij + Xik . Xjk ] = 0, i<jck
{ Xij , Xk{ =0 , i,j,k,Z distinct

The above relations are called the infinitesimal pure braid

- relations.
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Let C«Xij» denote the non-commutative formal power series

ring with inderterminants Xij , 1<i<jg<n . Let I be the two-sided

ideal of C«Xij> generated by
O X5 0 Xyt Xyd o0 DX Xy 0 Xy
[ Xij , Xk£] , i, Jj, k, £ distinct.

+ XJ ], i<j<k

We denote by A the quotient algebra C<X1j>/l .

The main result of this section is-the following.

Theorem 1.8. Let p : Pn —— GL(m, €) be a linear
representation such that each | G(Yij) -1 1 +is sufficiently
small for 1<i<j<m . Then there exist constant mairices Qij ,

1£i<j<n , close to 0 , satisfying the infinitesimal pure braid
relations , such that the monodromy of the connection Q =
21$i<j$nQijdl°g(zi- zj) is the given p

(1.9 Remark. In the case of unipotent representations, the
above statement follows from Aomoto's theorem [Al] without the

hypothesis on | G(Yij) -1l ( see also [HI]).

The key fact to prove Theorem 1.2.6 is the following.

Proposition 1.10. The universal monodromy [ Pn — A 18

injective.

For the proof of the Proposition the reader may refer to [K5].



The proof of Theorem 1.10 is outlined in the following way. For an

integrable connection Q the monodromy matrices G(Yij) are given

py (1.5). We put Mij = log B(Yij) . By taking the logarithm
of (1.5), we obtain the expansion
- '<'
Mg = Q5 # 2!1!22 a,Q , a; € C, 1<i<jzn

Here I stand for usual multi-indices. By means of the injectivity
of § , we can formally invert the power series :

a.X

Ziy = X5t 212 215

1]

to get the power series

Xij = Zyg * Zyq11>2 P1Zp » bp € C .
It follows from a work of Golubeva [G] that when each | G(Yij)—l I

is small enough the above power series converges absolutely
for Zij = log G(Yij) and that the monodromy of the connection thus

obtained is the given 8 .
2. Jordan-Pochhammer matrices and Burau representations

¥We start with the natural projection n : Xn+1 —_ Xn . In the

followings, fix a complex number X such that A and nx are

not integers. Let £ be the local system over X associated

n+l
2rix
e

with the representation defined by sending Yij to
The main object of this paragragh is to study the local system over
Xn defined by Rln*ﬁ* . Here ﬂ* stands for the dual local system

of £ . Let i:2Z < X 41 denote the fiber of m over ( 2

1 ’
' Zhey )
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We put o = (§—21)l ...'(§—2n)l , where & = 2 for

n+1

w € Hl(Z, i*Z) , let us consider the integral

Fi( 2y s eees 24 ) = IW ¢ dlog(g—zi) , 1£i<n

which are considered as multf—valued ftnctions on Xn .
Proposition 2.1. - We have the'fotlouing equalities :

dF, = 2j¢i(AFi- AFj)dlog(zi— zj) , 1l<ign .

Proof. We see that
- _ -1, -1
dFi = ngi( fw Ab(g-z.) (% zj) dg }dzj
-2
- A Iw(x-1)¢(§ zi) dg }dzi
The first term is equal to
. -1

- 2j¢}(lFi AF (25 2)) dzj

It suffices to show

-2 -1_
(2.2) Iw(x—1)¢(§ z,) dg + iji(lFi AFj)(zi zj) = 0

The LHS of the above expression can be written as

n ,._ -1 _ o "2 s
fw Ab(E-2z) 2, (82 Tdt fw ®(-2z,) “dt

which is equal to fw d{ @(Z-zi)_l) for a fixed ( 2y 4 eees 2

This proves (2.2) by means of Stokes theorem, which completes

the proof.

Let wj ,“1$j$n-1 , be a basis of HI(Z, i*Z) chosen as in

[DM] Section 1. We put
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Iw1¢ dlog(g—zl) Y eees IW o dlog(g-zl)‘, 1

n-1

{ fwlm dlog(g—zn) s ee ey Iwn_1¢ dlog(;—zn) , 1

The following nXn matrix Jij , 1<i<j<n , is called the Jordan-

pochhammer matriz.

X . . = (i

1] -X . X (j

Here all the other components are zero. By means of Proposition

2.1 we have

Corollary 2.3. The matriz Y defined above is a
fundamental solution of the total differential equation
dy = 21S1<j$n Jij dlog(zi— zj). y

The 1-form J dlog(zi— zj) defines an integrable

21$i<j$n ij

connection on the trivial bundle an C" . Let the symmetric
group Sn act diagonally on this bundle via the premutation of
coordinates. The above connection is invariant by this action,
hence it defines a local system over Yn = Xn / Sn , which is

the direct sum of a local system of rank n-1 , say ;n , and a

rank 1 trivial local system. We call ;n the Jordan-Pochhammer

Systen.
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Let us discuss the monddromy representation of Bn associated

with }n . For this phrpose we recall the Burau representation (see

-1

[B1). Let B, , 1<j<n-1 , be the matrices with ZI[t, t ]

coefficients defined by
- -

5 1
The correspondence oj — Bj defines a linear representation of B
called the Burau representation. Since this representation remains
invariant the subspace such that the sum of the coordinates is zero,
we get a n-1 dimensional representation

-1

¥, B, — GLn_l(Z[t, t

n 1

which we call the reduced Burau representation.

Proposition 2.4. The monodromy representation of Bn

associated with the Jordan—-Pochhammer systenm ;n i8 the reduced

Burau representation with t = e2n11

Proof. Let us assume that X and nx are not ihtegers. By

Corollary 2.3, the proposition can be proved by looking at the

monodromy of the integrals of Pochhammer type :
_ IR | o\ .
Gj = ij(E 21) ees (X Zn) d¢ , 1<j<n

where {Yj)ISan is a basis of nl( C - {21 s eeey Z_}, %)



BY looking at the action of _Bn on the above free group (see [B]

cor. 1.8.3 ), we see that by the action of o, the integrals

G. 'S are transformed by the rule :
i
G. — (1-e2T1}) g 4 2Mirg
i i i+l
Giaqp— G
G. — G, if j# i, i+l .
J J

This is nothing but the Burau represehtation. By choosing a

basis of Hl(Z, i*ﬂ) , we get the reduced Burau representation.
We.know by Lemma 1.5 that the monodromy representation is
holomorphic with respectzfo X , hence by an analytic continuation

we have proved the proposition for any Xx .

3. Braid groups, classical Yang-Baxter equations

and Jones algebras

3.1. Review of classical Yang-Baxter equations

Let V be a finite dimensional complex vector space. By
the chssicaL Yang-Baztier eqdation we mean the following functional
equation for a matrix valued function r(u) € End(vev) of u € C :

(3.1.1)

[ rlz(u), ro(u+v) 1 + [ r,, (W), r (u+v), r,,(v) 1 =0

13 12 (vi 1+ 10r

23 13 23

‘fo : = V.= V.=
r any u, v € € . Here rij(u) € End(V1® v2® V3), V1 V2 V3 vV,

signifies the matrix r(u) on the space Vi® Vj , acting as identity

on the third space ; e.g., rlz(u) = r(u)®1v , (u) = 1v®r(u)

T3

Since the equation 3.1.1 is written in terms of bracket products,
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it makes sense for a g ® g - valued function r(u) , with an
abstract Lie algebra g . To each such g ® g - valued solution
r(u) , we may associate a solution .of (3.1.1) (p®p)(r(u)) €

End(V®V) , by specifying an irreducible representation p : g —
End (V) . In the case g 1is a simple Lie algebra over € , solutiong
of the classical Yang-Baxter equation have been classified by
Belavin-Drinfel'd <(see [BD] for the precise statement). In

particular, we know the following rational solution.

Proposition 3.1.2 ( Belavin-Drinfel'd ([BD]l ). Let g be
a simple Lie algebra over € and let o be an orthonormal
basis of g with respect to the Cartan—Killing form. We put
T = Ea Ia® Ia € g®g . Then r(u) =t/ u ié a solution of the
classical Yang—-Baxter equation.

Proof. Ve denofe by U(g) the universal enveloping algebra of g
Let ¢ € U(g) be the Casimir element defined by ¢ = Ea Ia'la
Let A : U(g) — U(g) ® U(g) be the diagonal homomorphism defined
by A(X) = x®1 + 1®1 for x € g . Then <t can be written as
(3.1.3) T = A(c) - ¢c®1 - 18c |

Let us recall the well-known fact that the Casimir element <c¢

lies in the center of - U(g) (see for example [Hul). It follows

from the expression 3.1.3 that

(3.1.4) [ A(x), t 1 =0 f£for any x € g
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T

in particular, we have
(3.1.5) [ Typ* Tyg 5 Tp3 15 L Ty » Tygt Tyg 120

Here T;; 18 defined by rij(u) = Tij / u . By an elementary
computation we check that the equation 3.1.5 signifies that

r(u) is é solution of the classical Yang-Baxter equatioh;

Let us observe that the equation 3.1.5 corresponds to the

infinitesimal pure braid relations in the case n=3.

This leads us to the following construction. Let pi T g — Vi ,
1<i<n , be a family of irreducible representdtions of g . We

i ce. ® .. = ! . i< 3
define tij € End( V1® » Vn } by tlJ (pl® pJ)(t) , 1£i<j<n

Here pi signifies the representation pi on Vi , acting as

identity on the other factors. Then we have

Lemma 3.1.6. Let tij € End( v1® ve. ® Vn ) be the matrices
defined above. Then these satisfy the infinitesimdl pure braid

relations.

Proof. The relations 1.1.5 follows from 3.1.5 . The other relations

are clear from the construction.

Now let us consider the connection

(3.1.7) Q= 3 T, ; dlog(z, - zj)

1£i<jsn i
- - n )
on = e ; . . i i j .
Xn { ( zy » Zo )y € C zl¢ z; if i # 3 By
Lemmas 3.1.6 and Sect.l, the above connection is integrable and
_hence gives a linear representation of the pure braid group on

N strings as the monodromy of the total differential equation

dy = Qy . Starting from a simple Lie algebra g and a family
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of linear representations pi T g — End(Vi) , 1<i<n , we have
obtained a linear representation
(3.1.8) 9 : P — GL(V.® ... ®V_)

« : n 1 n
Cur problem is to give an explicit form of the above representation,
Let us remark that the total differential equations of this type
appear naturally as the differential equaticns satisfied by

N-point functions in the two dimensional conformal fieid theory

(see [BPZI1[TK1).

3.2. The case g = sl(2, ©

The object of this paragragh is to describe the monodromy
representation 0 : Pn — GL(V1® “ee ®Vn) defined in 3.1.8 in the
case g =)sl(2, €) and all p, : 8 — End(Vi) , 1<i<n ,‘are two

dimensional irreducible representations. We put

h = { 1 © ] e = [ 0 1‘] f = [ 0 O ]
0 -1 ) 0 O , 1 0
In our case, the element T € g ® g defined in 3.1 can be written
in the form
(3.2.1) t = 271heh + e®f + f®e
For x € € , we consider the following total differential equation

(3.2.2) dy = - X tijdlog(zi— zj). y

z1Si<j$n

on Xn . Let us denote by Gk : Pn — GL(V1® . ®Vn) the

corresponding one-parameter family of monodromy representations.

We put V1 = V2 = ee. = Vﬁ =V in the followings.

We put



Let e be an element of #, defined by

- -1 -1 =~
e = {((1+q) ~q (e11®e22)A+ (1+q) ~J/q (e12®e21 f e,,%€;,)
+ (1+q)_1(e22®e1

1))®1®1® ..o @1

where 4q € C* , and eij are matrix units for MZ(C) . The above
7 has an obvious shifting endomorphism o defined by
n

= /xX.® ... @
o.(x1® e @xn) X ®x, X1

We put e, = 01-1(e) , 1<i<n-1 . We see that the correspondence

c. — T(oi, q) qe; - (l-ei) defines a linear representation of
i .

the braid group, which is known as the Pimsner-Popa-Temperley-Lieb
(PPTL) representation in the case n —-— « (see [J]) . Our main:

theorem in this section is the following.

Theorem. 3.2.3. Let 91 : Pn — GL(V® ... ®V) be the monodromy

representation of the connection

- 21Si<j$n X tijdlog(zi- zj)

defined above by means of g = s1(2, €) and its two dimensional

irreducible representation. Then 91 18 equivalent to the

restriction of the linear representation of Bn defined by

_1/4 _ _ . _
el(oi) = q { qe, (1 ei) } , 1<i<n-1 ,

The proof is given in [K51].
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Remark 3.2.4. Let us recall that e 1<i<n-1 , appearing

in the definition of the PPTL representation satisfy the relations

2
e’ = e,
1 1
e.e...e. = 8 le B = 2+q+q !
i7ix171
e.e. = e.e, if li-jl=2
ij ii. T

Let A8 n denote the abstract € algebra generated by 1, e1 s e

en_1 with the above relations. ) In the case 824 ,
this is a kind of the Jones algebra (see [J1). We have shown that
our monodromy representation factors through the natural

homomorphisms :

C[Bn] — H(gq, n) — AB,n

where the second homomorphism is defined by the correspondence

gi —_— qei- (l—ei)

By using a description of the representationé of AB n explained
in [J] , our monodromy representation is decomposed in to the
irreducible components parametrized by the following Young diagrams

if q 1is not a root of unity.

8]

AN

oo
N
BD ooo
VRN
By HH ge=

/
N

NN

ooao

1° d2) the Hecke algebra representation

of Bn corresponding to the Young diagram of type (d

We denote by p(d

1! d2) ]



st

~

d12d220 R d1+ d2 = n . As a corollary to our main theorem, we have
the following.

Corollary 3.2.5. If a4 1is not a root of unity, our monodromy
representation 3.2.3 1is a direct sum of p(dl, dz) , d12d220 ,
d.+ d2= n with the multiplicity 2d.- n + 1 .

1 1
Remark 3.2.6 : 1In the above decomposition, the
Jordan-Pochhammer- system }n examined in Section 2 <corresponds to

the Young diagram of type (n-1, 1) .
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