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‘Bifurcation Analysis of A Cusp-Constrained

Piecewise Linear Circuit
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Ryuji Tokunaga
Department of Electrical Engineering,
Waseda Unversity, Tokyo, 160, Japan.

ABSTRACT

This paper performs a detailed bilurcation analysis of a cusp-constrained circuit in terms of the
quantity "rotation-jump ratio”. This turns out to be a very natural quantity to analyse various
interesting bifurcation phenomena observed in the circuit.

L INTRODUCTION

This paper performs a detailed bifurcation analysis of a constrained "Lorenz"-like attractor
observed from an extremely simple piccewise-linear circuit , in terms of the "rotation-jump ratio".
Many interesting bifurcation structures are descemnible.

One of the motivations of this paper came from recent works on constrained attractors. Oka
and Kokubu [1] observed a "Lorenz"-like attractor which is constrained to a smooth cusp surface.
Ushiki and Lozi [2] analysed bifurcations of "confiner" and "anti-confiner” of a constrained
"Lorenz”-like attractor. Apparently, the reason for studying constrained attractors is its ease of
performing bifurcation analysis. For example, no global two-parameter bifurcation analysis of the
original Lorenz equation has been done mainly because of its complexity.

Our bifurcation analysis procecds in the following steps:

m Experimantal observations.

(2)  Confirmation by computer simulations.

(3)  Analysis of typical trajectories in terms of the piecewise-linear geometry of the
dynamics.

(4)  Derivation of the rigorous 1-D map.

(5)  Construction of an approximate 1-D map.

(6)  Detailed bifurcation analysis of the approximate 1-D map.

@) 2-parameter bifurcation analysis.

The "rotation-jump ratio"” defincd below turns out to be a very natural quanitiy for analysing those
bifurcations.



1.1 System and Attractor

We have recently reported on a "Lorenz"-like attractor from a circuict whose nonlinear elements
consist of two uncoupled piecewise-linear resistors [3]. This ‘circuit is shown in Fig.1(a), where
V-NIC (resp. I-NIC) denotces a voltage (resp. current) inversion negative impedance converter. All
elements in this circuit are linear except for the piecewise-linear registors g,(-), g,(-) which are

described in Fig.1(b). The dynamics of this circuit is given by

Ldi. -y -Rj

dt LA 1L

G 1= B0 V) B v Oy iy (1.1)
dvy _

Gt =g V) F &, V) + Gy (v, -E)

g, (0= 2 (my - m i+ (my +my )x), g ()= A (mg - mlxl - (my +m; )x) (1.2)

and vc,,vc, and i; denote the voltage across C,, the voltage across C, and the current through L,
respectively. Using the parameter values

L = 13.0, C;= 6.8, C,= 47.0, R,=1.7, G,= 1.5, G,= 1.0, E= 1.0, m;=1.48, m;= 0.56,  (1.3)
we observed a "Lorenz”-like attractor (3). In this paper, we choose a different set of parameter
values; namely, ' v

L =04, C;= 0.001, C;= -1.0, R;= -2.0,G,= 0, G,= 2.0, E= -1.0, my= -1.0,m;= 0.5.  (1.4)
A different piecewise-linear function is chosen for g,(-) and g,(-), as shown in Fig.1(c). The new
circuit which realizes (1.4) and Fig.1(c) is shown in Figure 2, where C, is replaced by an open
circuit, i.e., C, is considercd as a parastic element. From this dynamics, we observed strange

attractor whoes projections are shown in Fig.3.

Now let us consider the behavior of a typical trajectory in Fig.4. If an initial condition is picked
in the centre of the righthand-side spiral, the resulting trajectory will rotate around the righthand-side
centre in a counterclockwise direction while increasing amplitude. After several rotations, trajectory
hits the righthand-side fold, then jumps to the opposite side in a rapid motion. Then it starts to rotate
around the lefthand-side centre in a clockwise direction. After several rotations, it hits the
lefthand-side fold and jumps to the righthand-side region again. The same process is repeated many
time in a random manner.

These observations indicate that rotations and jumps are very important quantities describing the -
nature of trajectories. We will define, therefore,

P=n/m, (1.5

where n and m denote the number of rotations and the number of jumps, respectively. This
"rotation-jump ratio” plays an important role throughout our bifurcation analysis. .

Note that (1.1)~(1.3) is not the Lorenz equation [4] and yet it exhibits "Lorenz"-like attractor. The
piecewise-linearity of the dynamics simplifies the subsequent analysis in a significant manner.
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1.2 Experimental Observation of the G,-Bifurcations

Consider first the bifurcations resulting from varying the conductance G,. At G,=4.0, a pair o
non-symmetric periodic orbits are born via Hopf bifurcation. As G, decreases, the amplitude of each

orbit gets larger until they merge with each other, forming a symmetric periodic orbit, via a reverse

symmetry-breaking bifurcation at G,= 3.646, (see Fig.5(a)~(d)). In the same manner, as G,
decreases, the amplitudes of the right and the left cycle grow larger, until they become tangent to

itself and split into a pair of non-symmetric periodic orbits via symmetry breaking-bifurcation at G,=
2.86, (see Fig.5(e)~(f)). The same process occurs once again, with the periodic orbits merging with

each other into a symmetric periodic orbit at G,= 2.433, (see Fig.5(g)~(h)). This symmetric periodic

orbit, however, soon disappears and a chaotic state suddenly appears at G,= 2.220. Subsequently,

several small periodic windows with high period appear via reverse period doubling and then

disappear via an inttermittency process. Then follows a periodic window at G,= 2.17 via reverse

doubling, (see Fig.5(i)~(m)). At G,= 2.11, this periodic orbit suddenly breaks into a chaotic state viz
intermittency. Then, several small periodic windows appear and disappear in quick succession

before a large periodic window appear at G,= 1.995. Then chaos appears once again via

intermittency, disappears abruptly at G,= 1.94, (Fig.S(n)~(0)).'

Figure 6(a) shows the bilurcation diagram of the above bifurcation scquence, where the
horizontal axis denotes G, and the vertical axis denotes the state.
This diagram is constructed in following manner:

Consider Fig.6(b) where a part of a typical trajectory is drawn together with fixed points and
related sets on the (ve,,ve,)-plane. The fold (resp. co-fold) line is the set of points where a trajectory
"takes off" (resp."lands") for a jump. (sce section II for details.) If an orbit hits the vo,= 0 -plane
downwards for instance at (i, *,v¢,",0), then lve,*l is plotted versus G,. And if the orbit hits the v =
0 -plane for instance at (i, ',0,v¢,), then v, is plotted versus G, (see Fig.6(b)).

This bifurcation sequence can be roughly sumarized by the following schematic representation:

Equilibrium —# 1/0 =2 1/1 24172 254 13 —L Chaos
*RD
1/5 422 Chaos «2— 1/4 <2228 42— 4/16 +— 277
where"H","RD","S","RS","T", and "J" denote the Hopf bifurcation, reverse period doubling,
symimetry breaking bifurcation, reverse symmetry breaking bifurcation, intermittency and jump, and

the fractional numbers denote the associated p. If a trjectory is non-periodic we simply let p be

undefined. It is very interesting to observe that the sequence of p described above can be
characterized by a period-adding sequence of the circle map [5] even though (1.5) is not the rotation
number. In section II, a detailed study is made of the trajectories in terms of piecewise-linear
geometry.
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In section III, a one-dimensional map is constructed and used to analyse the one-parameter
bifurcation phanomena. In section IV, we describe the two-parameter bifurcations and fractalization
phenomena in two-dimensional parameter space.

II. Constrained System

If we define
=R b= ’G2 _ G3 _E_‘?E _ iL _ mOVC _ mOVC
a= 1“‘0’ ‘_“r'r'l"oyc“"—pt“‘cl X-E:;—yy" G3E 1= GSE’
-C, -C, -m,
o= E‘“'@*“‘-*ﬂ; @D
we can rescale (1.1) and transform it into the following dimensioless form:
%%— = oy +ax)
Eg‘,yt‘=fl(y-z)-f2(y+z)+by+x (2.2)
L (gD Ty +2) -zl
where :
£ (X =Ti{ -(m+ Dixl+ (m-Dx) £, 00 =—;-{ -(m+ Dixl- (m- Dx) 2.3)

Define the subsets
D, ={(xy,2)| -z<y <z}, Dy={(x,y,2)| z<y <-z}
D,={(xy2)! -y<z <y},D.={(x,y,2)| ySz -y }.
As € approaches zero, the state of this system is constraincd to lie in a surface X defined by :
I ={(xy2) I fi(y-2) - f,(y+z) +by +x =0 }.
In each of Dy, D, and D,, the sct X are given by
L ={xy2Ix+(b-2)y=0}, Z,={xy2! x+(®+2m)y =0},

Z={Gxy)l x+(b-1+m)y*(m+1)z=0}.
If

9 dy d dy ) 9 dy
W[&:]XGDO— b-2<0, T);[E;]"EDI_ b+2m >0, W[E]‘ED = m-1+b <0,

+

hold, then Eo and Zi are stable constrained surfaces, while Zl is anunstable constrained surface.

Under this condition the surface:

L, =Zu v Fu ¥, 0= N NnT.nNnT,

represent a pieacewise-linear cusp surface and cusp point respectively where the super script 's”
(resp. "u") denotes "stable” (resp. "unstable™). Define the {ollowing important subsets by

T p = 1/0 means that an orbit is characterized by 1 rotation with no jump.



U+= {(x,y_,z)ly:z], U= ((x’y,z)l y=-z],
F,=U,nZX= I\ nY,, Fo=S n¥,,
Fe=8§,NnZ F, = ((xy,2)l z=0} U T,

where S, denotes a plane containing F, and is normal to the xz-plane, U, denotes the boundaries
between the linear subsets, F, denotes the fold lines of X%, i.e., the "cliff" of the surface, Fc,

denotes the co-fold lines of ):Si , i.e., the "shadow" of the fold line on the opposite stable surface,
(see Fig.7). Except for D,, there are three fixed points in each linear region; namely,

P, = (zk.tak,(ab +a-am -1)k) e ¥, P, =(0,0,-1/(2+¢c)) € I
where k= a(m + 1)2- [a(b + 1 - m)-1](c + 1 -m). Assuming ab + a-am-1=0 and b =0, then, P,
can be rewritten by P, = (£1/(2a-1),+a/(2a-1),0) e X‘. Figure 7 shows the relative position
between boundaries and these subsets.

Consider the projection of the slow vector field on X*; onto the (y,z)-plane i=0,1,+. From (2.2)
and (2.3), we obtain the following second order differencial equations:

Eozxez‘o’ &i:xe xz’
- 2 2
% =a@gi)y g% = Q.z_llyijl-2a}jl;-a§+ga lzi(l—_Za)
24)
dz _ dz _,2al1, 1
qe =-2+0z-1 ar =ty ——’;—agz-l
where x = (y,z).
In the same way, the projection of the subsets are given by
Zor ={(y2)2£0,y20,2¢ -y }, 2% ={(y,)lz£0,y<0,z< y}
Z“'0 = Zs0+ UE:O-! . Z:-r ={(y,z)|-y 525)’}
2 ={(y2) yszs -y} ' :
F, ={(xyD)l z=%y,2y20}, Fey={(x,y,z)] y=%(4a-3)z,2y 20}
H, ={(xy2z)l z=0,2y20}, L, ={(x,y, )l -z=%y,y20}
p: = Ga/(22-1),0), P, = (0, -1/a+c)).

The eigenvalues of p, are given by o = a(a- 1/2), B,= —(2+0).
If a> 1/2 holds, then

E“p) = (¥ z=-1/2 +0),0<y < 1/(2+¢)}
E*(p) = {(y;)lz=-1/2+c¢), -1/(2+c) <y <0}
Es(p) = {(;2)ly=0, z<0}

where E*(p,) (resp.E*(p,) ) denotes the unstable eigenspace (resp. stable eigenspace) corresponding

to o (resp. B ).
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Note that p, is a saddlc type fixed point. On the other hand, the eigenvalucs of p, are given by the
solution of the following characteristic equation: A% -(4a -4 -c) A+ o(2a - 1)2=0.If (4a-4 - )2 -
40(2a - 1)2< 0 holds, then p, is a focus. Its eigen values consists of a complex conjugate pair: ¢
jo=Qa-2-¢/2)tj(-(2a-2-¢/2)?2 + o2a - 1)3)I2,

If 6=(2a-2-¢/2) > 0 holds, thus p, is an unstable forcus. Therefore ¢ = 4(a -1) is the condition

for the onset of Hopf bifurcation. Let l//T (x) be the trajectory of 3 ., Which starts from an initial

condition, x € X, and let J4 be the map:F,—F¢; which corresponds to the jump defined by
z
J i(zt) = (i§-4—a’z)' where zi.=(:tz,z) € Fi.

Define the following important points which determine the fate of the trajectories:

A, = apoint where the trajectory of § , istangentto L,
B, = a point where the trajectory of §_ is tangent to F<,,
C,=L, nE“(p,), o =(00),

a, = the first point wherey” (A,,) hits H, with 1 <0,
b, = the first point whercu/Ti(Bi ) hits H, witht>0,
¢, = the first point wherey” (C,, ) hits H, with >0,
d, = the first point wherey? (0 ) hits H,, with 1 <0,
e,=J"fod,NFey)

g, = the first point wherey” S(C,) hisF, witht>0,

where od, denotes a segment of trajectory between o and d, ,(see Fig.8).

II1 Analysis of the Bifurcation Phenomena
3.1 Rigorous one-dimensional map P

One of the greatest advantages of the piccewise-linearity of our circuit is the fact that we can
derive an exact 1-D map. \

In order to derive the exact 1-D map P, We first identify Z°, U X7, and £ U X", and

consider only the righthand-side. Therefore the subscripts "+" and "-" of all symbols are neglected.

The map J: F -F¢ is dcfined by

J@) = (Z%,z) where z=(z,z)e F.
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Define the map @ : FUH—-R by

<€, X > fxeH
Px =
-<qx> ifxeF

where e, = (1,0) and <, > denotes the inner product. Points which belong to F and H are mapped

by @ into the following points:

x,=®a,x,=®.b,x=P-,x,=0d,x,=D-e ,xg=<b-g,xp=<b-p.
Consider the following subsets:

Il—_- [xdv °°)v I;_= [xavxd]r 13= [ny.]v I4= [Xe,O], 15= (" °°,Xe],
and define the one dimensional map by

P, ifer1
P, 1fer2
P:RoR P, ifxel3
P, ' 1fer4
Ps xfers

where P, (i=1,2,3,4,5) are calculated as follow:

Since &0 and £ (recall (2.4)) are linear differential equations, one can solve for the solution in each

linear region. Using these solutions, the map P; (i= 1,2,3,4,5) are given exactly by

P, (x):1, LUl . 3.1)
X0
x k,sinf, xe 1
P,(x) = 2 - where x = L +x,, atan( - )<0,<T
cos0, + (k - ky -k, )sin8, cos8, +(k - k; -k, )sin@, ky+ kg -k
P,(x):L->LuLul, (3.2)

P,(x)= -e*"(x-x P) +X,

P,x):L-Lul, (3.3)
keg py %o Bo's
P %€ “(cosef +(k-k,-k)sin0;) e’ “(1-€° °) A
2 ()= 2 -xe °(cos8 %+ (k- ksin0D+x,
03 eBOl 3
Bt o Bot X
xp (1-¢ ’3) Xp,® ds(l‘e ) -xpe3
where u,=—(,-0‘f—,30,— L BT g Bl T coso? —ox %
e 03 03 e 03 03 cos0, + (k - ky -k,)sin9,
X _ Uy P_ Up
6, = atan( xpk3 'ux(k 7k, -k4) ) , 03 = atan( (kl +k3 X )up C xpk3 ) ’ 0< t,< 00,

4
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P,x):L,-»LuLul, (€2 |

P,(x)= ex¥[cos0, + (k-k,) 5inB,}(-nx X,) - k,xck®sin@ + X,
X

Y P —
where 6, = atan ks(_nx -xp) -x(k-kl) )

Px): I, - LU, 3.5)

P (x)= -e"‘”[[cose5 + (k-ky) sinf,} (-nx -x) - k,xsin6,]- x,
where '

. -k@
-x (058 + (k-k, K, )inf5-e” 3 g Xe

X =
(n-1)c0s05 + ((k-k,k )n + k, +k,K)sinfs (nx - x Dky-(kok )xe

) <6 ;< atan( 1-n )
n(k-ka- 4) +k1+k2-k

where k= 6/0, k,= (2a-1)%wa, k,=(1-2a)(1+ac+0a?)/wa, k,=(2a-1)/wa, k,=-(1+ac)/wa, xp,=1/(2+c)

n=4a-3, and atan(x) = 0.5 7t (1-sgn(x))+tan"'(x). Note that P, P, P, are described implicitly, while P,
and P, are described explicitly.

Figure 9 shows the x-P(x) graph for ¢ = 2.0. Let us describe the relationship between the 1-D
map P and the constrained system. Map P is discontinuous at x=0. This means that (0,0)
corresponds to the cusp-point o, while (0,x.) corresponds to c.

Note that there is another unstable fixed point, say (x,,x,) , which belongs to L. It corresponds to a
0/1-periodic orbit. Since it is unstable , it can not be observed by experiment or Runge-Kutta. Figure
10 shows the confirmation of this unstable periodic orbit. Recall that when the attractor disappears,
there is a periodic orbit. This situation corresponds to a collision between the attractor and the
unstable periodic orbit, i.e.,"boundary crisis". For this map, the condition for bouridary crisis is
given by x,=P(x)) =x,. This map has two extrema. One of them belongs to the interval I, say

(xp%,), and the other is (0,x ).
The derivative at (0,x) is given by

dP(x) _ dP(x) dof dup dts dux de;

Note that the following relations hold.

Ldup o ifk>1
dul oo

dP(X kT dux kn li

1 <|— m

Sidup)ke' sl ket Em, ifk' <1
where k'=|&1,

Qo

Hence
1im 1 9P | { 0 ifKk>l 36
240 duy o jfk'<1.

2
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This is a very important property which strongly affects the stability of periodic orbits. The conditior

for the existence of an extremum is given by o < (4+2c)/(2a-1). Note that this condition holds
everywhere in the above bifurcation sequence.

3.2 Approximate One-dimensional Map P’

The 1-D map P; obtained above is still too time consuming to deal with directly. We will,
therefore, construct an approximate 1-D map P'; in the following explicit function:

P' (x) = A,(x-X)), P (0) = Aj(xx) +x,, P, (x) = A(x-X) +X,,
P'(x) = Ae2XxK 4x_, P',(x) = Ax (x-X,) , P'(x) = A(x-x),

where A= xg/(xc—xd), A,=-e¥, A= XX H(x k-62%), A= -4x,/x,, A= X, /(x,%,), and x=P(x,). We
choose the function P', which satisfics the condition (3.6). Note that P', and P',, are exactly the
same as P,. By Newton-Raphson iteration, one can calculate x,, Xy, X;, Xg X1 Xp X X Xp and X,
from (3.1)~(3.5), and determine the five parameters A, (i=1,2,3,4,5).

Figure 11 shows the approximation of P, and Figure 12 shows the bifurcation diagram, (compare
with Fig.9 and Fig.6 respectively). Observe that the bifurcation phenomena of this map is
qualitatively the same as the original syatem. We assert therefore that one can examine the bifurcatior
phenomena of the original system by using this approximate map.

Let us define next the following:

I'1= [de Xc], I‘2|-= [Xp,Xd], 1'212 [Xa ,Xp], I'3= [O:X,]v I'4= [Xe,O], I'5= [Xh, xe]’
I'=T,Ul', , I'=T,Ul',,I'=T',uT,, |

P;:{ P ifxel I’n'={ P,,: ffxel:z
P ifxell L ifxely

Note that P',: I', - I',Ju T'; is a homcomorphism. Hence, the approximate map is defined by

PXP'(x)) ifxel;
1 T " "
P :I->1 = {1’4'(;() ifxel,

B'®)  ifxel

Figure 13 shows the schematic illustration of P'(x) and its orbit.

3.3 Analysis of One-Parameter Bifurcation Phenomena

We are now ready to analyse the bifurcation phenomena. Let us first see how the

"rotation-jump ratio” defined for the original dynamics (see(1.5)) naturally carries over to the 1-D
map P'. Consider the following orbit generated by P' (see Fig.13)

Co={x XPpeuccne. 3 XpPs Ky Preeeenoes s XpenP)s 3.7

xpe I',i=123,..m,  xpe I',,j=m+l,m+2,m+3,.,m+n,

/3
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where interval I', (resp. I',) corresponds to fold line (resp.horizontal line). Therefore m (resp. n)

sibgnifies the number of jumps (resp. rotation) of the periodic orbit. Note that in (3.7) as well as in
Fig.13, the subscript 1,2,...,m,m+1,...m+n do not indicate the iteration steps. We call the orbit
defined by (3.7) an n/m-periodic orbit. or an n/m-periodic cycle.

One can examine stability of this periodic cycle by

1 k=ntm ap!
A=y +_m; I e,

If XL <0 holds, this periodic cycle is stable, and the range in the parameter space where A < 0 is

called the "p-stability interval”. If this cycle passes through an extremum of this map, then 7“1. = -0

and such a periodic cycle is called a"super stable periodic cycle". Perez, et al {6] studied the circle
map in terms of the stability intervals. We will analyze one-paramter bifurcation of P' from a similar
point of view.

(a) Hopf bifurcation and 1/0-stability interval

Figure 14(a) shows an enlargement of the x-P'(x) graph at c=4.1. The fixed point (x, x ) is
clearly stable.
The condition for Hopf bifurcation is given by
dP'

2
rratsie

Note that (3.9) is equivalent to a similar condition in section 2.2. At ¢=4.0, (3.9) holds, and Figure
14(b) shows the graph in this situation. Note that a fixed point which is stable in the left-hand side
region, but which is neutral in the right-hand side region, i.e., semi-stable fixed point, appears in
this case, because of piecewisc-lincarity. As ¢ decreases, this changes into a stable fixed point which

corresponds to the 1/0-periodic orbit, namely, C, ,=(x,'?}. As c decreases, further, x,'° gets closer

to the origin, (see Fig.14(c)). Note that the stability of this periodic cycle eventually gets stronger in
view of the following properties:

) P'(P' (x)) is monotone increasing,

P (P!
)] [—%—iﬁ) 1_0 =0 holds.

Finally x,10hits the origin at c=3.646, and x,"0 =P"(P' (x)) = 0. In the constrained system, this
means that the unstable manifold W(p,) hits the cusp-point. In other words, a pair of 1/0-periodic
orbilts hit the cusp-point and merge with each other to form a saddle-connection. Note that the origin

is a semi-stable fixed point which is not only stable in the right-hand side region, but also unstable in
the left-hand side region (see Fig.14(d)).
(b) 1/1 and 1/2-stability interval

Here, the saddle-connection is broken and transformed into a 1/1-periodic cycle;
Cypn=0x1x,11).
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In particular, when P'(P',(0)) becomes negative, the fixed point x,10 = 0 bifurcates into a pair of
periodic points, i.e., x,* and x,!1, (see Fig.15(a)). Note that they are stable because the 1/1-periodic

cycle exists in a neighberhood of the origin. In the constrained system, this process corresponds to
the appearance of a periodic orbit which is symmetric with respect to the z-axis via a reverse

symmetry-breaking bifurcation. Finally at ¢ =3.15, a 1/1-periodic cycle passes through the
extremum, and it becomes super stable,(see Fig.15(b)). Then x,t goes back to the origin, and

finally it hits the origin in the same manner as the 1/0-periodic cycle at ¢ =2.86 does(see Fig.15(c)).
Now we study 1/2-stability interval from another point of view. Figure 16(a) shows the
x-P'(x)? graph corresponding to Fig.15(c), where P'(x)? denotes the third iteration of P'(x). Note
that each periodic point corresponds to a fixed point located at each intersection between the unit
slope line and each arch. When a 1/2-periodic cycle, C,,={x,12,x,12,x,12}, appears, a part of the
new arch appears in the righthand-side region from the vertical axis, then a new fixed point, i.e.,
X,412,also appears. As c decreases, this arch gets bigger, and the fixed point asends towards this arch

(see Fig.16(c)). Then the fixed point descends from the arch and finally at c=2.44 the lefthand-side
tip of the arch touches the origin, and hence the origin is a fixed point, (see Fig.16(d)). This
‘situation corresponds to the appearence of a saddle-connection. Then the saddle-connection breaks
into a 1/3-periodic cycle, namely, C, ,={x,15,x,13,x,15,x,17}.

(c) 1/3-stability interval and bi-stability

Note that the 1/1-stability interval and the 1/2-stability interval , only one fixed point exists in
each arch. In the 1/3-stability interval, however, the each becomes tangent to the unit-slope line and
three fixed points co-exist for a while. Figure 17(a) shows the co-existence of a pair of 1/3-periodic
cycles, i.e., bi-stability. In Fig.17(a), a new periodic cycle, namely, C',,;, appears closer to the
origin. But it is difficult to observe an unstable 1/3-periodic cycle, C, . Figure 17(b) shows an
enlargement of the square in Fig.17(a). Observe that there are two fixed points: stable fixed point

'

x',¥3¢ C',; and unstable fixed point x,%¢ C,,. These fixed points are born via a tangent
bifurcation. Hence this bifurcation implies the bigining of bi-stability. These two stable periodic
cycles bifurcate in diffcrent ways. As ¢ decreases, the unstable fixed point x,1/ and the stable fixed

point x,13 get closer each other, while the new stable fixed point x',1? gets closer to the origin. Atc

=2.2286, x',1 hits the origin and bifurcates into a 1/4-periodic cycle, C,,, in the same manner as ir
the 1/1 and 1/2- periodic cycle does (see Fig.17(c) and (d)). Then C, , bifurcates into a 2/8-periodic -

cycle, via period doubling (sce Fig.17(e)). Beyond this, period doubling no longer occurs. Instead,
the 2/8-periodic cycle bifurcates into 2/7-periodic cycle after colliding with the origin. Then this
periodic cycle bifurcates into another high-period cycle with repeated period doubling and collision
with the origin. Finally a band-like chaos appears in a complex manner. Figure 21(f) shows the

bi-stability between the band-like chaos and the 1/3-periodic cycle at ¢ =2.228. On the other hand,

x,! and x,!7 hit and annihilate each other by tangent bifurcation at ¢ =2.224. Hence the trajectory

starting from the neighborhood where this tangent bifurcation takes place converges into another
attractor (see Fig.17(g)). This situation corresponds to the end of bi-stability. Figure 18(a) shows at
enlargement of the bifurcation diagram in Fig.12.
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(d) 1/4-periodic cycle and intermitiency

After the disappearence of the 1/3-periodic cycle, many small periodic windows appear and

then disappear. Finally, a 2/7-periodic cycle appears via reverse doubling at ¢ =2.16, (see Fig.19(a)
and 19(b)). Then this periodic cycle bifurcates into a 2/8-periodic cycle upon colliding with the
origin, and then it jumps into a 4/15-periodic cycle. Finally, the 4/15-periodic cycle bifurcates into
4/16-periodic cycle via a collision with the origin. Then reverse period doubling takes piace twice,
whereupon the 1/4-periodic cycle appears again. Figure 19(c)~(c) shows the reverse period doubling
sequence of 4/16-periodic cycle. Note that the 4/16-periodic cycle is confined within an arch of
P'5(x) and the reverse period doubling cascade takes place in the same manner as the logistic map
Xpor= -aX,(X,-1).

After the second appearence of the 1/4-periodic cycle, we observed the first tangent bifurcation
Hence a new stable 1/4-periodic cycle and unstable 1/4-periodic cycle, say C',, and C, ,, are bom

simultaneously at ¢ =2.1129818. Figure 19(f) shows an enlargement of the shaded square of
Fig.19(e), where bi-stability is clearly observed. Note that in this case, tangency occurs in a very
small neighborhood of the origin. Next we found that C', 1 bifurcates into a'1/5-periodic cycle at ¢

=2.11298168, and that the 1/5-periodic cycle bifurcates into a chaotic state in the same manner as
C',; does, (sce Fig.20(a)~(c)). But as soon as the band-like chaos appears, it collides with C, ,,.
This implies an interior crisis which leads to the disappcarence of the chaotic state, (see Fig.20(d)).
In the case of 1/3-periodic cycle, the second tangent bifurcation leads to the end end of bi-stability.
Here, however, interior cricis causes the end of bi-stability. If the initial condition is held fixed in the
neighborhood of the origin, one can observe an island which corresponds to the band-like chaos in
the bifurcation diagram. Figure 18 (b) shows this bi-stability, and its arrow indicates the chaotic
island which is corresponding to the band-like chaos. This is the reason we can not find bi-stability
in the end of the 1/4-cycle. Then C, , disappears via the second tangent bifurcation, and chaotic state
appears via intermittency, (see Fig.20(e)). The arrow in Fig.20(e) indicates one of the channels.

V. 2-Parameter Bifurcation Analysis

The above observations reveal a striking similality in the structure of the stability intervals. The
chaotic region seems to appear inside each interval, and becomes large in the righthand-side region
of the each interval as ¢ decreases. In this case chaos does not appear simply via a period doubling
sequence. The bilurcation sequence is much more complex. It is very difficult to study this sequence
from the one-parameter bifurcation point of view. Hence we imbeded this one-parameter sequence

into the (c,o)-parameter space. Let us analyse the structure of each stability interval in this parameter
space.
Consider the following important boundarics:

(a) Hopf bifurcation line : o = 4.0, (b) Bounday crisis curve : o= B(c),

(c) Critical line : oo = (2¢c + 4)/3.
We call the region below the critical line and the region above the critical line the "sub-critical region’
and "super-critical region”, respectively. Note that in the super critical region, there is no bi-stability
because the first tangent bifurcation no longer occurs there, and only an unstable periodic cycle is
born.

/7
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Figure 21(a) shows the two-parameter bifurcation diagram, where the dotted area corresponds to
1/m-stability interval, the black area corresponds to the region where 2/2m-periodic cycle exists.

Each fraction denotes p, H denotes the Hopf bifurcation line, B denotes the boundary crisis curve,
and C denotes the critical line. Note that the structure of the stability interval is similar to the
well-known "Armold tongue”. The boundary S, between the 1/m and 1/m+1 -stability interval
implies a symmetry breaking bifurcation or revese symmétry breaking bifurcation. The boundary

D, . between 1/m and 2/2m - stability interval implies a period doubling bifurcation. The o= 2.5
" -line corresponds to the one-parameter bifurcation sequence described in the previous section. Note
that this line is almost tangent to the D, ,-boundary. This situation corresponds to the tangency
between the exponential curve and the horizontal axis which is indicated by an arrow in Fig.20. This

is the reason there is no chaotic region between 1/0 and 1/3-stability interval. Figure 21(b) shows the
enlargement of a part of Fig.21(a). Now we describe the detail of the 1/4-stability interval.

(1) Interior of the 1/4-stability interval

If one varics the parameter along direction of the arrow (1), the 1/4-periodic cycle bifurcates
into a 2¥/4.2-periodic cycle via following period doubling cascade:

1/4 — 2/8- 4/16- 8/32— 16/64— 32/128— 64/256— 128/512— .. Chaos. S.1)
before chaos appears. On the other hand, if one varies the parameter along direction of the arrow (2)
the 1/4-periodic cycle bifurcates {irst into a 2/8-periodic cycle via period doubling, and then it
bifurcates into a 2/7-periodic cycle via a symmiry breaking bifurcation. After this situation, a period
doublihg and a symmetry breaking take place alternatively. Hence the follwing sequence can be

observed:
1/4— 2/8— 2/7— 4/14— 4/15- 8/30- 8/29- 16/58— 16/59 — .. Chaos . S.2)
This sequence corresponds to the process where C, , breaks into chaotic state. In the same manner,

there are two fates for every 2%/4.2%-periodic cycle. One is to bifurcate into 2k+1/4.2¥1- periodic cycle
via a period doubling, the other is to bifurcate into 2%/(4.2¥+1)-periodic cycle or 2¥/(4.2%-1)-periodic
cycle via symmetry breaking bifurcation. Hénce the following sequence can be observed:

1/3- 2/7- 4/15-> 8/31- 16/63— 32/127— 64/255- 128/511— .. Chaos. (8.3

The relationship between these three sequences can be sumarized by the following schema.
) sequence S.1

[ 14 2o{og Pv 416 20 8320 20 16/64 cvve-a2/4-F7 |
S S S S S
A s \ sequence S.3
13 o 27 4/15 831 16/63 ++«++ 2/ 4 211
u b D D D
‘ ‘ # ‘ ‘ ’ ntl n+l
|44 8/30 16/62 32/128 v e vned [ 4e 22
e ls Ls Ls ls
n+l n+l
S14/15 8/31 16/63 32/129 =+ ++v0 2 [ 4 2-1
2l . . :

Note that the similar structure which corresponds to the scquence (S.3) seems to obey a

Feigenbaum's § .

2/



(2) Boundarics of the 1/4-stability interval

Recall that the bi-stability takes place on each side of the stability interval. This means theat S
goes under the 1/3-stability interval, and that this stability interval overlaps with the 1/3-stability
interval. In the one-parameter bifurcation, first tangent bifurcation implies the begining of the
bi-stability, and the second tangent bifurcation implies the end of the bi-stability. In the
two-parameter bifurcation these bifurcation occurs on the curves T, and T¢, 5 ,respectively. Note

that cusp exists between those curves and that each curve starts {rom a cusp-point. Once hits C, this
curve changes its meaning. The curve, T, means the birth of 1/3-unstable periodic cycle. There is
another important curve , I, where interior crisis occurs. Tf; 5 and I, ; seem to be tangent to each

other on the critical line C, forming T, ,, (see Fig.21(c)). The same cusp structure seems to exists
between every 2%/(4.2%-1) and 2%/4.2 -stability interval.

(3) Period-adding sequence in the chaotic region

In the chaotic region, there are many island-like stability intervals, where the islands all exhibit
the same structure. Consider a subset in the parameter space, for example, the a=5.0-line. Observe

how the p of these islands changes as ¢ increases. For example, the following period-adding
sequence can be casily identified:

1/4- 2/7- 3/10- 4/135 «ceeeecennf3n+l—50eee o 1/3 . (S.4)
We conjecture that there exists some kind of relationship between the circle map and the above
map. In our future research, the detailes of the stability intervals will be studied.
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