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Asymptotic behaviours of measures of small tubes:

entropy, Liapunov's exponent and large deviation
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0. Introduction

The metrical entropy is the quantity which was introduced by
Kolmogorov and Sinai as an invariant for the isomorphism problem
among Bernoulli shifts and was proved to be a complete invariant
émong them by Ornstein. It has been known that it is related to
various branches of mathematics, one of which is the theory of
differentiable dynamical systems. What is our.main concern in the
present report is the Ruelle-Pesin inequality between the metfical
entropy and the Liapunov's characteristic exponent viewed from the
large deviation theory.

The large deviation problem is one of curreﬁt topics in proba-
bility theory and we shéll illustrate what it is in Section 3. A
large deviation problem for COmpact dynamical systems was formulated
in [20,19] in connection with the.variationai principle for one di-
mensional chaos. The formulation will be reproduced in Section 4. As
our title suggests it, it turned out in [22] thatva method of com-
putation of large deviation rate functionai is the asymptotic evalu-
ation of small tubes, i.e., to estimate the logarithmic asymptotics
for the long time of the measures of small tubes around orbits of
dynamical systems. Such asymptotic evaluation also appeared for the
metrical entropy as the local entropy theorem of Katok and Brin (cf.
Section 1). Of course, Liapunov's characteristic exponent is, by
its nature, the rate of iogarithmic asymptotics of measures of such
small tubes (cf. Section 2).



60

Thus our main object will be the asymptotics of measures of
small tubes around orbits of compact dynamical systems and our goal

of the present report is the following result:

Theorem 0.  Let X be a compact Riemannian manifold and a diffeo-
morphism F of X. Take the Riemannian volume as the reference measure
m of the large deviation problem stated in Sect.4..  Then the lower
rate functional g(u) satisfies the following estimate from below for
every ergodic F-invariant measure u:

+
ul
where hu(F) is the metrical entropy of the system (X,F,u) and x;

(0.1) a(u) = hu(F) - X

denotes the sum of positive characteristic exponents.

‘The proof of Theorem 0 will be given in the last section.

As a corollary we can obtain the following

Pesin-Ruelle inequality: For every F-invariant probability Borel

mesure U there holds the inequality

(0.2) hu(F) s xu.

In fact, (0.2) follows from the inequality g(u)éo, which is
trivial since g is defined as the logarithmic asymptotics of proba-
bility. The gap between "every F-invariant" and "every ergodic
F-invariant" in (0.1) and (0.2) is filled by the Krein-Milman-Bishop
theorem on the integration representation over extremal points (cf.
[161). Indeed, the ergcdic measures are the extremal points among
F—invariants measures, HU(F) is a convex function of u and x; is an

affine function of u.

The title of the sections are as follows:

1. Local entropy and Shannon-McMillan theorem

. Characteristic exponents and Pesin-Ruelle inequality
. What is the large deviation?

Large deviation for compact dynamical systems:

(G2 BTN VS B S ]
.

. Proofs: Hamming distance, Fano's lemma and Katok's lemma
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1. Local entropy and Shannon-McMillan theorem

Let (X,d) be a compact metric space and F:X»X a continuous
transformation ( or F=(Ft)t20 a jointly continuous semiflow). For

given positive T,§ and xeX, put

(1.1) Bo(x,8) = { yeX; a(rty,rtx)<s, tel0,T) }

and let us consider asymptotic behaviours of measures of '"small

tubes" BT(X,G). The first one is the local entropy theorem.

Theorem 1.(A.Katok [8] (ergodic case);M.Brin-A.Katok [3]) For an

F-invariant probability Borel measure u on X put

(1.2) B (x):= lin lim sup - = log u(Bg(x,8)) and
H §+0 T : |
(1.3) h (x):= lim lim inf - % log u(By(x,8)).
H &0 T-»c0
Then the following statements are true:
(i) gu(x)=ﬁu(x):=hh(x) for p-almost every x.
(ii) hu(x)_is F-invariant: hU(FX)=hU(X) for p-almost every x.

(iii) Sy h (x)u(dx) = h (F)
(iv) In particular, if u is ergodic, hu(x)=hu(F) for u-almost

every xeX.

Let us explain the notations used above. The quantity hU(F) is
the metrical entropy (or the Kolmogorov-Sinai entropy) of the

measure preserving dynamical system (X,F,u). Namely,

(1.4) hU(F) = supf hﬁ(F;a); @ is a finite Borel partition of X 1}
a)e 1im fo- L1
(1.5) h (Fja)= ;iﬁ f¢= 7 log u(a (x)) u(dx)

where we denote by an(x) the cell of the refinement o, of the

-1 -({n-1)

partitions o, F 'a, **+,F o to which x belongs:

n-1
X

o (x)=a () F o (Fx)p oo P (T a5 Ty

Of course, the almost everywhere version of (1.5) is the well-

known fundamental theorem of information theory:



62

Theorem 2.(Shannon-McMillan-Breiman) Let u be F-invariant. Then,

(i) I (x):= lim - 1 log H(o_(x)) exists for u-almost every x.
H n->o n .

(ii) Iu(Fx)qu(x) for v-almost every x.

(iii) fx Iu(x)u(dx) = hu(F).

(iv) In particular, if u is ergodic, then, Iu(x)=hu(F) H-a.e.X.

As we have said ‘that it is the almost everywhere version,
Theorem 2 is proved from (1.5) by Birkhoff's individual ergodic
theorem using Lebesgue's dominated convergence theorem. (Cf., e.g.,
[241 or [4].) The proof of Theorem 1 is finally reduced to Theorem
2. We shall give a short proof of Theorem 1 in the last section,
which is based on a Katok's original idea and a large deviation

result.

2. Characteristic exponent and the Pesin-Ruelle inequality

The following theorem is a version of Oseledec's multiplicative
ergddic theorem. Let us say that a property holds for universally
almost every x (abr., u.a.e.x) if it is true for u-almost every x

whenever U is an invariant probability Borel measure.

Theorem 3. Let X be a compact Riemannian manifold and d the
Riemannian distance. Denote the Riemannian volume measure by vol.

For xeX let us denote

§+(x) = lim lim sup - % log vol(BT(x,é)),
§>0 . Tow
x"(x) = lim lim inf - T log vol(Bg(x,8)).

§+0 T->oo

Then the following statements are true:

(i) The equality X (x) = x+(x) holds for u.a.e.xeX.
Let us denote the common value by xf(x),
(ii) x+(Fx) = x+(x) for u.a.e. xeX.
(iidi) x+(x) is the sum of all positive Liapunov exponents



(taking into account of the multiplicities).
(iv) In particular, if p is an ergodic F-invariant measure,

then, X+(x) is constant p-a.e. x. We shall denote the constant

by x:(F).

~ As is stated in Introduction, we shall call the following
inequality between the quantity Xﬁ(F) and the metrical entropy hU(F)
the Pesin-Ruelle inequality.

Theorem 4. For every F-invariant probablity Borel measure u
there holds the inequality:

.1 h (F) s x (F).
(2 )} u( ) Xu( )

This inequality or the equality was obtained in particular cases
by many people, for instance, for B-transformation the equality was
obtained in [7]. But Pesin is the first who discussed it for general
hyperbolic systems and D.Ruelle generalized it. In the recent text
book [10], Mane calls the eguality holding for absolutely continu-
ous measures U the Pesin equality and the general inequality the
Ruelle inequality.

In [1] (cf. the references therein and in [14] ) we can find a
survey on some results concerning the relationship between the
metrical entropy and the curvatures which are obtained from Pesin's
equality. It may be regarded as a good exampie of the application of
Theorem 1 and Theorem 3fof of the method of asymptotic evaluation of
small tubes. ’

Let M be a compact manifold of negative curvature, F=(Ft) the
geodesic flow and u the Lebesgue measure on the bundle SM of unit
tangent vectors. Pesin showed from his equality that the metrical

entropy hu(F) satisfies the following equality:

(2.2) ‘ hp(F) = ISM - tr U(v) u(dv)

vwhere U(v) denotes the second fundamental form at v of the horo-

sphere determined by v. (His proof may be interpreted as a computa-
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tion based upon the local entropy theorem.) Using (2.2), Freire and
Mane obtained the inequality:

1/2 1/2

(2.3) hU(F) s (n-1) { ISM - Ric(v)u(dv) 1}

where n=dim M and Ric(v) stands for the Ricci curvature at v. Also

Osserman and Sarnak obtained theé following inequality:

(2.4) hU(F) 2 ISM tr(vQ(v))u(dv)
where Q(v)X= - R(X,v)v and R is the curvature tensor of M.

If we consider flows defined by a differential equation, the
logarithmic asymptotics is governed by its variational equation. In
particular, if we are concerned with a geodesic flow (Ft), it is
described by the Jacobi fields. The Jacobi equation along geodesic Yy
is of the form

(2.5) | 92325 + R(Y(t),X)Y(t) = O,
at
where gE denotes the covariant derivative along y. Note that Ric(v)
is equal to the trace of the map X»> -Q(v)X=R(v,X)v. Now take a
basis Y1,-'-,Yn parallel to the geodesic vy with Yn=§ and put
- i

X = ¢ 1 x.Y"., Then, for x=(xi)

i= i the equation (2.3) takes

12isn-1"

the form

(2.6) ——5 = A(t)X

where A(t):(aij(t)) is the matrix representation of

1%i,jsn-1
Q(Ftv). Therefore, trace A(t) = - Ric(?(t)) and A(t) is a positive
definite matrix since the sectional curvature of M is assumed to be
negative. Thus, all the problems of asymptotic evaluation of the u-
measure of small tubes are reduced to the study of the second order
linear equation (2.6) and, necessarily, of the Riccatti equation
associated with it: the stable and the unstable subspaces of the
tangent space TSM are characterized by the special solutions called

limiting solutions, etc.
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3. What is the large deviation?

Let us illustrate the large deviation problem in the case of
coin-tossing. The large deviation problem is an old problem in
probability theory (cf. Cramer[5]) but its current aspect was intro-
duced by M.D.Donsker and R.S.Varadhan [6]. The probability theory is
a branch of mathematics whose main objects are statistical laws. The
most basic one is the law of large numbers. Let Xn' nzl, be a trial
of coin-tossing with Pr(Xn=1)=p and Pr(Xn=0)=l—p (0<p<1). Here we
identify the head with 1 and the tail with 0. Then the law of large

numbers takes the form

N 1
(3.1a) lim 3 (X1+X2+...+Xn) = E[Xn] =p wW.p.1.
n->o°
where w.p.1 stands for "with probability one". In a higher level,
denoting the Dirac measure at a point x by Gx ( GX(A)=1 or 0 accord-
ing as x belongs to A or does not), we have the following law of

large numbers
| 1
(3.2a) lim =(8, +68, +°*°*+8, ) = § w.p.1,
nso O X1 X2 Xn P
where we consider the weak topology on the measure space.

Furthermore we can go up to the space of infinite sequences

{0,1}N to obtain Birkhoff's individual ergodic theorem

(3.3a) lim +

n->® i

$ teey = M w.p.1,
1 KieXyqeet)

[ R

where m is the law of the doin—tossing Xn, i.e., m is the direct
product measure of infinite copies of the probability measure p,1-p
on {0,1}. '

The second law is called the central limit theorem in probabil-
ity theory concerning small fluctuations around the mean or the
small deviation from the law of large numbers. For coin-tossing it

takes the form
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2
dx

b e—leo

. —1 |
(3.1a) lim Pr{ /n[=(X,+X +++++X )-plela,b)} = [
N n*1 2 n a v2ro

where 02 is the covariance E[(Xn—E[Xﬁ})2]=P(1-P)-

The third one is the problem of the large deviation from the law
of large numbers. Here we mean O(1) by "large" while we called
0(1//n) "small" in (3.1a). Let us consider the following proba-

bility for an interval I
1
Pr{ ﬁ(X1+ --+Xn)eI }.
If the interval I does not contain the mean p, it must vanish as n

goes to infinity. So we want to discuss the rate of its decay. Now

using Stirling's formula it is immediate to see

1 ‘ n! x n-k
Pri q(XpeeeeXgel } = I ki(n-k)r P (1-P)
enl
n_ _,1/2 k k
~n 5 (———2—r) "“exp nH( £,1- £]p,1-p)
kenT 21k (n-k) n n
where N
H(qqre*oraglpqreetipy) = —'21 q;1log(q,/p;)
i=

is the quantity called the relative entropy of probability distri-
bution (qi) relative tO‘(pi). Note that this quantity H is always
nonpositive and -H is the so-called relative information. Now

taking the logarithm and the limit over n we obtain

(3.1¢) lim 1 log Pr{ 1(X +ee°+X )eI } = max H(x,1-x|p,1-p).
n n' 1 n
n--o : xel

If we mount up to the sequence space, we cannot expect the equality

any more but we obtain the following two inequalities:

€eC } = max g(u)

n
. 1 1
lim sup ;log Pr{ a .§16(X.,X. cer) nax

n-o i= i""i+1!
(3.3c) if C is a weakly closed subset,

n
lim inf %log pr{ 1 % §(x. x .e)€C } 2z sup q(u)
n--c i=0 1771 Ue G
if G is a weakly open subset.
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where the functional g(u) for a measure U is given as follows. Let

F be the shift transformation on the sequence space: (Fx)i=xi+1
for X=(Xi). Then,
h (F) - [, U(x)u(dx) if y is F-invariant
U X
a(u) = .
~® otherwise.
with '
-log p if x0=1
U(x) = .
-log(1-p) if x0=0.

In particular, in case of the fair coin-tossing where p=1/2 the rate
functional g(u) governing the long time asymptotics (3.3c) takes the

following form for an F-invariant u:
g(u) = hu(F) - log 2 (s0).

It is the metrical entropy renormalized so that the maximum is 0.

4, Large deviation problem for dynamical system

The large deviation problem is formulated for compact dynamical
systems in [20,19] as follows. Let us denote by M(X) the totality of
probability Borel measures on X and we consider the weak topology on
M(X) as the dual space of the Banach space of all continuous func-
tions on X with supremum norm. First of all let us fix a probability
Borel measure m on X. For a subset G of M(X) put

n-1

. 1 1 .
(4.1) Q(G) = lim sup _ log m{ xeX; = I Spi ¢G }
n->-« i=0
1 1 o]
(4.1) Q(X) = lim inf — log m{ xeX; — I &_i_ €G }.
A x .n n . Frx
n->-« i=0

Then for peM(X) let us define the functionals

(4.2) g(u)
(4.2) al(u)

inf{ Q(G); G is open and ueG },
inf{ Q(G); G is open and UeG 1},

g
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The folowing result is proved in [20]:

Theorem 5. (i) The functionals g and g on M(X) are lower
semi-continuous :

lim sup q(“a) < g(y) and 1lim sup g(ua) s g(p) 1if yp=lim M-
Also there hold the inequalities: -« = g(p) s g(u) s 0.

(ii) Q(C) = max{ gf(p); peC } for closed C.
(iii) Q(G) =z sup{ gl(p); ueG } for open G.

Following [25] let us say that the large deviation principle

holds for the triplet (X,F,m) if there exists a functional g%,
called the rate functional, on M(X) with the following two

properties:
(a) If CcM(X) is closed, then, Q(C)smax{qg(n); upeC }.
(b) If GeM(X) is open, then, Q(G)zsup{g(u); ueG }.

Then it follows from Theorem 5 that the necessary and sufficient
condition for the large deviation principle for the triplet (X,F,m)
is the equality g=gq and then the rate functional g* is equal
to g and q.

Example 1. Let A be a finite alphabet set, X:AN, F the shift,

(FX)§=%4 41
product measure of infinite copies of a probability measure m on A,

for x=(xi), and m be a Bernoulli measure. Thus m is the

Then the large deviation principle holds and the rate functional g

is given as follows for F-invariant u:
(4.3) alu) = hU(F) - fX p(dx)[-log m(x,)].

A similar result holds for a class of measures u including Markov

measures. The proof is found in [20].

Example 2. Let (X,F) be an Anosov diffeomorphism and take the
Riemannian volume measure as the reference measure m. Then the large
deviation principle holds and the rate function g will take the

following form for F-invariant u:

(4.4) a(w) = h (F) - [, u(dx)log ¢"(x),

/0
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where ¢u(x) is the expanding rate of the differential dF on the
unstable subspace EY of the tangent space TxX at x. It seems to the
author that the proof is eventually done among the works of Pesin et

al. but he does not know the correct references.

Example 3([19]). Let X be a bounded closed interval, F a piece-
wise C2—map of X to itself and m the Lebesgue measure. Assume that
ess.inf {F'I is positive. Then the large deviation principle holds

and the rate functional for F-invariant u is given as
(4.5) - q(u) = min{ O, h (F) - [y u(dx)log|F'(x)]| }.

Here note that if there is a strictly stable periodic orbit and u is
the uniform measure on it, then, g(u)=0 Dbecause hu(F)zo and the

integral of the logarithm of the Jacobian, log |F'|, is negative.

Remark 1. If the relation (4.3) or (4.4) holds, then the

functional g is affine:
(4.6) gty +(1-t)u,) = talu) + (1-t)alu,) (0<t<1)

because the metrical entropy is hU(F) is affine if F admits a gener-
ating partition. On the other hand, the relation (4.5) shows that g
is not affine if F shows window phenomenon in the terminology of
[YT's], namely, if F has a stable periodic orbit together with a
topological chaotic repeller. As Example 4 below suggests it
strongly, the affine property of the rate functional g appears to be
closely related to the structural stability of the dynamical system
(X,F). At least the following statement ([20] pp458-460) is true:
If the non-wandering set {(F) is finite, then the affine
property of g is equivalent to the no-cycle condition 6n (X,F).
(Here we take the Riemannian volume measure as the reference measure

m on X.)

'y
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Example 4. Let X be an "eye-like" ///’/ﬁf§\\\\\
closed region of the plane with two AX%/
saddles A and B at corners and one
unstable focus O at the centre as in Fig.]l Fig.1
([20]). There are several controllable parameters: the expanding
and contracting rates at two foéi, the approaching rate to the
seperatrices on the boundary, etc. It can be shown that the follow-
ing two cases may happen: ‘

(a) a(u) > g(u) for some u.

(b) g(u) = gln) for all y but the affine property fails.

Remark 2. The results in the present paragraph were obtained
in the course of the study of the Gibbs type variational principle

for one-dimensional chaos (cf. [12,18]). The Gibbs type variational

principle for a compact dynamical system (X,F) with reference
measure m is stated as follows. For a continuous function ¢ on the

measure space M(X) put

-1
i . 1 1 I :
(4.7) P(9) = lim sup o log Iy m(dx)exp{ -no( 5 L Sgi ) b
n->o i=0
In particular, if &(p) = @U(u)= IX U(x)u(dx) with U eC(X), then,
1 n-1 i |
(4.8) P(@U) = lim sup — log [, m(dx)exp{ - £ U(F x) }.
n X .
n->o i=0

Furthermore, let us denote the Legendre transform of P(@U) by P":

(4.9) P7(u) = inf{ P(®y) + o (u) ; U e C(X) }.

Theorem 6.([{20,181) The following statements are true:
(i) -« s g(u) = g(p) = P"(u) s 0.
(ii) For every ¢eC(M(X)) the following variational principle of
Gibbs type holds:

P(%) = max{ g(u) - @(u) ; peM(X) }.
(iii) In particular,

max{ qg(u); u e M(X) } = 0.

/2
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Remark 3. The following equality (the inverse Legendre trans-
form theorem for convex functions on Banach spaces) is always true:
P(®) = max{ P"(u) - ®(u) ; ueM(X) }.

(CE. e.g., [17]1.) | |

5. Proofs: Hamming distance, Fano's lemma and Katok's lemma .
First we shall prepare two lemmas and then proceed to the
proofs of Theorem 0 and Theorem 1.

Let o be a finite (alphabet) set. The Hamming distance between

words (finite sequences) u:(ao,"',an_1) and v=(bo,°‘°,bn_1) of
length n ( a biea, 0si<n ) is defined as

n-1
.Z 1[ai#bi].
i=0

In what follows we shall define the Hamming distance between cells

. _ 1
#{1i; ai#bi }o= -

(5.1) D_(u,v) = 1

an(x) of the partition @ by identifying the words (ao,"',an_1) and

-1 —(n—1)a

the intersections of agr F a1,"',F where ai's are cells

n-1
of a given finite partition «a. For €>0 and xeX let us denote the

e-neighbourhood of the cell an(x) with respect to the Hamming
. €
distance Dn byvan(x).

The following proposition is a version of Fano's lemma on the

asymptotic error probability in information theory:
Lemma 1. Let o be a finite measurable partition of X and u be an

F-invariant probability Borel measure on ¥X. Then,

(5.2) 1lim sup 1 log u(ae(X)) £ - I (x,a) + J(g,N) H-a.e.x,
n-—>o n n H

where N=#o0:=the number of cells of & and we set

(5.3) J(eg,N) = max{ 0, -elog € -(1-g)log(1-€g) + €log(N-1) }.

Remark. The number of elements contained in the €-neighbourhood

of a word is independent of the choice of the word and is equal to

13



n! k . _
(5.4) Ln(e,N) = . X KI(n-K) ! (N-1) if #a=N.
fen ‘

The increasing rate of Ln(s,N) is the quantity J(g,N):

(5.5) J(e,N) = lim sup % log Ln(a,N).
n-—+ -,

Remark to Remark. The relation (5.3) is a large deviation

result. In fact, the quantity

NPL (eN) = I ey /MR- 1k
kzen ) :

is equal to the probability Pr{ %(X1+--°+Xn)§e} for the coin tossing

with p=1-1/N. Hence, using the results in Sect.3,

the RHS of (5.5) = max H(t,*+-t|1-1/N,1/N) + log N
' Ostze

= the RHS of (5.3).

Proof of Lemma 1. For given n, £ and a real s, set
€ ns
plers) = ul xeX; pla_(x)) 2 27 (o (x)) }.

Then, appealing to the Chebyshev inequality, we obtain

e
ns . -1 u(an(x))
pn(s,S) s (277) IX u(dx) ETE;TETT 1[u(an(X))>0]
=277 25 ) 4 ) u(c')
ce ulc) ' <
o (c',c)s¢e
n n

A

2 Ln(e,N).

where * indicates the sum over such c¢ that u(c)>0. Now if we take

s>J(g,N), then, I pn(s,s)<w. Therefore the Borel-Cantelli lemma is
n
applicable and we obtain for p-a.e.x

el (x))

ulo (x)) £s for s>J(g,N).

lim sup % log

n->»co

1Y



on the other hand, from Theorem 2 we know the existence of the limit
1
I (x)= 1lim - — log u(a_(x)).
u o n n
consequently, we obtain the assertion of Lemma 1.
Next let us state a trick due to A.Katok [8]. For a partition o
and a positive number 6§ let us denote

(5.6) d9a = the union of boundaries 3c of cea and
(5.7) 6-30 = the §-neighbourhood of 3a in X.

Lemma 2. Let xeX. If

1 03l i
(5.6) o X 1(‘3—30L(F x) < g,
i=0
then,
(5.7) , B (x,8) C oc;(x).

Proof. Take yeBn(x,G). If a(Fly)#a(le), then we must have

d(le,aa)<6. Hence,

n-1 . . n
I 1la(Fry)fa(F'x)] s
i=0 i

5 |-

§-90a

3=

D_(a_(y),a_(x)) = o (Fix) < e.

Consequently, yeaz(x). Hence, (5.7) holds.

The following proof of Theorem 1 is much shorter than the proof
in [3] and the ideas are helpful for the proof of Theorem 0.

Proof of Theorem 1.

Let y be an F-invariant probability measure on X and put
« ,
(5.8) IU = supf{ Iu(x,a); ¢ is a finite Borel partition, u(da)=0 },
where Iu(x,a) is the quantity appeared in the Shannon-McMillan-

Breiman theorem (Theorem 2). It suffices to prove the following two:

Part I (Upper estimate): (x) I

(x)

A

(x).

T %

Part II (Lower estimate):

i

h

U
h I i
2u p )

In fact, the partition into points can be approximated by the

t 5
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partitions o satisfying the condition u(d9a)=0. Hence it follows from
Parts I and II that

h (F) = I« h (x)u(dx) = I« R (x)u(ax) .

Then the other assertions of Theorem 1 are immediate.

Proof of Part I. For a given 6>0, take a finite Borel partition

¢ such that p(da)=0 and mesh(a):= max{ diam(c); cea } < 8. Then,.

an(x) is contained in Bn(x,é). Thus, u(an(x))éu(Bn(x,é)). Therefore,

. 1 * —_
Iu(x,a) 3,11§+iup -3 log u(Bn(x,G)). Hence, Iu(x)zh“(ﬁ).

Remark. The compactness assumption on X is necessary only for
the existence of finite partitions o with arbitrary small mesh and

is absolutely unnecessary for Part II.

Proof of Part II. Take 6>0 and a finite measurable partition o

such that p(9a)=0. Then it follows from the individual ergodic
theorem that the limit ‘

1 7] i
fG(X) = lim o 'Z '16—8u(F X)
n->® i=0

exists for u-a.e.x. Its integral fxzfé(x)u(dx)=u(6—8a) tends to 0
as § goes to 0 since u(d3a)=0. Consequently, for €>0 and 6>0, the
measure U(E) of the set E of points x such that

n-1 . ‘
(5.9) 1 z 1 (F'x) < € for every sufficiently large n
n oo §-da

can be arbitrarily close to 1 if § is chosen so small.
Now for the point x satisfying (5.9), Bn(x,d) is contained in

ai(x) by virtue of Lemma 2. Thus, using Lemma 1, we obtain

lim inf - 1—loq u(B (x,68))
n n
n-—>«°

: lim inf - 1; log u(af(x)) 2z I_(x,a) - J(e,#a)
n—)-(x) . .

/¢
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on the set E. Hence, there holds the inequality independently of &:
QU(X) 2 IU(X,OL) - J(eg,#a).

and now it is true for p-almost every x. Since € is arbitrary and

1im J(e,#a) = 0, it follows that gu(x)zlu(x,a) provided that
e-0

*
p(d3a)=0. Consequently, Qu(x);Iu(x). The proof is completed.

Proof of Theorem 0.

For the sake of simplicity of the notation let us write for xéX,
n-1

5 S.i .
j=0 [ %

Take an arbitrary ergodic F-invariant measure p. By the definition

]
]
]
]
Bl

(5.10)

of the weak topology on the measure space M(X) we may take the sets
of the following form as a fundamental system of neighbourhoods of
the measure p:

{ veM(X); a_<v(c)<b, (cea) }

where o is a finite Borel partition with up(3a)=0 and a.r bC are non-
negative real numbers such that ac<u(c)<bc (cea). Now for a given
neighbourhood G of u take a finite Borel partition a, a positive

number & and nonnegative numbers a.r bC (cea) such that

p(da)=m(9a)=0 and ;
(5.11) G D G(s):= { veM(X); a_-s<v(c)<b_+s } (Ossse).

Note that the positive number £ may be chosen arbitrarily small. Put

(5.12) An(s) = { xeX; gneG(s) } (Ossseg).

C ‘ £
Claim: if xeAn(O), then, an(x) An(e).

In fact, take yeui(x). Then,

y 1 n-1 i
En(,c) =3 _Z 1c[F vl
i=0
> L n§1 1 [rixy - 1 n§1 1la(Fiy)da(Fix)1 > £
2 o c xI -4 a y)#0(F"x) ] a.- E.
i=0 i=0

,/'7
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Similarly, €g(c) < bc+ €. Consequently, yeAn(S).

Now it follows from (5.11), (5.12) and the claim above that

vol{ xeX; £ €G } 2 vol(A_(€))

(5.13)

nw

> Vol(ce)/L (e,#a)
cea_, cchA_(g) n
n n

vol(ai(x))

S -1
z L (g,#0) fa (x)50 p(dx) o, (x))
_ . N .

Now, using Theorem 2 (Shannon-McMillan-Breiman) and Theorem 3
(Oseledec), we obtain the following inequalities on a set E with

U(E) > 1-n for any given n>0 and 6>0: for any sufficiently large n,

(5.14) log vol(af(x))

w

- n(X; + 6) and
(5.15) - © < log u(an(x)) < n(—hu(F,a) + 0).

Here we used the ergodicity of u.

Combining (5.13), (5.14) and (5.15) we obtain

lim inf l-log vol{ xeX; £ _€G }
n n
n-—><

. . 1 + 1
112+inf { - ~ log Ln(s,#a)+hu(F,a)—xu—26+ — log u(E) }\

1\Y

+
hU{F,a)—XU-ZG—J(e,#a).

Consequently, taking the limits as 6+0 and then as €+0 and the

supremum with respect to partition o, we obtain the inequality
' > h (F) - x©
Q(G) U( ) Xy

for every neighbourhood G of an ergodic F-invariant measure Uu.
Hence follows the desired inequality g(u);hu(F)—xﬁ and the proof
of Theorem 0 is completed.
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