<table>
<thead>
<tr>
<th>Title</th>
<th>A new proof of the Whitney Conjecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>鎌田 聖一</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 1987(636): 170-182</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1987-12</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/100116</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
A new proof of the Whitney Conjecture

大阪市立大理 鎌田 聖一
(Seiichi Kamada)

§1. はじめに

\mathbb{R}^4 (あるいは S^4) の中に locally-flat に埋め込まれた closed, non-orientable surface F を考える。

H. Whitney は、1940年に

(1.1) 『F のオイラー標数を χ とすれば、F のオイラー数は、$2\chi - 4, 2\chi, 2\chi + 4, \ldots, 4 - 2\chi$ のうちのいずれかしか取らない。』

と予想した [6]。そして、W. S. Massey は1969年 Atiyah–Singer index theorem を用いてこれを証明した [5]。ここで、F のオイラー数とは、\mathbb{R}^4 における F の normal bundle のオイラー数という。（F が non-orientable なので、局所係数を使う。[5] を参照）
これは下を\mathbb{R}^4の中でわずかに動かしたときの自分自身との
符号付き交点数の総和に一致する。
ここでは、Atiyah–Singer index theorem を用いず
に、次の定理の応用として証明を行うことが目的である。

（1.2）定理
任意の closed, locally-flat, non-orientable
surface F in \mathbb{R}^4 は、\mathbb{R}^4 の ambient isotopy に
よって normal form に変形できる。 ([33])

\[
\begin{array}{|c|c|}
\hline
 t=2 & \text{maximal bands} \\
 t=1 & \text{hyperbolic bands (fission)} \\
 t=0 & \text{hyperbolic bands (noncoherent bands)} \\
 t=-1 & \text{hyperbolic bands (fusion)} \\
 t=-2 & \text{minimal bands} \\
\hline
\end{array}
\]

(1.3) 定理 (Asano)

F が \(S^4 \) の中で 3-mfd を bound するための必要かつ十分条件は、F のオイラー数 \(e(F) = 0 \) であることである。

この2つの定理をもとに Whitney の予想 (Whitney and Massey の定理) を証明していきたい。

注意 \(S^4 \)の中でも考える場合も、\(S^4 \)を\(S^4 \)の1点コンパクト化と考えて、定理 (1.2), (1.3) はそのまま扱える。

§2. 証明のアウトライン

F \subset S^4 で考える。M(F) で F で branch させた \(S^4 \) の 2-fold branched covering とする。M(F) は closed, connected,
orientable 4-mf. であり、その signature (index) は \(\sigma(M(F)) \) と書くことにする。F の non-orientable genus は \(n' = 2 - \chi \) とすると、次の (1), (2) が成り立つ。

(1) \[\sigma(M(F)) = \frac{\epsilon}{2} \cdot e(F) \quad (\epsilon = \pm 1) \]
ここで、\(e(F) \) は F のオイラー数。

(2) \[\beta_2'(M(F)) = n \]
ここで、\(\beta_2 \) は second Betti 数を表す。

この２つが示されると、(2) から \(\sigma(M(F)) \) の取り得る値は
\(-n', -n'+2, \ldots, n'-2, n' \) である (1) によって \(e(F) \) の取り得る値が
\(-2n, -2n+4, \ldots, 2n-4, 2n \) (\(2\chi-4, 2\chi, \ldots, -2\chi, 4-2\chi \)) であることがわかる。したがって (1), (2) を示せばよい。

§3. 等式 (1); \[\sigma(M(F)) = \frac{\epsilon}{2} e(F) \quad (\epsilon = \pm 1) \] の証明
（準備）まず、次の特別な surface について考えておくと便利である。

4
(3.1) Example [Standard projective planes]

$P_+ \quad \tau = -2 \quad \tau = -1 \quad \tau = 0 \quad \tau = 1 \quad \tau = 2$

$P \quad \tau = -2 \quad \tau = -1 \quad \tau = 0 \quad \tau = 1 \quad \tau = 2$

P_+ のオイラー数は $e(P_+) = +2$ であり、P_- は $e(P_-) = -2$ である。（実際に、少し間を取ってみるとよい。）

P_+ の 2-fold branched covering $M(P_+)$ のオイラー数は、

$\chi(M(P_+)) = 2 \chi(S^4) - \chi(P_+)$

$= 2 \times 2 - 1$

$= 3$

ところで、$H_1(M(P_+); \mathbb{Z}) = 0$ であり、Poincaré duality theorem を用いると $H_3(M(P_+); \mathbb{Z}) = 0$ がわかる。また $M(P_+)$ は closed, connected, orientable 4-mfd. であるので $H_0(M(P_+); \mathbb{Z}) \cong H_4(M(P_+); \mathbb{Z}) \cong \mathbb{Z}$. Euler–Poincaré の公式によって

$\beta_2(M(P_+)) \equiv \chi(M(P_+)) - (\beta_3 - \beta_0 - \beta_1 + \beta_4)(M(P_+))$

$= 3 - (1 - 0 - 0 + 1) = 1$.
従って $M(P^+)$ の signature は $±1$ のいずれかである。
$\sigma(M(P^+)) = \pm\epsilon$ とおく。 $M(P^-)$ は $M(P^+)$ と向きが逆であるから $\sigma(M(P^-)) = -\epsilon$。 [実はこれらは $\mathbb{C}P^2$ と $\overline{\mathbb{C}P^2}$ である。]
故に standard projective planes $P^+, P^−$ については
等式 (1) が成り立つ。

(i) F が unknotted non-orientable surface の場合。

(3.2) Definition
F が先の (3.1) の standard projective planes $P^+, P^−$ のいくつかの copies の knot sum で得られるとときには, non-orientable surface F は unknotted であるという。

ここで knot sum とは, 向きのついた 4-sphere $S^4_{x_i}$ とそれぞれ locally-flat に埋め込まれた non-orientable surface $F_x (x = 1, 2)$ の pairs $(S^4_{x_1}, F_1)$ $(S^4_{x_2}, F_2)$ があるとき, $S^4_{x_1}$ と $S^4_{x_2}$ の向きが compatible となるような pair としての connected sum という。

$(S^4_{x_1}, F_1 \# F_2) = (S^4_{x_1}, F_1) \# (S^4_{x_2}, F_2)$
さて、\(F \) を \(\lambda \) 個の \(P_+ \)、\(\mu \) 個の \(P_- \) の knot sum としよう。（\(\lambda \geq 0, \mu \geq 0, \lambda \mu \neq 0 \)）これを簡単に \(F = \lambda P_+ \# \mu P_- \)と表すことにする。

このとき、オイラー数の knot sum に関する additivity により、\(F \) のオイラー数は

\[
e(F) = e(\lambda P_+ \# \mu P_-) = \lambda e(P_+) + \mu e(P_-) = \lambda (+2) + \mu (-2) = 2(\lambda - \mu)
\]

である。また \(M(F) \) は \(\lambda \) 個の \(M(P_+) \) と \(\mu \) 個の \(M(P_-) \) の connected sum であるので、signature の additivity から

\[
\sigma(M(F)) = \sigma(\lambda M(P_+) \# \mu M(P_-)) = \lambda \sigma(M(P_+)) + \mu \sigma(M(P_-)) = \lambda \cdot 3 + \mu \cdot (-3) = 3(\lambda - \mu)
\]

故に等式 (ii) が成り立つ。

(ii) 一般的な non-orientable surface の場合。

\(F \) のオイラー数は偶数である。実際 \(S^4 \) における \(F \) の normal bundle \(\nu \) の Euler class \(e(\nu) \) と \(M(F) \) における
Ｆの normal bundle ｖ' の Euler class ｅ(ｖ') との間に

\[e(\nu) = \pm 2 \cdot e(\nu') \]

なる関係があるからである。（詳細は [5] を参照）

Ｆのオイラー数 ｅ(Ｆ) を ２ｓ (s ∈ Z) とおく。

s > 0 のとき，5 個の standard projective plane P-の copies を F に knot sum した surface を F' としよう。

\[F' = F \# sP- \]

F' のオイラー数は ｅ(Ｆ') = ｅ(Ｆ) + s ｅ(P-) = ２s + s(-2)

= 0 である。

(3,3) Lemma

non-orientable surface F ⊂ R^4 (または S^4) のオイラー数が 0 であったとせよ。このとき，F に
1-handle として span する 3-cells H_1, ..., H_m で
F をこれらによって hyperboloidal transformation にて得られる surface が unknotted surface となるようなものが存在する。

ここで hyperboloidal transformation とは，
次の図の様な変形をいう。
\[F \cap H = F \cap \partial H = 2 \text{枚の disks} \quad \left(D_1 \cup D_2 \right) \]
（図は 1-handle が 1 本の図）

\[\overline{F} = F \cup \partial H \quad \text{in} \quad \mathrm{Int}(D_1 \cup D_2) \]

Proof of 3.3

\(e(F) = 0 \) であるから、定理（1.3）によって、下では \(F' \)（または \(S^4 \)）で 3-mfld. \(M \) を bound する。\(H_1, \ldots, H_m \) を \(M \) の 1-skeleton を残すように \(M \) の中にとればよい。\(\emptyset \{ M \smallsetminus (H_1 \cup \ldots \cup H_m) \} \) は non-orientable handle-body であり、その境界は unknotted non-orientable surface である。詳しくは [3]。 \(\square \)

さて（ii）の場合の証明を続けよう。

Lemma 3.3 により、\(F' \) が unknotted になる様な \(F' \) に span する 1-handles \(H_1, \ldots, H_m \) が存在する。しかも、\(F' \) は non-orientable handle-body を bound するので
定理 (1.3) から $e(F) = 0$ である。

(3.4) Lemma

F で branch する S^4 の 2-fold branched covering $M(F)$ について、その signature は $M(F)$ の signature に等しい。 $\sigma(M(F)) = \sigma(M(F'))$

Proof of 3.4 (S^4, F') と $(S^4, \overline{F'})$ を結ぶ cobordism を

$W \cong S^4 \times I$

$(W, M) = (S^4, F') \times [0, \frac{1}{2})$

$U(S^4, F' \cup H_1 \cup \cdots \cup H_m) \times [\frac{1}{2}]$

$U(S^4, \overline{F'}) \times (\frac{1}{2}, 1]$

と構成する。

M は W の locally-flat, properな 3-submfd.

であり。$H_1(W-M; \mathbb{Z}) \cong \mathbb{Z}_2$ (生成元は
ここで M を branch point set とする W の 2-fold branched covering \tilde{W} を考えよう。\tilde{W} の境界は $\{-M(F')\} \cup M(F')$ である。故に $M(F')$ と $M(F')$ は cobordic であるから $\sigma(M(F')) = \sigma(M(F'))$。

ところで、F' は unknotted surface だから等式 (1) が成り立ち $\sigma(M(F')) = \frac{\xi}{2}e(F') = 0$。
故に $\sigma(M(F')) = \sigma(M(F')) = 0$。
一方、$M(F') = M(F) \# S M(P_1)$ であるので

\[\sigma(M(F')) = \sigma(M(F)) + s \sigma(M(P_1)) = \sigma(M(F)) - s \cdot \xi \]

従って $\sigma(M(F)) = s \cdot \xi$
\[\sigma(M(F)) = \xi \cdot \frac{1}{2} e(F) \]

$s > 0$ のとき等式 (1) は成り立つ。
$s < 0$ のときは同様の議論を P_- かわりに P_+ で行えばよい。 □

§4. 等式 (2); $\beta_2(M(F)) = n$ の証明
定理 (1, 2) より F は normal form とする。
normal form のその形状から、次がわかる。

(4.2) Lemma

Let normal form とした表面 F の upper cross-sectional knot (定理 (1.2) の図を参照) とする。このとき自然な全射

$$
\pi_1(S^3 - \mathbb{R}^+ \to \pi_1(S^4 - F)
$$

が存在する。

したがって、$H_1(S^3 - \mathbb{R}^+; \mathbb{Z}) \to H_1(S^4 - F; \mathbb{Z})$ への全射が存在する。ところが (S^3, \mathbb{R}^+) の 2-fold branched covering の H_1 は odd torsion であるので、これらから $H_1(M(F); \mathbb{Z})$ = 0 を得る。よって、$\beta_1(M(F)) = \text{rank}_\mathbb{Z} H_1(M(F); \mathbb{Z}) = 0$。

Poincaré duality theorem を用いて $\beta_3(M(F)) = 0$。

$M(F)$ は closed, connected, orientable 4-mfd. であるので

$\beta_0(M(F)) = \beta_4(M(F)) = 1$。

一方、$\chi(M(F)) = 2\chi(S^4) - \chi(F)$

$= 2 \times 2 - (2 - n)$

$= 2 + n$

Euler–Poincaré の公式によって

$$
\beta_2(M(F)) = n
$$

□
References

Univ. Press, 1940.