Title
On the global existence of real analytic solutions and hyperfunction solutions of linear differential equations (Developments of Algebraic Analysis)

Author(s)
河合 隆裕 竹井 義次

Citation
数理解析研究所講究録 1988, 638: 80-96

Issue Date
1988-01

URL
http://hdl.handle.net/2433/100155

Type
Departmental Bulletin Paper

Textversion
publisher

Kyoto University
On the global existence of real analytic solutions
and hyperfunction solutions of
linear differential equations

by

KAWAI Takahiro (河合隆裕)
RIMS, Kyoto University

and

TAKEI Yoshitsugu (竹井義次)
Department of Mathematics, Kyoto University

Abstract

We first show the closed range property of a linear differential operator P acting on the space $A(K)$ of real analytic functions on a compact set $K \subset \mathbb{R}^n$, assuming some convexity condition on K with respect to P. Using this closed range property, we obtain some global existence theorems first for real analytic solutions, and then for hyperfunction solutions. The details of the first topic can be found in [5], and the details of the second and the third can be found in [4]. Our expectation is that the reasoning employed in [5] will eventually shed a new light upon our understanding of the role of bicharacteristics in the complex analytic category, although this expectation is not well visualized in [5]. We also note that Kiro [6] claimed some closed range property of P acting on $A(K)$, although his original reasoning contains serious gaps, as he himself admits in his letter to Kawai dated October 21, 1986.
He also says in the letter that he has corrected his original version. However we have not received the revised version up to now (= December 17, 1986). Hence we cannot say what his final claim is, and one of us (T.K.) wants to replace the condition (1.2) in his announcement paper [3] by the condition (1) given in the main text below.

The symposium folding, the complex manifold in the equation \(P(x, D_x)u = f \) the real analytic and \(\mathcal{A}(\Omega) \) existence of, which is the condition under, the following the results can be obtained to speak of it.

(1) \(\mathbb{R}^n \) the compact set \(K \) on the real analytic function \(\mathcal{A}(K) \) the space, the action \(\mathcal{P} \) is the full shot.

(2) \(\mathbb{R}^n \) the relative compact open set \(\Omega \) on the real analytic function \(\mathcal{A}(\Omega) \) the space, the action \(\mathcal{P} \) is the full shot.

(3) \(\Omega \) (2) and (3) on the hyper-function \(\mathcal{B}(\Omega) \) the space, the action \(\mathcal{P} \) is the full shot.

This is what I do not understand. (2) and (3) the detailed about Kawai [4] to refer, here is that idea to bring up, the idea of (2) and (3) is not,

(1) and be different, \(\mathcal{P} \) for \(\text{real} \) and \(\text{simple characteristic} \) (or \(\text{real} \) and \(\text{constant multiplicity} \)) in cases limited is attention to us. (2) and (3) in other clones, \(\mathcal{P} \) for \(\mathcal{A}(\Omega) / \mathcal{A}(\overline{\Omega}) \) the space.
射であることをまず示し、(I)を援用して\(A(\Omega)\)での結果を得るものである。又 (Ⅲ) について言えば、同様の凸柱の条件をみにす閉集合の族で\(\Omega\)をsweep out できると仮定し、\(P\)が real かつ simple characteristic であることにより \(Pu = f\) が可解な領域を少しずつ拡げていく、という方法がとられる。

なお、本稿とほぼ同様の内容の論文が、Proc. Japan Acad. に近く掲載される予定である。（Kawai - Takei [5]）

さて、(I) についての議論の詳細を述べるために必要とされる記号を準備しよう。\(K \subset \mathbb{R}^n\)のコンパクト集合とし、\(P(x, D_x)\) を \(K\) の開近傍で定義された実解析函数を係数もつ次数 \(m\) の線型微分作用素、\(P_m(x, D_x)\) をその principal symbol とする。また、\(K\) 上の実解析函数の空間を \(A(K)\) で表す。

\(A(K)\) は、\(K\) の複素近傍 \(\Omega\) を用いて

\[
A(K) = \lim_{\Omega \in K} G(\Omega) \quad (G^* \subset \Omega : \text{Stein})
\]

とも表される。

\(G(\Omega)\) は sup-norm で Banach 空間となり、\(A(K)\) にはその帰納極限としての位相を与える。Montel a 定理により、\(A(K)\) はこの位相で (DFS) 空間（dual Fréchet - Schwartz space）となることに注意されたい。

これから議論せんとする問題は、適当な十分条件を見出し -3-
それらの条件下に，$P : A(K) \to A(K)$ が全射を示すことにある。それには，

(i) P の値域，即ち $P A(K)$，が閉であること
(ii) $P A(K)$ が稠密であること

の二点を示せば十分である。勿論，単位方程式の場合は，
(i) と比べると (ii) は格段に易しい。実際，$A(K)$ の dual space は B_K （K に実をもつ hyperfunction の空間）であるから，
(ii) は P の adjoin operator \hat{P} が B_K から B_K への作用素として単射であることと同値で，これは P に何らかの非退化性の条件を課せば，かなり一般的に期待できる事実である。例えば，P が real かつ simple characteristic の場合に，Sato-Kawai-Kashiwara [9] の特異性の伝播についての結果を用いれば，容易に次の大定理を得ることができる。

Proposition

P は real かつ simple characteristic とする。更に，P が次の条件：

任意の $(x, y) \in T^* U$ ならば $P(x, y) = 0$，$x \in K$ に対して

$\sigma(x, y)$ を (x, y) を通る P の階特徵帯とするとき，

$\sigma(x, y) \subseteq (T^* U \setminus K) \cap \phi$

をみたすならば，$P A(K)$ は稠密である。

（ここで，R^1 間集合 U に対して $T^* U \triangleq T^* U \setminus T_{U^1} U$）

- 4 -
従って，以下では (i)，即ちと同様な条件の下で P の値域が閉となるかについて考えてみることにしよう。

我々は，作用素 P に対するコンパクト集合 K のある種の凸性を仮定する。以下，重復度一定の作用素をも対象としていることを強調する為に，z について次数 $p = \frac{m}{k}$ の齊次多項式となる (x,y) の実解析関数 $\psi(x,y)$ を用いて，$P_m(x,y) = \psi(x,y)^k$ と書けているとする。

Definition 1 (uniform P-convexity)

コンパクト集合 K が，次のように (1) をみたす U 上で定義された実数値実解析関数 $\psi(x)$ を用いて $K = \{ x \in U \mid \psi(x) \leq 0 \}$ を表されるとき，K は uniformly P-convex であるという。

$$z = x + y, \quad s = \frac{1}{2} \text{grad} \psi(x) - \sqrt{-1} A^\dagger y$$ とおくとき，適当な正定数 A_0, C に対して，$A > A_0$ なる限り，不等式:

$$\frac{1}{2} \sum_{1 \leq j,k \leq n} \frac{\partial \psi}{\partial x_j x_k} (x) \overline{\Phi_j(z,5)} \overline{\Phi_k(z,5)} + \text{Re} \left(\sum_{1 \leq j \leq n} \Phi_j(z,5) \overline{\Phi_j(z,5)} \right)$$

(1)

$$- \frac{1}{A} \sum_{1 \leq j \leq n} |\Phi_j(z,5)|^2 \geq C (1 + A \lambda_0 y^2)^{-1/2}$$

が，$\Phi(z,5) = 0$ かつ $A\psi(x) + A^\dagger y^2 = 1$ をみたす任意の (x,y) に対して成り立つ。

ここで $\phi_j(z,5) = \frac{\partial \psi}{\partial z_j} (z,5), \quad \phi_j(z,5) = \frac{\partial \psi}{\partial \bar{z}_j} (z,5)$ という。
略記法を用いた。定義に関して一つ注意を述べておこう。上
の定義において A は十分大としてよいから、付帯条件 \(A \Psi(x) + A^* \Psi^* = 1 \) により \(|\Psi| \) は十分小となり、従って (1) で \(q \) の
変数として \(z = x + \sqrt{-1} y \) を代入することは意味ももつ。

(\(q(x, z) \) は実解析函数)

(1) に現われる不等式は多少複雑であるので、その幾何学的
的な意味について二、三触れしておく。

(a) \(K \) の開近傍 \(\{ x \in U \mid \Psi(x) < \frac{1}{A} \} \) を \(K_A \) で表す。 (1)
の条件の下では、\(\Psi(x) = \frac{1}{A} \) をみたす点においては \(\text{grad} \Psi(x) = 0 \) と
なることはない。即ち、\(K_A \) の境界は smooth である。従って、\(K \) は smooth な境界をもつ開集合の交わりと表される。

(b) さらに強く、\(K_A \) は次の性質をみたすこともわかる。例
えば \(q \) が real としよう。この時 \(q(x, \text{grad} \Psi(x)) = 0 \) をみたす
\(K_A \) の境界上の点においては、(1) から

\[
\sum_{i, j, k \in \mathbb{N}} \frac{\partial^2 q}{\partial y_i \partial \xi_j \partial y_k}(x) \frac{\partial q}{\partial y_i}(x, \text{grad} \Psi(x)) \frac{\partial q}{\partial y_j}(x, \text{grad} \Psi(x)) \frac{\partial q}{\partial y_k}(x, \text{grad} \Psi(x)) + \sum_{i, j \in \mathbb{N}} q(x, \text{grad} \Psi(x)) \frac{\partial q}{\partial y_i}(x, \text{grad} \Psi(x)) > 0
\]

が従う。この不等式は、\((x, \text{grad} \Psi(x)) \) を初期値とする \(P \) の
持性帯、即ち \(q \) で定まるハミルトンベクトル場の解曲線

\((x(t), \xi(t)) \) に対しして、

\[
\left. \frac{d^2 \Psi(x(t))}{dt^2} \right|_{t=0} > 0
\]

が成立立つことと同値である。それ故 (1) は、\(K_A \) が \(P \) の持

-6-
性曲線に関して凸であるという内容も含んでいる。

一方、(1) は に対しても非常に強い制限を加えている。実際, $A \lVert y \rVert \gg 1$ である限り, $1 + A \lVert y \rVert \sim \lVert y \rVert$ であること
に注意して, (1) の両辺の についての不等式性に注目する。
すると, 左辺のオニ項に現われる $\sum \varphi_i \varphi_j$ のみ不等式性が
1 次高い。しかも不等式であることを考慮すれば, (1) は
$\sum \varphi_i \varphi_j$ の最高次項の実部が消えていることを意味する。
例えば, $n=2$ で $\varphi = \xi_1 + i \xi_2$ とするとき (1) は決してみた
されない。

また, ここで定義した uniform P-convexity が Hörmander [1]
a strong P-convexity と似ているという事実も指摘しておきた
い。Hörmander の方法は解 a priori 評価に基づくものであり,
我々が以下で採用する方法とは根本的に異なることも明らかに
す, 得られた条件が非常に似通っている点は興味深いと思わ
われる。

この K が uniformly P-convex であるという仮定の下に, $P \in$
$\mathcal{A}(K)$ における関値域性を得ることができ.

Theorem 1

K を \mathbb{R}^n のコンパクト集合, $P(x,DX)$ を K の近傍で実解析的
な係数をもつ線型微分作用素とする。
この時，K が uniformly P-convex であるならば，$\mathcal{A}(K)$ は $\mathcal{A}(K)$ の閉部分空間である。

以下，この定理の証明を与えることにしよう。

Proof of Theorem 1.

仮定から，条件 (1) をみたす $\psi(x)$ を用いて $K = \{x \in U \mid \psi(x) = 0\}$ と表されている。そこで A を十分大きい正の数として，次式で定義される K の基本近傍系 $\{\Omega_A\}_{A>0}$ を考える。

$$\Omega_A = \{ z = x + \sqrt{t} y \in U \times \sqrt{t} \mathbb{R}^n \mid \psi_A(z) \overset{\text{def}}{=} \psi(x) + A |y|^2 < \frac{1}{A} \}$$

まず A が十分大きい時，Ω_A は Stein であり，しかも上記 (a) と同様の理由によりその境界は smooth であることに注意する。また，P は Ω_A で正則な函数を係数にもつ微分作用素 $P(z, D_z)$ と見なすことができる。さて，Ω_A 上の正則函数の空間を $\mathcal{O}(\Omega_A)$ で表すと，$\mathcal{A}(K) = \lim_{A \to +\infty} \mathcal{O}(\Omega_A)$ であるから，

2. $\mathcal{A}(K) / \mathcal{P}(K) = \lim_{A \to +\infty} \mathcal{O}(\Omega_A) / \mathcal{P}(\Omega_A)$

ここでもし $\mathcal{O}(\Omega_A) / \mathcal{P}(\Omega_A)$ が有限次元であることが示せばとしよう。すると，(2) の右辺において基本近傍系 $\{\Omega_A\}_{A>0}$ は可算個で十分ゆえ，$\mathcal{A}(K) / \mathcal{P}(K)$ は可算次元となる。一方，先に述べた様に $\mathcal{A}(K)$ は (DFS) 空間であるから，函数解析の結果（例えば Komatsu [7] を参照）を用いれば，$\mathcal{P}(K)$
が \(\mathcal{A}(K) \) の閉部分空間であるという結論を得る。従って問題は \(\mathcal{O}(\Omega_A) / \mathcal{P}_0(\Omega_A) \) が有限次元であることの証明に帰着される。

ところで \(\Omega_A \) は Stein であるから，
\[
\overline{\partial}_i = \frac{\partial}{\partial z_i} = \frac{1}{2} \left(\frac{\partial}{\partial z_i} + i \frac{\partial}{\partial \bar{z}_i} \right)
\]
として方程式系
\[
\overline{\partial}_j u = q_j \quad (1 \leq j \leq n)
\]
が \(\Omega_A \) で可解である。従って \(\Omega_A \) で
\[
\begin{cases}
P(z, D_z) u(z) = f(z) \\
\overline{\partial}_j u = 0, \quad 1 \leq j \leq n
\end{cases}
\]
を解くということは，同じく \(\Omega_A \) で
\[
\begin{cases}
P(z, D_z) u(z, \bar{z}) = q(z, \bar{z}) \\
\overline{\partial}_j u = q_j(z, \bar{z}), \quad 1 \leq j \leq n
\end{cases}
\]
を解くことに還元される。ここで \(P(z, D_z) \) と \(\overline{\partial}_j \) が可換であることに注意されたい。より厳密に述べると，\(R^n \times R^n \) の複素化を \(\mathbb{X} \) とし，\(\mathcal{O}_X \)-module \(M \) を \(M = \mathcal{O}_X / (\mathcal{O}_X P(z, D_z) + \sum_{1 \leq j \leq n} \mathcal{O}_X \overline{\partial}_j) \) で定義すれば，次元同型が成り立つ。

(3) \(\mathcal{O}(\Omega_A) / \mathcal{P}_0(\Omega_A) \cong \text{Ext}^1_{\mathcal{O}_X}(\Omega_A ; M, \mathcal{B}_R^{2n}) \)

従って (3) の右辺が有限次元であることを証明すればよい。

(4) system Ω_A a generalized Levi form が、かつ $(\Omega_A, +)$ characteristic point において正定値であれば、(3) の右辺は有限次元となる。それ故、uniform P-convexity の仮定の下に、上で述べた条件 (4) を確かめすれば証明は完了する。

Ω_A a generalized Levi form を計算しよう。tangential system や generalized Levi form の定義に関しては Sato - Kawai - Kashiwara [9] を、またそれらの具体的な計算については Pallu de La Barrière [8] も参照されたい。今の場合、例えば $\frac{\partial \Omega_A}{\partial z_i} \neq 0$ となる

$N \equiv \Omega_A$ a point の近傍においては、Ω を Ω_A の複素化として、

Ω_A は次式で与えられる。

$$\Omega_A = \frac{\partial \Omega}{\partial z_i} / (\partial \Omega^N + \sum_{2i \geq s} \partial \Omega \partial \overline{z}^i)$$

(5)

$$P^N = \tilde{P}(z, \overline{z}) (z \in N)$$

$$\partial \Omega \partial \overline{z}^i \overset{def}{=} \frac{\partial}{\partial z_i} - (\frac{\partial \Omega_A}{\partial z_i})(\frac{\partial \Omega_A}{\partial z_i})^{-1} \frac{\partial}{\partial z_i}$$

これらより Ω_A a characteristic は、

(6)

$$\{(z, \pm n(z)) \mid z \in N, \ P_m(z, n(z)) = 0 \}$$

とし

$$n(z) = \left(\frac{1}{\sqrt{1 - \frac{\partial \Omega_A}{\partial z_i}(z)} \right) \left| z \right| \leq n$$

- 10 -
となることがわかる。このうち、特にcotangential component となる characteristic のみに注目するというのが、“positive” tangential system の意味である。従って \(\Pi_{A+} \) a characteristic point は、その base point 2 により定まる。\(Z_0 \) （即ち \((Z_0, n(z_0)) \) を \(\frac{\partial \varphi_A}{\partial z_1}(Z_0) \neq 0 \) とする \(\Pi_{A+} \) a characteristic point としよう。この時 (6) により \(Z_0 \in \mathbb{N} = \partial \Omega_A \) かつ \(P_m(Z_0, \frac{\partial \varphi_A}{\partial z}(Z_0)) = 0 \) である。\(Z_0 \) における \(\Pi_{A+} \) a generalized Levi form \(\mathbb{L}_{Z_0}(\sigma) \) （\(\sigma \in \mathbb{C}^n \) ）とがくことにすれれば、

\[
\mathbb{L}_{Z_0}(\sigma) = \sum_{2 \leq j \leq n} \frac{1}{2 \sqrt{-1}} \left[\frac{\partial^N}{\partial j}, \frac{\partial^N_{\overline{c}}}{\partial \overline{k}} \right] (Z_0, n(z_0)) \sigma_j \overline{\sigma}_k \\
+ 2 \text{Re} \left(\sum_{2 \leq j \leq n} \frac{1}{2 \sqrt{-1}} \left[\frac{\partial^N}{\partial j}, \frac{\partial^N_{\overline{c}}}{\partial \overline{k}} \right] (Z_0, n(z_0)) \sigma_j \overline{\sigma}_{n+1} \right) \\
+ \frac{1}{2 \sqrt{-1}} \left[\frac{\varphi^N}{\varphi}, \frac{\varphi^N_{\overline{c}}}{\varphi_{\overline{c}}} \right] (Z_0, n(z_0)) |\overline{\sigma}_{n+1}|^2
\]

ここで、\(\{f^g\} \) は \(f \) と \(g \) が Poisson 積

\(f^c \) は \(f \) の複素共役

となる。但し (5) で \(P^N \) を定義したのと同様に、\(\varphi \) から \(\varphi^N \) を定めた。 (7) 式中 \(\frac{\partial j}{\partial \overline{k}} \) などは (5) に与えられているから、それを用いて \(\mathbb{L}_{Z_0}(\sigma) \) を計算すれば、次式を得る。

\[
\mathbb{L}_{Z_0}(\sigma) = \sum_{2 \leq j, k \leq n+1} \overline{a}_{j,k}(Z_0) \sigma_j \overline{\sigma}_k \\
\overline{a}_{j,k}(Z_0) = \frac{\partial \varphi_A}{\partial z_j}(Z_0) - \frac{\partial \varphi_A}{\partial z_k}(Z_0) \left(\frac{\partial \varphi_A}{\partial z_1}(Z_0) \right) \left(\frac{\partial \varphi_A}{\partial z_2}(Z_0) \right) - \left(\frac{\partial \varphi_A}{\partial z_k}(Z_0) \right) \left(\frac{\partial \varphi_A}{\partial z_2}(Z_0) \right)
\]

\[
\frac{\partial \varphi_A}{\partial z_j}(Z_0) - \frac{\partial \varphi_A}{\partial z_k}(Z_0) \left(\frac{\partial \varphi_A}{\partial z_2}(Z_0) \right) \left(\frac{\partial \varphi_A}{\partial z_2}(Z_0) \right) - \left(\frac{\partial \varphi_A}{\partial z_k}(Z_0) \right) \left(\frac{\partial \varphi_A}{\partial z_2}(Z_0) \right)
\]

\[
+ \frac{\partial \varphi_A}{\partial z_j}(Z_0) \left(\frac{\partial \varphi_A}{\partial z_k}(Z_0) \right) \left(\frac{\partial \varphi_A}{\partial z_2}(Z_0) \right) \left(\frac{\partial \varphi_A}{\partial z_2}(Z_0) \right) \left(\frac{\partial \varphi_A}{\partial z_2}(Z_0) \right)
\]

\((2 \leq j, k \leq n) \)
\[a_{j,n+1}(z_0) = (2 \sqrt{-1})^{r-1} \left[q_{j1}(z_0, \nabla z_A(z_0)) - q_{j1}(z_0, \nabla z_A(z_0)) \left(\frac{\partial \Lambda_A}{\partial z_j}(z_0) \right) \left(\frac{\partial \Lambda_A}{\partial z_1}(z_0) \right) - 1 \right] \]

\[+ \sum_{1 \leq k \leq n} q_{f,k}(z_0, \nabla z_A(z_0)) \left(\frac{\partial \Lambda_A}{\partial z_j}(z_0) \right) \left(\frac{\partial \Lambda_A}{\partial z_k}(z_0) \right) \left(\frac{\partial \Lambda_A}{\partial z_1}(z_0) \right) \left(\frac{\partial \Lambda_A}{\partial z_k}(z_0) \right) \left(\frac{\partial \Lambda_A}{\partial z_1}(z_0) \right) \left(\frac{\partial \Lambda_A}{\partial z_k}(z_0) \right) \left(\frac{\partial \Lambda_A}{\partial z_1}(z_0) \right) \left(\frac{\partial \Lambda_A}{\partial z_k}(z_0) \right) \]

\[(2 \leq j \leq n) \]

\[a_{n+1,1}(z_0) = 2^{2(r-1)} \sum_{1 \leq j, k \leq n+1} q_{j1}(z_0, \nabla z_A(z_0)) q_{k1}(z_0, \nabla z_A(z_0)) \frac{\partial \Lambda_A}{\partial z_j}(z_0) \frac{\partial \Lambda_A}{\partial z_k}(z_0) \]

ここで以後の計算を簡単にする為に、別の Hermite 形式
\[Q_{z_0}(\tau) \quad (\tau \in \mathbb{C}^{n+1}) \]
を次のように導入しよう。

\[Q_{z_0}(\tau) = \sum_{1 \leq j, k \leq n+1} b_{j,k}(z_0) \tau_j \tau_k \quad (b_{j,k} = b_{k,j}) \]

\[b_{j,k}(z_0) = \frac{\partial \Lambda_A}{\partial z_j}(z_0) \quad (1 \leq j, k \leq n) \]

\[\left(9\right) \]

\[b_{j,n+1}(z_0) = \frac{q_{j1}(z_0, \nabla z_A(z_0))}{2} + \sum_{1 \leq k \leq n} q_{f,k}(z_0, \nabla z_A(z_0)) \frac{\partial \Lambda_A}{\partial z_j}(z_0) \]

\[(1 \leq j \leq n) \]

\[b_{n+1,j}(z_0) = \sum_{1 \leq j, k \leq n} q_{j1}(z_0, \nabla z_A(z_0)) q_{k1}(z_0, \nabla z_A(z_0)) \frac{\partial \Lambda_A}{\partial z_j}(z_0) \frac{\partial \Lambda_A}{\partial z_k}(z_0) \]

\[(8) \]

及び (9) を比較すると、\(\tau \in \mathbb{C}^n \) に対して \(\tau \in \mathbb{C}^{n+1} \) を

\[\begin{pmatrix} \tau_1 = - \sum_{2 \leq j \leq n} \left(\frac{\partial \Lambda_A}{\partial z_j}(z_0) \right) \left(\frac{\partial \Lambda_A}{\partial z_1}(z_0) \right) \left(\frac{\partial \Lambda_A}{\partial z_j}(z_0) \right) \left(\frac{\partial \Lambda_A}{\partial z_1}(z_0) \right) \left(\frac{\partial \Lambda_A}{\partial z_j}(z_0) \right) \left(\frac{\partial \Lambda_A}{\partial z_1}(z_0) \right) \left(\frac{\partial \Lambda_A}{\partial z_k}(z_0) \right) \\ \tau_j = \sigma_j \quad (2 \leq j \leq n) \\ \tau_{n+1} = (-2 \sqrt{-1})^{r-1} \sigma_{n+1} \end{pmatrix} \]

と定めれば、\(L_{z_0}(\sigma) = Q_{z_0}(\tau) \) が成り立っている。従って、\(Q_{z_0} \) が正定値であれば \(L_{z_0} \) も正定値となる。特に各 characteristic point \(z_0 \) において \(Q_{z_0} \) が正定値ならば、条件 (4) が成立
する。そこで以下においては、Q_{z_0} が正定値かどうかについて考えることにしよう。

最初に、次の二点について注意されたい。まず一つに、$1 \leq j, k \leq n$ に対しては、$b_{jk}(z_0) = \frac{1}{4} \frac{\partial^2}{\partial x_j \partial x_k} (\text{Re} z_0) + \frac{1}{2} A \delta_{jk}$（$\delta_{jk}$: Kronecker のデルタ）であるから、$Q_{z_0}$ に対応する Hermite 行列 $\alpha(z_0)$ は $\text{det} \left(b_{jk}(z_0) \right)$ に含まれない主小行列式は、A が大きければすべて正である。従って A が十分大の時 Q_{z_0} が正定値であるためには、$\alpha(z_0)$ の行列式 $\text{det} \left(\alpha(z_0) \right)$ が正でありさえすればよい。次に、uniform P-convexity は実の直交変換に対して不変である。実際、実直交行列 M に対して、$\tilde{z} = \hat{z} + \sqrt{-1} \tilde{y}$ を $z - \text{Re} z_0 = M \tilde{z}$ として、$\alpha - \text{Re} z_0 = \hat{\alpha}$、$\tilde{y} = M \tilde{y}$ と定義したとする。この時、領域 Ω_A は、

$$\Omega_A = \{ \tilde{z} = \hat{z} + \sqrt{-1} \tilde{y} \in \mathbb{C}^n | \psi(\text{Re} z_0 + M \tilde{z}) + A|\tilde{y}|^2 < \frac{1}{A} \}$$

と表せる。一方、条件 (1) に現われる不等式については、左辺の最初の二項が、$\bar{z} \cdot \bar{z} = \text{grad}_z \Phi_A(\bar{z})$ で置きかえれば、座標変換に関して不変な形である上に、左辺の和を各小辺を直交変換で不変である。故に、この新しい変数 \tilde{z} に対しても uniform P-convexity が成立する。ところで今 M をうまくとると、新しい座標 (\hat{z}, \tilde{y}) においては、$\frac{\partial^2}{\partial x_j \partial x_k} (\text{Re} \tilde{z}_0)$ を対角行列とすることができる。Q_{z_0} の正定値性は各点 z_0
每に示せばよいので、従って \(\frac{\partial^{\nu}}{\partial x_{ij}^{\nu}} (\text{Re}\, z_0) \) さらに
\[\frac{\partial \Phi_A}{\partial z} (z_0) \]
は対角行列であるとして一般性を失わない。
以上述べた注意から、\(\frac{\partial \Phi_A}{\partial z} (z_0) \) が対角行列であるという仮定の下に、\(\det (\alpha(z_0)) \) の正定性を確かめればよいことわかった。
(9) 式を用いて行列式の計算を実行すれば、
\[
\det (\alpha(z_0)) = \left\{ \prod_{i \leq j \leq n} (C_j + \hat{A}) \right\} \cdot \left\{ \sum_{i \leq j \leq n} (C_j + \hat{A}) \right\}^{\left(\frac{1}{2} \right)} \left(\Phi(z_0, \text{grad}\, \Phi_A(z_0)) \right)^2
\]
\[
- \sum_{i \leq j \leq n} (C_j + \hat{A}) \left(\Phi(z_0, \text{grad}\, \Phi_A(z_0)) \right)^2 \]
を得る。ここで \(C_j = \frac{1}{4} \frac{\partial^{\nu}}{\partial x_{ij}^{\nu}} (\text{Re}\, z_0) \), \(\hat{A} = \frac{1}{2} A \) といた。これから容易に次式が導かれる。
\[
\det (\alpha(z_0)) = \left[4 \sum_{i \leq j \leq n} C_j \left(\Phi(z_0, \text{grad}\, \Phi_A(z_0)) \right)^2 \right]
\]
\[
+ 2 \text{Re} \left\{ \sum_{i \leq j \leq n} \Phi(z_0, \text{grad}\, \Phi_A(z_0)) \right\} \left(\Phi(z_0, \text{grad}\, \Phi_A(z_0)) \right)^2 \left(\hat{A} + R(z_0) \right)
\]
剰余項については、\(\Phi \) が下次元次であることににより、ある定数 \(C_1 \) があって、
\[
\left| R(z_0) \right| \leq C_1 \hat{A}^n \rho^{2(n-1)} (1 + \rho) \frac{\rho}{\hat{A}} \rho \text{def} 1 + A \left| \text{Im} \, z_0 \right|
\]
となり立つ。さて、\(z_0 \) は \(\Omega \) の点であったから \(\Phi_A(z_0) = \frac{1}{A} \) をみたしており、従って \(\rho \) は \(A \) について高さ \(\frac{1}{2} \) 次の order 数
しか持たないと。ゆえに \(A \to +\infty \) ととき \(\frac{p}{A} \to 0 \)。 (11).
(12) 式を眺めれば、これより uniform P-convexity が、十分大きい \(A \) に対して、\(\det(\alpha(\omega)) \) の正値性を保証することがわかる。よって定理は証明された。 Q.E.D.

最後に、ここで述べた閉値域性の system の場合への拡張について一言触れ災おこう。一般の system の場合において、閉値域性、ひいては解の存在の存在を得ることは今後の課題であるが、少なくとも最も簡単な場合、すなわち未知数が一つの一階連立方程式系に対しては、ここで述べた \(a \) と全く同様の方法で次の一階値域性を証明することができる。それを定理の形で述べて、奇の報告を終えることとした。

\(K \) を \(\mathbb{R}^n \) のコンパクト集合とし、\(K \) の近傍 \(U \) で定義された一階線型微分方程式系 \(\mathcal{M} = \mathcal{D}_u \mathbb{R}^n \) を考える。以下、簡単の為 proj dim \(\mathcal{M} = I \) と仮定する。また \(p_\alpha \) の principal symbol を \(\alpha(\xi) \) とし、\(\alpha = (\alpha_1, \ldots, \alpha_I) \in C^I \), \(|\alpha| = 1 \) に対し，

\[\tilde{\rho}_\alpha(\xi) = \sum_{\alpha \in I} \alpha_i p_i(\xi) \]

と定める。

Definition 2

\(K \) が次の条件 (i) をみたす \(U \) 上で定義された実数値実数
析函数 \(\psi(x) \) を用いて \(K = \{ x \in U \mid \psi(x) \leq 0 \} \) と表されるとき、\(K \) は uniformly \(M \)-convex であるという。

\[z = x + \sqrt{-1} y, \quad \tilde{z} = \frac{1}{2} \text{grad} \psi(x) - \sqrt{-1} A y \] とおくとき、適当な正定数 \(A_0, C \) に対して、\(A > A_0 \) なる限り、不等式:

\[
\frac{1}{2} \sum_{1 \leq i \leq n} \frac{\partial \psi}{\partial z_i} (x) \overline{\tilde{P}_a (z, \tilde{z})} \overline{\tilde{P}_a (z, \tilde{z})} + \text{Re} \left(\sum_{1 \leq i \leq n} \tilde{P}_a q_i (z, \tilde{z}) \overline{\tilde{P}_a q_i (z, \tilde{z})} \right)
\]

\[- \frac{1}{A} \sum_{1 \leq i \leq n} |\tilde{P}_a q_i (z, \tilde{z})|^2 \geq C \]

を、\(\tilde{P}_i (z, \tilde{z}) = 0 \quad (1 \leq i \leq I) \) かつ \(A \psi(x) + A^2 y^2 = 1 \) をみたす任意 \((x, y) \), 及び任意 \(x, \alpha \) に対して成立つ。

例えば、\(\mathbb{C}^n_{(x_1, \ldots, x_{2n})} \subseteq \mathbb{C}^n_{(z_1, \ldots, z_{2n})} \quad (z_i = x_i + \sqrt{-1} x_{n+i}) \) において,

\[M = \mathbb{C}^n_{(z_1, \ldots, z_{2n})} / \sum_{1 \leq i \leq n} \mathbb{C}^n_{\overline{z_i}} \quad (\overline{z_i} = \frac{1}{2} (\frac{\partial}{\partial x_i} + \sqrt{-1} \frac{\partial}{\partial x_{n+i}})) \] と考えれば,

多変数析函数論においていう多変数凸なコンパクト集合 \(K \) は、この uniform \(M \)-convexity の条件をみたすことがわかる。

Theorem 2

\(K \in \mathbb{R}^n \) のコンパクト集合、\(M = \mathbb{C}^n_{\mathbb{C}^n} / \sum_{1 \leq i \leq I} \mathbb{C}^n_{\overline{z_i}} P_i \subseteq K \) と近傍で定義された一階線型微分方程式系で、\(\text{proj} \dim M = I \) とみたすものとする。

この時、\(K \) が uniformly \(M \)-convex であるならば,

\[\mathcal{A}(K) \xrightarrow{\psi} \mathcal{A}(K) = \mathcal{A}(K) \times \cdots \times \mathcal{A}(K) \]

\[u \xrightarrow{\psi} (P_i u, \ldots, P_i u) \]

\(\psi \) は、\(\mathcal{A}(K) \) の閉部分空間である。

- 16 -
References

