What can be said about w-vectors of finite partially ordered sets ?

Takayuki Hibi

Department of Mathematics

Faculty of Science

Nagoya University

Chikusa-ku, Nagoya 464, Japan

Any partially ordered set (\underline{poset} for short) to be considered is finite. The cardinality of a finite set X is denoted by #(X). Let N be the set of non-negative integers and Z the set of integers.

§1. w-vectors

Let P be a poset with elements x_1, x_2, \ldots, x_p labeled so that if $x_i < x_j$ in P then i < j in Z. Given an integer i, $0 \le i < p$, write $w_i = w_i(P)$ for the number of permutations $\pi = \begin{pmatrix} 1 & 2 & \dots & p \\ a_1 & a_2 & \dots & a_p \end{pmatrix}$ such that (a) if $x_a < x_a$ in P, then r < s (i.e., π is a <u>linear extension</u> of P) and (b) $\#\{r; a_r > a_{r+1}\}$, the number of <u>descents</u> of π , is equal to i. We say that the vector $w(P) := (w_0, w_1, \dots, w_{p-1})$ is the <u>w-vector</u>

of P. Consult [Stanley [Sta2, pp. 211-221] for combinatorial background of w-vectors.

§2. Notation and terminology

A <u>chain</u> is a poset in which any two elements are comparable. The <u>length</u> of a chain C is defined by $\ell(C) := \#(C) - 1$. The <u>rank</u> of a poset P , denoted by rank(P) , is the supremum of lengths of chains contained in P . If $\alpha \le \beta$ in P , we write $\ell(\alpha,\beta)$ for the rank of the subposet $P_{\alpha}^{\beta} := \{x \in P; \alpha \le x \le \beta\}$ of P . A poset P is called <u>pure</u> if every maximal chain of P has the same length. We say that P satisfies the $\frac{\delta^{(n)}-\text{chain}}{\delta^{(n)}-\text{chain}}$ condition, $n \in \mathbb{N}$, if (a) for any $\xi \in P$, the subposet $P_{\xi} := \{y \in P; y \ge \xi\}$ of P is pure and (b) rank(P) - min{ $\ell(C)$; C is a maximal chain of P} = n . Thus P satisfies the $\delta^{(0)}-$ chain condition if and only if P is pure.

Give a poset P , we write P^ for the poset obtained by adjoining a new pair of elements, 0^ and 1^ , to P such that 0^ < x < 1^ for any x \in P . A sequence A = $(\alpha_0,\beta_0,\alpha_1,\beta_1,\ldots,\alpha_t,\beta_t)$, which consists of elements of P^ , is called rhythmical if (a) α_0 = 0^ , β_t = 1^ , (b) α_i < β_i for any i , 0 < i < t and (d) α_{i+2} < β_i for any i , 0 < i < t and (d) α_{i+2} < β_i for any i , 0 < i < t and (d) α_{i+2} < β_i for any i , 0 < i < t and (equal to a condition if $\ell(A) \leq {\rm rank}(P^{\circ})$ for any rhythmical sequence A of P^ . We easily see that, for any n \in N , the $\delta^{(n)}$ -chain condition implies the Δ -chain condition.

§3. Results.

Now, what can be said about w-vectors of posets? In the following, let $w(P) = (w_0, w_1, \dots, w_{p-1})$ be the w-vector of a poset P with #(P) = p and $s := max\{i; w_i \neq 0\}$.

THEOREM (Stanley [Sta₂, (4.5.17)]). The sequence w_0 , w_1 , ..., w_s is symmetric, i.e., $w_i = w_{s-i}$ for any i, $0 \le i \le s$, if and only if P is pure.

THEOREM (Stanley). The inequality

$$w_0 + w_1 + \dots + w_i \le w_s + w_{s-1} + \dots + w_{s-i}$$

holds for any i, $0 \le i \le [s/2]$.

THEOREM ([H2]). Assume that P satisfies the Δ -chain condition. If i and j are non-negative integers with i + j \leq s , then w_i \leq w_jw_{i+j}.

THEOREM ([H $_2$]). Assume that P satisfies the $\delta^{(n)}$ -chain condition. Then, the inequality

$$w_s + w_{s-1} + \dots + w_{s-i} \le w_0 + w_1 + \dots + w_i + \dots + w_{i+n}$$

holds for any i, $0 \le i \le [(s-n)/2]$.

Our technique $[H_2]$, which originated in $[H_1]$, is heavily based on commutative algebra, especially the theory of canonical modules $[Sta_1]$ of invariant subrings of tori [Hoc].

It would, of course, be of great interest to find a characterization of w-vectors of posets.

The author would like to thank Prof. Richard P. Stanley for helpful discussions relevant to this work.

References

- [H₁] T.Hibi, Canonical ideals of Cohen-Macaulay partially ordered sets, to appear.
- $[H_2]$ _____, Linear diophantine equations and Stanley's (P,ω) -partitions, in preparation.
- [Hoc] M.Hochster, Rings of invariants of tori, Cohen-Macaulay rings generated by monomials, and polytopes, Ann. of Math. 96 (1972), 318-337.
- [Sta₁] R.Stanley, Hilbert functions of graded algebras, Advances in Math. 28 (1978), 57-83.
- [Sta₂] _____, "Enumerative Combinatorics, Volume I", Wadsworth, Monterey, Calif., 1986.