What can be said about w-vectors of finite partially ordered sets?

(Combinatorial Theory and Related Topics: Mutual Relation among Commutative Algebra, Algebraic Geometry, Representation Theory of Lie Algebras and Partially Ordered Sets)

Author(s)
Hibi, Takayuki

Citation
数理解析研究所講究録 (1988), 641: 194-197

Issue Date
1988-01

URL
http://hdl.handle.net/2433/100194

Type
Departmental Bulletin Paper

Textversion
publisher

Kyoto University
What can be said about w-vectors of finite partially ordered sets?

Takayuki Hibi

Department of Mathematics
Faculty of Science
Nagoya University
Chikusa-ku, Nagoya 464, Japan

Any partially ordered set (poset for short) to be considered is finite. The cardinality of a finite set X is denoted by $\#(X)$. Let N be the set of non-negative integers and Z the set of integers.

§1. w-vectors

Let P be a poset with elements x_1, x_2, \ldots, x_p labeled so that if $x_i < x_j$ in P then $i < j$ in Z. Given an integer i, $0 \leq i < p$, write $w_i = w_i(P)$ for the number of permutations $\pi = (a_1 a_2 \ldots a_p)$ such that (a) if $x_{a_r} < x_{a_s}$ in P, then $r < s$ (i.e., π is a linear extension of P) and (b) $\#(r; a_r > a_{r+1})$, the number of descents of π, is equal to 1. We say that the vector $w(P) = (w_0, w_1, \ldots, w_{p-1})$ is the w-vector
of P. Consult [Stanley [Sta$_2$, pp. 211-221] for combinatorial background of w-vectors.

§2. Notation and terminology

A chain is a poset in which any two elements are comparable. The length of a chain C is defined by $\ell(C) := \#(C) - 1$. The rank of a poset P, denoted by $\text{rank}(P)$, is the supremum of lengths of chains contained in P. If $\alpha \leq \beta$ in P, we write $\ell(\alpha, \beta)$ for the rank of the subposet $P^\beta_\alpha := \{ x \in P ; \alpha \leq x \leq \beta \}$ of P. A poset P is called pure if every maximal chain of P has the same length. We say that P satisfies the $\delta(n)$-chain condition, $n \in \mathbb{N}$, if (a) for any $\xi \in P$, the subposet $P_{\xi} := \{ y \in P ; y \geq \xi \}$ of P is pure and (b) $\text{rank}(P) - \min\{ \ell(C) ; C$ is a maximal chain of $P \} = n$. Thus P satisfies the $\delta(0)$-chain condition if and only if P is pure.

Give a poset P, we write P^\wedge for the poset obtained by adjoining a new pair of elements, 0^\wedge and 1^\wedge, to P such that $0^\wedge < x < 1^\wedge$ for any $x \in P$. A sequence $A = (\alpha_0, \beta_0, \alpha_1, \beta_1, \ldots, \alpha_t, \beta_t)$, which consists of elements of P^\wedge, is called rhythmic if (a) $\alpha_0 = 0^\wedge$, $\beta_t = 1^\wedge$, (b) $\alpha_i < \beta_i$ for any i, $0 \leq i \leq t$, (c) $\alpha_{i+1} < \beta_i$ for any i, $0 \leq i < t$ and (d) $\alpha_{i+2} < \beta_i$ for any i, $0 \leq i \leq t-2$. Let $\ell(A) := \sum_{0 \leq i \leq t} \ell(\alpha_i, \beta_i) - \sum_{0 \leq i \leq t-1} \ell(\alpha_i+1, \beta_i)$. We say that P satisfies the Δ-chain condition if $\ell(A) \leq \text{rank}(P^\wedge)$ for any rhythmic sequence A of P^\wedge. We easily see that, for any $n \in \mathbb{N}$, the $\delta(n)$-chain condition implies the Δ-chain condition.
§3. Results.

Now, what can be said about \(w \)-vectors of posets? In the following, let \(w(P) = (w_0, w_1, \ldots, w_{p-1}) \) be the \(w \)-vector of a poset \(P \) with \(\#(P) = p \) and \(s := \max\{ i \; ; \; w_i \neq 0 \} \).

THEOREM (Stanley [Sta\textsubscript{2}, (4.5.17)]). The sequence \(w_0, w_1, \ldots, w_s \) is symmetric, i.e., \(w_i = w_{s-i} \) for any \(i \), \(0 \leq i \leq s \), if and only if \(P \) is pure.

THEOREM (Stanley). The inequality

\[
w_0 + w_1 + \ldots + w_i \leq w_s + w_{s-1} + \ldots + w_{s-i}
\]

holds for any \(i \), \(0 \leq i \leq \lfloor s/2 \rfloor \).

THEOREM ([H\textsubscript{2}]). Assume that \(P \) satisfies the \(\Delta \)-chain condition. If \(i \) and \(j \) are non-negative integers with \(i + j \leq s \), then \(w_i \leq w_j w_{i+j} \).

THEOREM ([H\textsubscript{2}]). Assume that \(P \) satisfies the \(\delta^{(n)} \)-chain condition. Then, the inequality

\[
w_s + w_{s-1} + \ldots + w_{s-i} \leq w_0 + w_1 + \ldots + w_i + \ldots + w_{i+n}
\]

holds for any \(i \), \(0 \leq i \leq \lfloor (s-n)/2 \rfloor \).
Our technique \([H_2]\), which originated in \([H_1]\), is heavily based on commutative algebra, especially the theory of canonical modules \([Sta_1]\) of invariant subrings of tori \([Hoc]\).

It would, of course, be of great interest to find a characterization of \(w\)-vectors of posets.

The author would like to thank Prof. Richard P. Stanley for helpful discussions relevant to this work.

References

[H_2] _____, Linear diophantine equations and Stanley's \((P, \omega)\)-partitions, in preparation.

