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-Harmonic functions on Hilbert space and the Lévy Laplacian

Nobuaki Obata (Nagova University)
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Introduction.

In his celebrated book [14] P.Lévy introduced an infinite dimen-—

<o

sional Laplacian for functions of infinitely many variables {gn}n=1

by the formula:

M=
o
B

, _ ‘ 1
D A= lim N

N— n

1 9&

=2 &

This is called the Levy Laplaciar and has been studied by many
authors from various points of view (see, e.g., [1,2,4,6,7,8,11,13]
and references quoted there). In this paper the Lévy Laplacian is
defined as an operator acting on functions on Hilbert spaée (for,‘
definition, see the formula (2) below) and discussed along with
infinite dimensional rotation groups.

The first topic is harmonic functions. Moti?ated by Levy’s
notion of regular functionals and white noise analysis, we propose a
notion of regularly analytic functions on Hilbert space which
genéralize ordinary Brownian functionals. The mean value theorem for
regularly analyiic functions (Theorem 2.1) then naturally implies the
xharmoﬁicity of ordinary Brownian functionals (Theorem 3.2).

‘The second topic, that is, invariance of the Levy Laplacian
under infinite dimensional rotation groups, is discussed with great
interest because the LLevy Laplacian depends upon choice and arrange-—
ment of complete orthonormal syétems of Hilbeft space. We determine
the maximal rotation group under which the Lévy Laplacian is

invariant (Theorem 4.2) and discuss its subgroups.
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During the discussion on invariance of the Lévy Laplacian we
find a quite interesting permutation group called the Lévy group. In
Appendices we shall illustrate a close connection between the Lévy
group and certain notions of additive number theory, namély; the

density of natural numbers and uniformly distributed sequences.

§1. The Lévy Laplacian and the mean operator

I.et H be a real separable Hilbert space with inner product <,>
and norm f-1. We fix a complete orthonormal system (=CONS) of Hi say,
{en}:=1 . For any C%-function F (in the sense of Fréchet) defined in
a neighborhood £ € H, put

@ AF (&) = lim Nl- s

yeim . F* (&) (e, e ) [ £ € HT
if the limit exists. The operator A is called the Lévy Laplacian.
Evidently the expression (2) coincides with (1) through the Fourier
series expansion.
For each n > 1 the unit sphere Sn_1 c R" is regarded as a subset
of H by means of the map:
n

LS n-1
-,hn) — hkek € H, h € S

1’ k=1

Let dSn_l(h) be the normalized uniform measure on Sn—l. The mean of
a function F over the sphere of radius p € R with center at £ € H is

defined by

MFCE, 0) = lim j’ F(g+ph) dS__, Ch) ,

n— “on 1 _ n-1
if this limit exists.
The following result, which has been noted in,Somewhat’different

forms Ce.g., [2,14]), shows one of the most distinctive features of



the Lévy Laplacian. The proof is easy and omitted.

Proposition 1.1. Let F be a C2—function defined in a neighbor-—

hood of £ € H. If F admits the mean MF(&,p) for |p] < R, then

AFe) =2 1im YEL.P) = FCE)
p—.—*o ‘ [o]

whenever the limit exists.

§2. Mean value theorem for regularly analytic functions

Assume that a function F admits the expression:

(3 F = 3 < a_ , (g—gO)Q“ >, a_ € S™H,

n n
n=0

in some neighborhood of &0. Then F is called regualarly aralytic at ﬁo

(o]

if the power series 3 _g

The expression (3) is called the power series expanrsiorn of F at &0 .

n .
Hanﬂt has a non—zero radius of convergence.

A function defined on an open set ® of H is called regularly aeralytic
or ® if it is regularly analytic at every point of ®. The space of

all regularly analytic functions on ® will be denoted by R«(®.
Example. Consider a quadratic function

F() = < At , £€ >, £ € HL A € B,

where B(H) denotes the algebra of all bounded operators on H. Then F
is analytic in the usual sense ([15]). However, it is regularlyi

analytic if and only if A is of Hilbert—Schmidt type.
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The following is one of the most remarkable properties of

regularly analytic functions.

Theorem 2.1 (Mean value theorem). Assume that F is regularly

analytic at &. Then there exists some R > 0 such that

MF(E,p) = F(&)  whenever |p|l <R .

Here we only mention a rough idea of the proof. By means of the
polar coordinate one can show that the assertion is valid for mono-

mials of the form:
Fp) =<a, -6)®" >, a2 € s"H, n > 0.

For arbitrary regularly analytic functions one may carry out an
approximation argument.
The next result is now immediate from Proposition 1.1 and the

above theorem.

Corollary 2.2, Every regularly analytic function is harmonic,

i.e. AF = 0 on 0 whenever F € R4 (®).

§3. Harmonicity of ordinary Brownian functionals

We now start with a Gelfand triple E ¢ H c E*, where E is a
nuclear space contained in H as a dense subspace and E* denotes the
topological dual space of E. The canonical bilinear form on ExE¥ is
also denoted by.<,>. The standard Gaussian measure M on E* is defined

by the characteristic functional:
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— 2 3 . ' l
cee) = ¢ MENT/2 _ f eiI<%: 8> qu(x) , £ € E.
b 9
E

2 2

We put (L™ = L2(E*,p)‘fo} simplicity. Any element of (L™) is called

an ordirary Browrianrn funrctioral.

Following [11] we introduce the transformation:

SfCE) = f £ Ox+E) dp(x) = C(g)f tx0e <X quo
»* b
E

E
for’f € (L2) and £ € E. As is easily shown, Sf is continuously
extended to a C —function on H also denoted by Sf. ‘Let S™H denote

the n—th symmetric power of H and put SH = ano S"H (usual direct sum
of Hilbert spaces). It is known Ce.g., [5,11,20]> that the transform

S is an analytical expression of the isomorphism (L2) ~ SH, namely,

Proposition 3.1. For each f € (L2) thefe exists a unique element

a € SH with Ifl = lall such that

Sf(g) =< a , exp £ >,

-1/2 _.®n

£

an isometric isomorphism from.(L2) onto SH.

where exp & = ano (n? The correspondence f +—— a gives

The next result, which has been noted in a weaker forms C(e. g.,

[5,8,13]), is known as harmonicity of ordinary Brownian functionals.

Theorem 3.2. The Levy Léplacian annihilates (L2) in the sense
that ACSE) = 0 for every f € (L2).
- Proof. In view of Proposition 3.1 we can show that Sf € R4 (H)

for any f € (Lz), Hence, by Corollary 2.2 we have A(Sf) = 0. Q. E. D.
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8§4. Invariance of the Lévy Laplacian

In what follows every subset of B(H) is assumed to be furnished
with the operator-norm topology. It is known that the orthogonal
group O is a Banach-Lie group. We denote by o(H) the Lie algebra
of OC(H). The set

8, = {»A €BA ; lim L S<he, e >=0 }
0; _ " N——e N 2 n’ “n ,

bgcomes a closed subspace of B(H). Set

i _ P T
O(H,ﬁo) = { g € OO ; g%og = £0 } .

Proposition 4.1. O,8y; is a closed subgroup of O(H). More-

over, it is a Banach—-Lie group with the Lie algebra

O(H;SO) = { X € oD ; atd(X)ﬁ0 Lo 30 }.

Let Dom(A) be the space of all C%—functions on H which admit the
limit (2) at every point £ € H. We take Dom(A) to be the domain of
the Leévy Laplacian A. The orthogonal group O acts on functions on

H by’means of the map:
W@ ) =F le) , 6 el g€ 0.

We say that the Lévvaaplacian is' invariant under a rotation g € O

if UCg)A = AU(g). With these notations,

Theorem 4.2, O(H;ﬁo) is the maximal rotation group under which
the the Lévy Laplacian is invariant.
Proof. (outline) Assume that F is a C2—function on H. Then, for

each £ € H, we have
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F (&)(en,en) = < A(i)en » e, >

for some A(E) € B(). Therefore, F € Dom(A) if and only if A(&) € 3,
where B8 is the space of ;11 bounded operators A € B(H) which admit
the limit

N

n§1 < Aen yoen >

LA = lim

N—Dco

1
N
It is easily shown that O(H;%O) is the maximal rotation group which

leaves the functional L invariant. On the other hand, we have

. | _ -1, -1 -1
Ued) (en,en) = < A(_g E)g e, » &8 e >

for any g € O(H). Therefore, A is invariant under g € O(H) if and

only if g € O(H;ﬂo)‘ Q. E. D,

Remark. The Lévy Laplacian is invariant under any translation,

i.e. AWM = WA for any # € H, where W(%) is défined by

W@ (8) = FE&-».

§5. Subgroups of O(H;ﬁo)

For g € B(H) we put

1 N 2
'(g) = limsup N > ﬂ(l—g)enﬂ
N—— n=1
1 N 2
= limsup N 2 <x, (l—g)en> da (0.

Motivated by [5, p.190] we call this the irtegral of average power.

The set



220

OMH;I = { g € OO ;3 T =0 }

.becomes a closed subgroup of O(D. Furthermore, we can show the.

following

Proposition 5.1. OH;I) <« O(H;8y). In particular, the Levy
Laplacian is invariant under every orthogonal operator g € O(H) such

that 1—-g is compact.

- Finally we shall devote ourselves to coordinate permutations.-
Let N be the set of all natural numbers and Aut(N) the group of all
permutations of N. Then Aut(N) is regarded as a discrete subgroup of

O(H> through the fixed CONS {e }°_, . We set

¢ = ( g € AutN) ; lim % {1 €<n<Ng; gn) >N} =0 } ,
N— ,
where |:| denotes the cardinality. It is shown that € is a subgroup

of Aut(N\) and we call it the Lévy group after [7].

Proposition 5.2. ¢ c OWH;8p, i.e. the Lévy Laplacian is
invariant under the Lévy group.

Proof. With the notation introduced in Appendix B, one can show
that O(H;ﬁo) N AutND = @,9). The assertion is then follows from
Proposition B. 1. Q. E.D.

Proposition 5.3. OMH;ID n Aut(N) = 90 , where gO is the group
of all permutations g € Aut (N) whose supports are of null density,
i.e. Sﬁsuph g)v# 0. Furthermore, we have 5 c ¢ .

Proof. From the equality

'g) = 2 S(supp 8) , 8 € Aut(ND,
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which is verified by a direct calculation, the asserfion follows.

Q. E.D.
Appendix A. Density of natural numbers and the Lévy group

For any subset S ¢ N, N being the set of all natural numbers, we

put

3 = Limsup Lisaiqz2- N |
and

8() = liminf £ | S n {1,2,---,N} I,

N——o

where |-| aenotes the cardinality. These are called the upper and
Lower (asymptotic) demrsity of S, respectively. If the two are equal,‘
we refer to their common value as the (asymptotic) denrsity of S and
denote it by S(S).

We denote by F the collection of all subsets of N which admit
the density. The triple (N,?,S)'being regarded as an analogue of a
probability space, certain problems of additive number theory were
discussed by M.Kac [9,10]. Although % is not finitely additive, we

have the following
Proposition A.1. If S € F, then S° € # and 8% =1 - 5.

Proposition A.2. Let SI and 52 be members of Z. Then the

following four conditions are mutually equivalent:

i SIU 52 € F ; (iD Sln Sz, —52 € F ; (4w 52—51 € F.

€ F ; (1iD S1

If one of the above conditions is satisfied, we have

S(Slu S2) = S(Sl) + 8(82) - S(Sln 82)
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The proofs are immediate from definition. The next result means

that the density is nror—atomic. For the proof, see [19].

Proposition A.3. Let A € ¥. For any A, 0 € A € 8(A), there

exists a subset B ¢ A Such that‘8(B) = A
Let Aut(N) be the group of all permutatiohs of N and €(8 the
subgroup of all permutations which preserve the density:
) = { g € Aut(N); gF = F and §(g(S)) = §(3) for any S € ¥ }.
For any g € Aut(N) we put

supp € = {ne€ N ; g =n 1} .

Then g is a bijection from supp g onto itself. In particular,
supp g = supp g_l. From the inequality
8(Slu S2) < 8(51) + 8(52) , 81 € Z, 52 € F,

which is verified easily, we see that the set
@0 = { g € Aut(\D ; 8(supp g) = 0 }

forms a subgroup of Aut(ND. Obviously, the group of all finite

permutations, denoted by G_, is a proper subgroup of 90 .

O

Here we recall the Lévy group introduced in Section 5. Put

F§<g>={1<n<N;g(n)>N}, g € Aut(\ND.
The set
o 1 ot
€ = { g € Aut(ND) ; lim N IFN(g)I =0 }
. N—-c

becomes a subgroup of‘Aut(N) and called the Levy 9roup.bThe following
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characterization is given in [16].

Proposition A.4. The Lévy group @ is the maximal permutation
group which keeps & (or 8 invariant.

Proposition A.5. 6, € ?0 c ¥ c @S,

Proof. The last inclusion relation follows immediately from

Proposition A. 4. The rest is obvious. Q. E.D.

Example. Let 0 = NO < N1 < ee be an increasing sequence of

integers. Assume that g € Aut(N) leaves every irterval { Nk_1+1,

<., Nk } stable, k = 1,2,:--. Then,
1 imsup 'II\T |F§(g)| < limsup C N /N, _; = 1.
N—— k—— =

In particular, g € € whenever lim Nk/Nk_1 = 1,
k——s0

Remark. From the above example it follows that @0 is a proper
subgroup of &, Furthermore, it may be shown that ¥ is a proper

subgroup of ¥(8&).

Lemma A.6, Let A = { a; < ag < -+ } and B = { bl <bg < +-- }

be members of F with the same density. Put A® = { ai < aé < «-- }

and B® = ¢ by < by < -++ }. Assume that A, A®, B and B® are infinite

sets. Define a permutation g € Aut(N) by

g(an) = bn , g(a;) = b; , n = 1,2, .-

Then g € &.

Proof. For each N € N we put
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o) = | An {1,2,--+,N} | and B = | Bn {1,2,-+,N} |

By assumption we have

1im 2 = s =s@ = 1im £
N——e N——0 »
On the other hand, we can show that IF;(g)l = |a(N)-BWM)|. Therefore
e 1 + ' . o (N) 8 (N)
limsup % |F (g)| = limsup - = Q.
Hence g € €. . : Q. E.D.
Theorem A.7 (Ergodicity). "Assume that A € F 1is almost invariant
under the Lévy group, i.e.
S(AGg(Ad) =0 for_all g € @,
where © denotes the symmetric difference. Then. §C(A) = 0 or 1.

Proof. Suppose that 0 < 8(A) < 1. Replacing A with A® in case
of 1/72 € 8§(A) < 1,'we may assume that 0 < §CA) <€ 1/2. With the help
of Proposition A.3 we take a subset B c A® such that 8(B) = 8(A). We

define a permutation g € ¥ according to Lemma A. 6. Then
s§(A0g(A)) = §(AGB) = S§(AUB) = §(A) + 6(B) > 0 ,

This contradicts the assumption on A, hence, 8(A) = 0 or 1. Q. E. D.

Appendix B. Uniformly distributed sequences and the Lévy group

We begin with another characterization of the Lévy group. Let
2% be the Banach space of all bounded real sequences a = (an):=1 with
the norm fal_ = sup Ianl. Put
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+ 1 X - 1 ¥
L () = limsup § 2 a, , L (@ = liminf g 2 a ,
N——> n=1 N—— n=1
where.a =_(an)§=1 € 2%, Clearly, L+(-a),=,—L—(a). The group Aut (N

O . .
acts on & as coordinate permutations, i.e. by means of- the maps: -

<O

a = (an)°° P ga = Ca -1 )] g € Aut(\D.

n=1 g M) 'n=1

The following result is shown in [16].

Proposition B.1. The Lévy group is the maximal permutation

group which keeps L+ (or L) invariant.

Let 2 be the space of all a € 2% such that Lf(a) =L (a). Then

92 becomes a closed subspace of 2 and the functional:

M=

— . 1
L) = 1lim N

N . . a , a = (an)n 1 € ? ,

1T " =

is continuous and linear. We denote by ¥{.,92) the group of all

permutations which leave L invariant:
@A, = { g € AutN) ; g2 = 92, L(ga) = L(a) for all a € 2 } .

Then the following assertion is easy to see.

Proposition B.2. ¢ c @WU,D < £8.

n=1
is called uriformly distributed on the interval [0,1) if

We give notation after [22]. A sequence (x ) » 0 x <1,

" lim
N—

| {1 €n <N ; a<« x, < b} | =b-a

2

for any pair a, b of real numbers with 0 € a < b <€ 1. This . property

depends upon arrangement of the sequence as J.von Neumann discussed
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in [21]. Here we mention the following

Proposition B.3. Assume that x = (x )~_, is uniformly distrib-
hted on [0, 1). Then, for any g € ¥, the rearranged sequence gx is
also uniformly distributed on [0, 1).

Proof. Let f be a real-valued continuous function defined on

the interval [0,1] and put

n’n=1 ° ah = f(xn)

By virtue of the Weyl’s theorem (see, e.g., [12,22]), we can show

that a € 2 and that

L N 1
L = lim & 3 fx) =f £(x) dx .
= n 0

N——c n

For any g € ®, viewing Proposition B.2, we have
L(ga) = L(a) =f fx) dx .

Consequently, using the Weyl’s theorem again, we see that the

rearranged sequence gx is uniformly distributed. Q. E. D.
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