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Introduction.

The meraomorphic property of camplex powers of polvnomials
established by Bernstein-Gel’fand [BG] is a powerful tool in the
construction of hyperfunctions or distributions invariant under
group actions. For example, one may recall the construction of
fundamental solutions of partial differential equations with
constant coefficients, those of relative invariant
hyperfunctiaons aon prehumoéeneous vector spaces and so an. The
original proof of the result of Bernstein-Gel’fand is based an
Hironaka’s desingularization theorem. ‘Later, a simpler praoof
was given by I. N. Bernstein [BJ, shouing‘the exigtence of
b-functions (= Befnstein—Sato palynomials) of polynomials on
€". It is stressed here that it is M. Sato who showed the
existence of b-functions of relétive invariant polynomials nF 
prehnmugeneous‘vector spaces and conjectured the existence of
b-functions of arbitrary polynomials in early 1960's. An

extension to the case of ho]omorphic'?uhctions were shown by
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J-E. Bjork [Bjl and M. Kashiwara [KJ.

Let G/H  be a csemisimple symmetric space. Then to
construct Poisson kernels on G/H is equivalent to do
hyperfunctions on G which are invariant under left H-action
and '"relative invariant'" under right action of an appropriate
parabolic subgroup of G. The latter is reduced to the problem
of regularizing of distributions which are defined by the
product of complex powers of aﬁa]ytic functions on G. So it is
possible to apply the result of Bernstein-Gel’fand mentioned
above. Such distributions play an important role in the study
of representations of G because they generate principal series
representations for G/H (cf. [021).

We now explain the contents shortly. In §1, we shall
formulate a generalization {cf. Theorem 1) of the resﬁli‘of I.
N. Bernstein and S. I. Gel’fand [BG] to the case of C-valued
polynomials under an assumption (Theorem 1, condition (A))
concerning the continuity of complex powers of C-valued
polynomials. This assumption seems less trivial to check for
given polynomials. Section 2 is devoted to an application of
Theorem 1. Let G be the universal covering group of
SU(p+q,p) and let H be a connected closed subgroup of G
whase Lie algebra is so(p+q,q). Introduce real analvtic

functions ?j<g> (1 ¢ j < 2p+9-1) on G uwhich are left

—~

H-invariant. As an application of Theorem 1, it will be shawn

in Theorem © that if El,..., ﬁp e Z, Myseees mq € N, then
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defines distributions on G depending on complex parameters o,

8, il,o~w, A meramarphically. The key to its proof ic to

p-1
check the conditon (A) of Thenorem 1. In this paper, we do not
explain the role of Cl,a,S{g) in the study of analysis on
semisimple symmetric spaces. The reader wha is interested in
this subject, consult [0S1, 23. In §3, we restrict aur
attention to the case p =1, that is, G = SUCg+1,1>"  and
study -spherical functions @a’ﬁfg) on MG which are obtained
from Cl,a,B{g) by inteéfating over & certain closed subgroup
of G (cf. §3,(1)). In particular, we shall prove Thearem 12
‘which states that ¢a48 is expressed in terms of Gaussian
hypergeametric functions. In ?emark 14, 3 connection between

the study of @a B(g) and c-functions for cemicimple symmetric

cpaces 1s explained.

§1. Meromorphic continuation of distributuions defined by the

product of complex powers of polynomials

Let P(xl,...,xn) be an R-valued poivnomial. Then the
function iP{x)ll is continuous if Re i1 > O, and as a function
of A, it is extended to a D" (R")-valued meromorphic function on
C. This is .a result of I. N. Bernstein- S. I. Gel’fand [BGIJ.

An extension of the meromorphic property of IP(x)Il to the

case of C-valued polvnomials is formulated in the following

manner .

(x) be R-valued polynomials

Thegrem 1. Let Fl(x),~--, FQ

3
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and et g, (x),.c., g (x> be C-valued polynomials of

X = (xl,...,xn). Let Q be a connected component of the set
{x € mn; fi(x) # 0 (1 1K 2), gj(x) # 0 (1 < j<m} and
take p € Q and fix it. Suppose that fi(p) =1 (1. <1i <2,
gJ(p) =1 1< j<<m.

Assume the condition:

(A) Take 2; € C (1 <i <&, #;,v;€C L LjLm

J
such that Re i1, > 0, Re (“j+uj) > 0. Then each branch of
g ii m y7 v,
the function nif. x| ma.(x) 'g.(x0 ¥ on Q is
. i T J
i=1 j=1
single-valued.
Let éi,ﬂ,U(X) be the branch of the function
2 ii m 72 V.
n . (x)} M g.(x) ¥9. (x> 9 <cuch that o7 (p) = 1.
i i g J FSTINY
i=1 Ji=1
. . n
Define a function ®l,ﬁ,U(X) on R sog that
¢l,a,u(X) = ¢i,u,u(X) if x € Q and ®l’£’u(x) =0 if

otherwise. Then the following hold.

(i) For a non—hegative integer p, define

S(p) = Cuw) < €472 5 Re 2y > p (1 L 2. Re ;> b,

P (1 <j<m?3. Then o

N

Re Y Y RIARY

(A,4,0) € S(p). Moreover, as & function of (A,u,w), @
£Z+2m

(x) 1is of class CP if

l,ﬁ,u(X)

is holomorphic on the open subset S{(0) of C
(ii) @ (x) is extended to a D" (R™-valued meraomorphic

YN
function on the whole (i,4,v)-space mﬁme.

This theorem can be shown by an argument similar to that in

Bernstein-Gel®’ fand [BG1, where Hironaka’s desingularization

theorem plays a central role. This also follows from the

4/
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existence of b-functions of multi-parameters which is stated as

follows.

Theorem 2 (Kashiuara—Kawai [KK1, Sabbah [S]) Let h.{x) (1

1 < 8&) be polynomials of x = fxl.o...xn) and define a
£ ii

T h,(x) on an open
i=1

subset X = {x € C"; hi(x) # 0 (1 <1 <@y af C". Then for

H

multi-valued analytic function '¢i(x)

each 1 (1 {'i < £), there exist a polynomial Piii) of R
whose coefficients are differential operators of the variable «x
and & non-zero polynomial bi(i} € CLA] such that

14 Yy = i . .
Pi‘i)(hi(x)¢i(X)) bi(A)®£(x) holds cnb ¢

Remark 3. Theorem 2 is a generalization to multi-parameter
. case of Bernstein’s result aon the existence of b-functions.
Theorem 2 as well as its references is communicated to the

author by M. Kashiwara.

Under the situation of Theorem 1, it seems difficult tao
decide whether the condition {(A) holds for the given polvnomials
Fl(x),..., Fﬁﬁx), glfx),..., gm(x) or naot. In the rest of this
section, we give some examples which agree with the conditian
(A,

A

Example 1. x “(x + V=1y)*

Fircet note that (x + J:Ty)ﬂ defines a continuous functiaon
on {(x,y) € Rz; x > 0} if Re &« > 0. So Theorem 1 can is

i

applicable and we conclude that Xy {(x + V:Ty)ﬂ defines

&
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distributions an R2 meromorphically depending on the

parameters X, i.

Example 2. Let P(x), Q(x) be polynomials of

X = (xl,...,xn). Assume that P(x) > 0 for all x. Let

A

¢, ,¢x) be a branch of (P(x) + V=TIQ(x)* (P(x) - V=10 (x) %,

Then it is easy to see that ¢ %) 1is a single-valued

l,ﬂ(
continuous function if Re{l + %) > 0. So, by Theorem 1,

@i ﬁ(x) is extended to a D" (R")-valued distribution on the
L

whole (1,#)~space.

2 — 2.2
Example 3. Put fix,y,t) =1 + 2z° + (V-1t - |z

(z = x + V=1y)>. If Re(+x) > 0, each branch of the function

A

Fix,y,t) F(x,y,t)ﬂ defines a single-valued continugus function

on RS. This is shown in the following way. First note that

Fix,y.t) = %(1 + 1212 - VTTH2(1 + hix,y, 1)),

|

where

(1 - 1212 + VT2 + 422

(1 + 1212 - V=T ?

h(X;‘}“yt)

A simple calculation shows the inequality [|hix,y,t)| < 1.

Therefore Re(l + h(x,y,t)) > 0 for all ‘“(x,y,t) e R3. So each
branch of (1 + h(x,y,t))lfz is single-valued and
‘ —_— 2
Foxoy, )2 = Lt w1212 - VFTO AU + hix,y, 0 72,
V2

&



Then the claim folliows. ﬁpp?ying/Theorém~}, we find that
F(x,y,t)l?T;TETTTﬁ defines a family of distfibutiuns on PS-
meromorphically depending on (A,u4). This example is 3 special
case of Theorem 9 in §2. Moreover, it is an interecting problem
to regularize the divergent integral f F(x,y,z)i?7§7§757ﬂdxdvdz
(cf. Remark 13 (iii)). ‘

<

§2. &n application of Theorem 1.

Take positive integers p, 9 and put n = 2p + gq. Define

t- e
gqug - Spq}’

where S = I} with 1. = . a pxp
Jp 1
matrix. By definition, G = SU(p+q,p). Take mutually commuting

involutions &, 0 of G defined by #(g) = ta_l, c(g) = g

G =4{ ge SL{n, ©3

for any g € G. Using 8, o, define K ={ g e G; 8(g) = g’

and H={ ge G; o(g) gys Then, clearly we have

12

K >~ S(U(p+gixU(p)), H S0{p+q,p) and in particular, K 1is a

maximal compact subgroup of G. Let g be the Lie algebra of
G.
Introduce some notation:

= { X € g; X is a real diagonal matrix:

o
()
]

I

{ 'diag(tl,ooo,tp,‘Oyoot,O,’tP,ooo,_tl);
tl,...,tp e R}

163
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n = { X e g3 X 1is upper triangular and nilpotent:
5 = { Xe gy X is lower triangular and nilpotent?
k = Lie algebra of K
h = Lie algebra of H
m = ;K(%_)
M= ZK(?e)
EE = exp 32’ N = egp n, N = exp n
HO ¢ The identity component of H.
For a matrix g = (gij)lgi,jgn’ let Dk(g) denote the

determinant of the matrix kgij)lgi,Jgk° Using these, define

functions Fk(g) = Dk(a(g)_lg) far any g € G. The next lemma

follows fraom the definition.

Lemma 4. (i) Fk(hg) = Fk(g) for any h € H (k =.1,¢04,

n—-1J.

,k(g} = f

(ii) (9) (K Tyeee, P)o

Let & be the universal covering group of G and let

~

7:6 - G be a natural projection. Let K, F be the analytic

subgroups of (¢ corresponding to k, h, respectively. Put Kp
F ' K R

A simple calculation shows that

= exp a, N =-expn, NN=expn in G and P =2 (a ).

= 4
1

,{(é,al.-..,ap,m); ¢<R, aiem, e,

=1 agice,

m : a unitary matrix of degree g
e—nﬁf1¢

Xy, = = det m 7

p
m = {(ib,é'l,...,é'p,}{); &, 81,...,9p € R

s



X ¢ a ckew Hermitian matrix aof dearee g
\*"’—'——1(6’1"‘ s e + t’?'p) = -\,‘"i"‘—lﬁfb = - tr % :’
and that under this identification
- -
oy
%
Ej@
n(é,al,...,ap,m) = g m &7
P‘
Y

for any (¢.a1,...,ap,m) e M. Since M 1is reductive, there are

0 . ~ .
many one-dimensional representations of M. In particular,

define representations x; (1 < j <p) of M by

[ZaN

e2jv—1®(a 2

{ PRPS = ¢ e 0 .
X‘j\‘t”aly ’apom) 1 O.’J)

for any (¢,a1,...,ap,m) e M. Their differentials are denoted
by 61J (1 < j £ pP)e Then
6zj(¢,91,...,ep,x> A LA 93‘ + 2j®)
for any (®,91,...,9p,X) € m.
Lemma 5. Assume that 1 < j < p-1. Then udlj is lifted

to a character of M if and anly if 2 € Z. On the other hand,

xp(exp ‘r‘)"£ = exp uéIP(Y) (Y € m) defines a character of [

7
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for any u# € C.

This lemma follows from the concrete form of M given
before.

For simplicity, put

a(t) = exp(diag(tl,...,tp,o,occ,O,—tp,oou,_tl))E AP

for any tyseess tP € R and ?J = Fj°x (1 < j £n-1). The next

lemma follows from the definition.

Lemma 6. If 1 < j £ p,y then

2t1+'-'+2t.
?J(gma(t)n) = e sz(m)?J(g}

~o

for any g € E, m € ﬁ, alt) e.ﬁp, n € N.

Lemma 7. (1) The set Q = “ﬁzpﬁ is connected and open
dense in G.

(ii) Q = {g € G ?‘J.fg;) #0 (1 <j<prz.

Proof. Since H, ﬁ, Kp. N are all connected, so is Q.

That §© 1is open dense in % is shown by direct calculation or

follows from [M1. (ii) is a special case of [0S2].
The next proposition is the key to the subsequent theorem.

Propaosition 8 Take 1 € C with Re 2 > 0.

/0



(i) Suppose that 1 < j < p. Then *Tiig)i‘ is
singlefvaiued‘if and only if 4 is an integer.

A

(ii> Each branch of Tp(g) defines a single-valued

continuous function on G.

Prgof. (i) The "only if" part”is clear. To prove the

"if" part, consider the case Jj = 1. For any =z € [, Rl(z)=

4
n—l( R ) is contained in N and a simple computation

3

shows that ?P(Rliz)) =1 + 22- If 2 1is not an integer, the

Function (1 + 22)'?L is nat single-valued and therefore ?p(g)

A
is not single-valued. So the resule follows when j = 1. The
other cases are shown by a similar way.

(ii) Define a function & ,(g) on % as follows. If

~

hma(t)n with he M, m = exp(Y), Ye m, al(t) e Kp,

d
N, then &

m

n (g) exp{léxp(Y) + 2£(t1+"'+tp)} and if

A

a ¢ Q, then &.(g) = 0. Since M= Ml x R for a connected

A
compact Lie aroup NI’ @1(9) is well-defined. First show that
¢,(9) is continuous on G - S, where S = {g ¢ G: 0 ?J(g> =
. J=1

0+ Since Q 1is connected, it easily follows from the
definition that él(g) is tantinuous on §. On the other hand,
since l@l(g)l = l?p(g)lRei if g€ Q and since G - (QUS) (C
{?p(g) = 03) is the boundary of © in & - S, we find that
@l(g) is continuous on ‘E - S. Next show that 'Ql(g) is

actually continuous on B. Now take | (1 < j < p) and fix it.

7/
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By the concrete form of ?j(ﬁ), we find that codim__ {n e N
N

?J(E) =0} >»2. Put B = HKPN for simplicity. Then for any

—

R € N, pe€ E.‘}f(np) =0 if and only if ?j(;) = 0. S0 we

find that codim___  S. N NP > 2, where S. =
N 3 J - J

(g ¢ G ?j(g) = 0}. On the other hand, the complement of NP
in G has also codimension >2 in G. So codim Sj > 2.

p-1
Since S = U SJ’ we find that codimES > 2. Now take g € S
i=1 ’

Wwith ?p(g) # O. Let U be a simply connected neighbourhood of

g such'that ?p' is invertible on it. Noting that 'Ql(g) is

locally a branch of the multi-valued function ?p(g)i, take a

single—-valued branch @i{g) of F (g)"i on U coinciding with

p
$,(3) on U -S. Since codim S > 2, U-S is connected.

Hence @i(g) and @i(g) must coincide an U. Then & (g)

A
defines a single—-valued continuous function on G. By

definition, @i(g) is the branch of Tp{g)x with @i(e) = 1.
Therefare, each branch of Tp(g)l is a constant multiple of

&.,{(g) and the result follows. QED

A

For a, 8 € C with Re(a+8) > 0, let nd B(g) be the

o & 8 = :
branch of ?p(g) ?p(g) such that na,B(e) 1. Then it
follows from Proposition & that na-B(g) is a single-valued

continuous function an GO. Take El,..., 2 € Z, ml,...,

p-1

mq € N and fix»them' FDF ahy l = (il’hor,ip—l) € Cp—l, (» 49

8 e L, define a function @i o B{g) on 6 with parameters

Qa8 e P €2 as follows. If g € Q, then

/ 2
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£,
J

. P—'l ? - iJ,_
gi,a,ﬁkg) = 7,89 jzl f i(g}? e

m

3 fa)
;:>4-¥:<“3 '

N =an
¢
=

oo

and Cl,a,B(g) = 0 if otherwise.

Theorem 9. Fix 21,..., 2 € 7Z and Myseesy, M € N.

| p-1 9
Then the function Cl {(g) on B with parameters
S s, B :

(Z,a,8) erﬁp-lx EQ satisfies the follawing properties.

(i) If Re(ii+ﬁi) >0 (1 <1< pP) and Rel(at8) > 0, then
Ci o B(g) is a single-valued continuous functiaon on B.
H . b

(ii) As a function of (2,a,8), 1 a.p(9) 1is extended to a
s

D" (G)-valued meramorphic function on the whole (X,a,B)-plane.

~“Proof. The idea of the proof is same as in [0S2] extending
that in [0S113.

(i) follows from Proposition 8.
q m.
(ii) Since §i ?i(g) 1 is real analytic and since the
i=1
product of a distribution and a real analytic function is a

distribution, to prove the theaorem, it suffices to show the cése

LR ) el

where m, = vev = m, = 0. So assume the condition m,
mg = 0. As in the proo? dF'Prnpositioh 8, put P = ﬁﬁpN.J Since
gN"P is an open subset of G for any g e G, it also suffices
to show that ‘the restriction of gi,a,ﬂ to gN P can be
extended to a D" (gN P)-valued meromorphic function of (1,a,8).
Let Nx P— gN'P be a natural product map and considér the
pull back &7 g of &; . g for this map. Then it follous

o N _ _ _ -
from the definition that Cl’a’ﬁ(n,man) = Cl,a,B(gn)Cl,a,B(ma)

/3
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(hne N, me M, ace Ep, ne N). By definition, Cl,a,ﬁ(ma) is

invertible and is holomorphically extended to (1,a,B8)-plane. On
the other hand, take a base X,,..., X; of n (d = dim n) and
put CE,a,B(x1’°"’xd) = Ci,a,B(gg(X))’ where

N(x) = exp(x X +...4x X ). Since ?J<95<x>) (1 < j < p) are
complex—valued polynomials, Theorem 1 combined with Proposition
8 implies that Ci’a’ﬂ(gﬁ) can be extended to a meromorphic

function of (A,a,8). Hence the theorem follows. QED

§3. Properties of functions related with the distribution na g
L

In this section, we restrict our attention to the case p =
1, namely, the case G = the universal covering group of
SU(g+1,1>. We have already aefined the distribution ﬂa,B(g)
in the previous section. Put

(1 _ ¢a,B(9) = jK na,Bkgk)dk,

S

where KS (R,R) and dk is the Haar measure on it.normalized

by f dk
Ks
function in detail. As a consequence, we shall compute the

1. The purpose of this section is to study this

value of "a regularization in a certain sense of the divergent

integral
(2) Ita,8) = j_w ", gtnydn."

N~ &

.(CF. Theorem 12.) T. Oshima [0J introduced c-functions for

/%
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semisimple symmetric spaces, generalizing Harish-Chandra’s
c—function for Riemannian symmetric spaces. In the case of the
univeral covering space of SU{(p+1,q+1)/S0(p+1,9+1), the
c—function is a regularization of the divergentvintegral

_c (n)dn in some sense and the above integral I(a,8) 1is
N A.,a,8 .
its special case. (See Remark 14 in this section.)

Let E be a matrix of degree g+2 whaose (i’,j') entry

ij
is 1 if (i’,j’) = (i,j> and O 1if otherwise. Then 3. (=

the complexification of g) is spanned by Eij (i # joJ, Eii_EJj'

Let U(g) be the universal enveloping algebra of 9 and let

w be its Casimir element. Then, by definition, we have

2
+ ( -—
2{Lq 2){0 - z { E- » E- -)

+ L E. .Y+ (g+ +1-2j)E. ..
% 2(q+2)EJ1E1J} (q 2) 2 {g+1 2J)EJJ

In the sequel, we identify elements of 3. with left invariant
vector fields on B and also identify elements of Ulg) with
left invariant differential operators on G. By direct

calculation, we have

-9

Lemma 10. wna a+0

_ 82
g = {(a+B) (a+B+q+1) + {a—-8)°} n_a,B'

’

We now start to study_the function ¢a g° In the sequel,
L4

i = v-1 wunless otherwise stated.

Proposition 11. (i) @& ,(g) 1is (H, K )-invariant.
a,8 5

y _ | q . gy2
(ii) w¢a,8 {(ax+B) (x+B8+g+1) + 3470 (x—-8)“) éa,B'

(iii) ¢a,B is real analytic.

7§
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(iv) Put Sa,B(t) = ¢a35(exp 1Y), where Y =
1, ;

the following integral formula holds:

Then Sa,B(—t) = Sa’B(t)' and if Re(a+8) > O,

tetioz, rre tz1%-1009)2
2a+q+1

(3 Sa B(t)

14

=~
33 'RxCY (1+121%-ix)
{et+2(z,z)+e—t(|z|2+ix)2}§

dxdzdz,
(14 2] 24ix) 2B a+l

2
q

where, for any =z ='(21,...,zq) € mq, {(z,z) = 212+...+ z ~ and

2_ 2 2 > = —ooo e
Pzl= = 1z 1%+, ..+ fzq! and dzdz = dz,;dz,+-+dz dz_. HMoreover,
—a— - 7339
a = f ((1+1212%4x%) 797 gpgpez = LD 7
9 RxC Y 29 (q+ 1)

Proof. (i) is clear from the definition. Since @ is
contained in the center of U(g) and since wa,B is obtained
by integrating Tx,8 OVEr Kes (i1) follows from Lemma 10.
Noting that ¢a,B is relative invariant by the right K-action,
we find that (ii) implies (iiid. Using a standard technique of
changing the integration owver KS bQ that over N, we obtain
the integral formula in (iv). It is easy to check that the
integral in the right side is actually convergent if Ref(a+8) >

O.. QED

Theorem 12.

_g THAT (a+p+352)

T (a+3

a+8

(ch t)

L]

- _
(i) Sa B(t) 2 T

2

2 - q+2
)T (B4 > )

x F(—a,—B,ﬂ%l; (th ©)2).

/4
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(ii) If -Re(a+B) > - 351 , then

, ~(x+8)t -Za=28 T (q+1) {2a+28+q+1)
) : ) = -
(4. 1iﬁme“ Sy ,pt) = 2 [ (Zatq+ 1T (28+q+17

On the other hand, if Re(a+8) < - 3%1 , then

(5) lim e (@*BHatlitg
{2+

a,B(t)

[ (q+1OT (@+ 1T (8+1)T (a+8+352)
2

: )F(B=q;2)F(a+B+E%§)

2 sintx sinx8

v sinx(a+3+3%ld T (a+2

.

‘ Prqu5 First of all, put r = 3%— for simplicity.

Modifying the technique of calculating the radial component of
the Casimir operator (cf. [W, p.2771), we can obtain the

concrete form of (w&a B)(exp tY>. Then Proposition 11,(ii)
1

leads to
{—QE # (qfht 4 3h tyd (a2 _ (@+B) (a+B+q+1))S. ,(t) = O.
dt2 sh t ch t'dt Cch t)2 , a,B
_ 2 _
Put x = (ch t) and Ta’B(x) = Sa,B(t)° Then Ta,B(X)
catisfies the differential equation
2 - 012
(x4 4 (rrnx-DE 4 8B Ly aege2r))uco = 0.
d % X : X

Each solution of this differential equation which is real

analytic in a neighbourhood of t = 0, that is, in a

AR R R OV Y Sl SRS

neighbourhood of x =1 equals to "

to a cnnstantvfactor. Therefure we find that

/7
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(6) Sa’B(t) = ala,B) (ch t)a+BF(—a,—B,P; (th t)z)

for some constant ala,8) depending on a«, B meromorphically.
In virtue of the integral representation (3) of Sa B(t) and

the central 1imit theorem, we have

7 1im e @*B)tg gt
{5+ & i
= %— j (1+l212—ix)—2a-2r(1+!zl2+ix)_28-2rdxdzd5
= %- f 1+!’!2 T2x-28-2r+1 4547

< f (1-ix) 720720 (442204,

—c0

under the condition Re{(a+8) > 0. A simple computation shows

that

J (1+] 2 2 —-20—-28-2r+1
@

y 9 [ {(20+28+2r)

dzdz = (=221 " 5,28 +ar-1)

if Re(a+B8) > O. On the other hand, it follows from CE, p.12.

formula (30)] that

o«

f (1-ix) 28720 (14447 28-2r

—C0

dx

2(a+B8+2r-1)

n/2 ,
2 j cos 2(ax—-828 {(cos &) dd (x = tan 8)
0 A

o 20=2B-Ar+4 L o v2B4ar—1)
F{(2a+2r )T (2842r)

if Refa+B) > -2r+ %. Therefore we obtain (4) under the

/&
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condition Rel(a+8) > 0. Since both sides of (4) depend on o, &
meromorphically, (4) holds if Ref(a+8) > -r.
Now we recall a connection formula for Gaussian

hypergeaometric functions {(cf. LE, p.107. formula (33)71::

oy _tadr(atb-c)y,__yc—-a-b
Fla,byesx) = —irepy 17
F{c) {c-a—b)
Fi{c-al)T {(c-b)

Fic-a,c-b,c—a-b+131-x)

Fila,b,a+b-c+1;1-x)

’ ]
{0 < x £ 1), Substituting a = -a, b=-8, ¢c=1r, x = (th t>*°

in this formula and multiplying both sides by aia,B){(ch t)a+B,

we obtain

. Fi{r){a+8+r) a+p
(&) S, gt = ale, )t SFogery (ch 1)

x Fl-a,=-8,-a-B-r+1;(ch 1)

2y

‘ Frie)(-a-8-r) -x-B-2r
+ ala,B) Fi—eT =8y (ch )

x Fla+r,B8+r,a+B+r+1; {ch t)-2

)N

If Ref(a+8) > -r, this formula implies

F{r) (a+B+r)
FCla+r) (B+r) °*

Z‘Q_Ba(a,B)

w
™

~

-

ot

il

Comparing this with (4), we have

1 1
—a-B F(r+2)r(a+8+r+2)

1 1. "
F(a+r+§)F(B+r+2)

ala,B) = 2

Then (i) follows. Finally, it follows from (8) that if Re{a+8)

< -r, then :
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(a+8+2r)t
Sa,B(t>

lim e
1=+

_ a+B+2r F(r)r (—a-B-r)
=2 ale,B) T oFgy

So we obtain (5). QED

Remark 13. (i) The idea of the determinatiaon 6F Theorem 12
(ii) is based on that in [Sell.

(ii) The integral in (7) in the case where 2(a-8) € Z |is
treated in H. Schlichtkrull [Scl. |

(iii) By changing variables of the integrand in (3), we

have

(a+B+q+1)t
e .aan,B(t)v
_ (142(z, D+ z1%<ix09% 142z 0+ 21 24104 "

- f ‘ - ~ - dxdzdz.
R (1e T (121215032279 (1ot (| 2] 241x0) 28%9*1

If the integration and the 1imit process were commutative in

spite that this is impossible, the divergent integral

oy L j (14202, )+ 21210 2Y% (14277, 27+ (1 21 24102} ® dxdzd3
a q
q "RxC
should coincide with the 1imit 1im e‘“+3+q+1)tsa g(t) in the

t= 4

casé Re(a+B$ < - 3%1. For this reason, the right-hand side of
(5) is regarded as the value of a regularization of the
divergent integral (9) in a certain sense. It should be noted
that if Re(a+8) > O, then the integrand of (9) satisfies the

candition {(A) of Theorem 1.
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Remark 14. Let G/H be a general semisimple symmetric
space, where G 1is a connected semisimple Lie group. T. Oshima
(0] introduced c—Functhns-fGr G/H, generalizing
Harish—-Chandra’s c—function for Riemannian symmetric spaces. In
the case where G 1is linear, he explained four statements
i)-iv) in [0,p.365] which in fact give a method of the explicit
calculation of the c-FQﬁctidn. vBut to trestrthe case where G

is not linear, we need a modification of the part iv) of [01,

p.365] as follows.

(B "If G/H 1is split rank one, K-relative invariant
Joint eigenfunctions on G/H of invariant differential
cperators are expressed by Gaussian hypergeometric
Ffunctions. {(Here K ié a c1dsed subgroup of G such thaf

AdG(K) is a maximal compact subgroup of AdG{G},)”'

We return to our case, namely, &6 = SU(q+1,1)", H = a
connected closed subgroup of [ lacally isomorphic to

_ -1 . .
800(q+1,1). ;Then‘ ¢a,3(9) __®a,8(9 Y} is regarded as a‘

o~ - . . . . A T .
K-relative invariant eigenfunction on G/H of invariant

differential operatdrs. Theorem 12 states that ¢a’§(g) is
actually expressed by Gaussian hypergeometric Func{inn and that
its asymptotics are determined by using a connection formula of
Gaussian hypergeometric functions. In particular, the statement
(B) holds for the symmetric space G/H. |

A ﬁrbo% of the statement (B) for other caseé Qi}l bé

published elsewhere.
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