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0., In this note, we report that our investigation[7] is generalized
as follows: The vertex operators(primary fields) are constructed for

theAconformal field theory on Pl also by integrabie modules of any

(1), and in the case that X(1)=

non— twisted affine Lie algebra Xn n

P
n

A , the commutation relations of vertex operators induce monodromy
representations of the braid group on the spaces of vacuum
expectations of compositions of vertex operators which give all

unitarizable modules of Hecke algebras of type AN constructed by

H. Wenzl[5].

1. The 2—-dimensional conformal field theory is initiated by A.A.
Belavin, A.N.Polyakov and A.B.Zamolodchikov[1] and they pointed out
the significance of the,prima;y fields for this theory. Since then
the theory has been developed by many physicists, e.g. [2,4,6]. V.G.
Knizhnik and A.B.Zamolpdchikov[4] developed the theory with current
algebra symmetry, and proposed a notion of primary fields with gauge
symmetry, and gave the diffeféntial equations of multipoint correla-—
tion functions. Our aim here is to give rigorous mathematical founda-
tions to the work of [4], aha to reformulate and develop the operator
formalism in the conformal field theory on the complex projective

line Pl. Main results are the existence and uniqueness theorem of
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primary fields and that the monodromies on N-point functions coincide
with the representations of the Hecke algebra HN(q) constructed by
H.Wenzl1[5] for some roots q of the unity.

1
n b

2. Let g = g@@[t,t_l]eﬁc be the affine Lie algebra of type X
wheréig is{fhe classical Lie algebra of fype Xn' Fix a Cartan
subalgebra b of g, a root basis ﬂ={a1,---,an} of the root system A
for (g,h), and the nondegerate g—invariant bilineaf form C, D wifh
the normalized condition (9,9)=2, where 0 is the maximal root. Let

{H1,~-~,Hn} be the coroot basis and {Ei,--*,E i F

-wF_ } be “the
n n

1°
Chevalley generators of ag. Denote X(m)= xot™ (X€g), then [Xm, Y]

= [X,Y] (m+n) + md (X,Y) ¢ and [XUm,c] = 0 (X,Yea, m,ne€Z). The

m+n, O
Lie algebra & has a décombosition & = m+$g${c$m_, where n, =
goC[t*1]¢*l, |
‘ We fix the value l(posifive integef) of the central element ¢ of 6
on the space #{(defined below) of operands. Denote by Pi the set of
all weights A€h* with <1,Hi>6220 and 0<(8,1)<2 . For any dominant
integrai weight AGPQ, there is a unique integrable (irreducible)
highest weight left &—module %l with the highest weight yecto: 11>,
such that the subspace V, = {vEWl; m,v=0} is an irreducible g-module
of highest weight 4. |

We can define the corresponding irreducible highest weight right
aCor g)-module %Z (or VI) (and fix a lowest weight vector <il), and

the nondegenerate bilinear pairing (called vacuum expectation value)

+ » .
< |->: %lx%l———eﬁ such that <il11> = 1 and <valw> = <vlaw> for any

+ ~ P | +
veﬁl, a€qg, WE%l’ Its restriction on levl is also nondegenerate.

, + ‘
- The Virasoro aLgebra ¥ acts on each %l and %l through the Sugawara

form L(m),mez,,that is,

‘ 1 a i v
L) = gwme—e— > { > ¢H (-kDH. m+k): + > X (—k)X.<m+k)z},
20+ yerlis) 1 vEA L4
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where (H'eh (I<i<n), XYEQ‘? (veéAd} and (H;eh (l1<isn), X €g,. (v€A) ]

-)_v

are dual bases of~gband g is the dual Coxeter number of Xél?

j.e. g =
ntl (for Xn:An or Bn)’ = 2n—-1 (for Xn:Cn)7 = 2n—-2 Ffwr Xn:Dn)’ =g

(for Xn =E. or F4), =18 (for Xh=E ), = 30(fqr Xn=E Y, = 4({for Xn=G2).

6 7
The normal ordering ¢ ¢ is defined by

8

SX (MY )t = XmY¥md if m<n, = Y(OXm  if meng
= XM Y@+Y @XM} if m=n.

1-
Then %ﬁ'and %l have the eigenspace decompositions w.r.t. the operator
+ + - t
L : ¥, = > #, 4 and ¥;= > %ﬁ g» Where ¥, q and #, d are the
deZ 5 der -’ o ’
=0 : =0 :
. . . v . _fa,n+2@,p}
eigenspaces with the same eigenvalue Al+d’ where Az— PACETD)

and P is the half sum of positove roots of (g,bh,TD.

Introduce the spaces ¥ and # defined by #= 2> %i and # = > #
LEP
92

and extend < | > to < | >: % x#——C by <%Zt%l,> = 0 for A=1'.

By an operator, we mean a linear mapping ®:%——®, where ® is a
completion of #(see [7] for the definition). Note that an operator @
is charécterized by bilinear mapping d: %*x% —— { defined by
<v|®lw> = <v|dw)> for any v€%+ and w€¥. An operator—valued function
©(z) on a complex manifold M is called holomorphic, if the function

-r
<vl|i®(z)lw> is holomorphic in z€M for any <vi€®¥ and |w>€¥.

An ordered pair {®, ¥} of operators on ¥ are called composable, if
B m ' ’
> S <vidlu, ,><u, .I¥lw>| < =
d=0 'j=1 d, 3 7d, ] |

. + .
for any vectors <vl€® and |w>€¥, wherev{lud e lsiﬁmd} and {<ud jI;

3

+
lsiSmd} are dual bases in 2 %l,d and 2> %l,d’ and my= dim 2 %l,d'

AEPl lGPQ AEPL
In this case, the composed operator ®¥ is defined by
<vig¥iw> = 2 ~"§ ViBluy ><uy S I¥Iw> .
d=0 j=1 : :

Note that two operators may not alwaYs be composable.
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3. For each X€g, the field operator X(z) = 3 X(mz ™1
me7T

obeys the

equations of motions:

[Lmy, X(z>] = Z7 [zg—z + m+1] X(2) (meZ).

The currents X(z),X€g and the energy momentum tensor T(z) =

> L(m)z—m“2 preserve each space %l, which can be considered as a
meZ :

free theory. In order to introduce operators describing the inter-

actions in the theory, we define the vertex operators due to. [4].

A triplé v = [lll ] of dominant integral weights 12,11 and 41 1is
271 : :

called a vertex. Introduce the space 7(v) = Hom_ (V,®V. ,V. D
g A ll 12

A multi-valued, holomorphic, operator—valued function ®(u;z) on
the manifold M1={z€f; z#0} linearly parametrized by uEVl is called a
vertex operator of weight A, if for any ueVl and zeMl, an operator
®(u;z): ¥ — ® satisfies the conditions:

m

(Gauge Condition? (X, ®Cu;z)] z ®XKu;zd (X€aq,mel) ;

(Equation of Motiond [L(m), ®(u;z)] =‘zm{z%;+(m+1)Al}®(u;z) (mel)

where the number Az is called conrformal dimension of the vertex
operator ®(z).

A vertex oﬁerator D(z) of weight A is called of type v for a vertex
v = [lll ] with liePl(i=l,2), if dCu;z) = HA CD(u;z)Tll , where ﬂl is
2™1 2 1
the projection of ®#(or #) onto %l(or @l respectively).

. Then we get the condition for the existence of vertex operators:

Theorem 1. ‘
i) A vertex operator ®(z) of type Vz[lll ] is uniquely determined
2™1 :
.'.

by the form (initial term) ¢ € Hom (V, ®V.®V. ,C) defined by
g Ay VATTR, 4
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e(v,u,w) = [ZA(V)

+ . .
<V‘¢(U’Z)|W>]!z=0 <vevi2, uevl, Wevx,>’
where A(y) = A1+A11'A1

2
ii) There exists a nonzero vertex operator ® of type v on ¥, if and
only if the vertex v satisfies the f-constrained Clebsch—-Gordan

condition (CG)Q

€G> ) # 0 and (A,+1,+1,8) <20 .

4 1

2

Remark that the existence of a nénirivial vertex operator of

weight 4 implies that AEPQ.

For each vertex ve(CG)g, we choose and fix a basis By (v) = {wv;
1Si$m(v)}/of 7(v) where m(y) = dim?(¥y), and denote b& ¢¢(Z) the

associated vertex operator of type v with the initial term @e€?(¥).

Let ®#(z) be a vertex operator of weight 4. Define the actions of

the Lie algebras & and £ on ®(z) by

Rme = —— [ 4t ¢-2" X0 (Xeg, mel),
2rn/-1 “C
and )
fmee = —1 mtl T ey e (2 (meD)

f dg(g—2z)
2n/-1 “C

for some contour C around z such that 0 is outside C. Then

Xmad;z) = 0 (m=1, X€g, ue€v,);
RMd;z) = [XWO, d@;z)] = & Xu;2) (X€g, uev,);
famew;z) = 0o 4 | (m=1, uevV,);
Lew;z) = a,0W;2) (uev,>;
LeDow;n = Sown (uev,).

From the relation of the irreducible &-module %1, we get
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Theorem 2.

YyE @A, O y1isiy =0 .

. ‘ . + )
4. Now we call the vectors |O>€%0 and <0I€%0’the Virasoro vacuum.

They satisfies the equalities

Xm) [0>= L) 10>= 0. ; <0IX(-m)= <0IL(-n)= 0 (X€ga, m=0, n>-1).
For an N-ple A = (iy,---,1,) of weights A, with 1,€P,, let vV =
VXNQ--.®V11, and let VSCA): Homg(VlNgo..gvll,C)kdenote the‘inyariant

subspace of VV(A) uhder the diagonal g—action, where VI denotes the

dual g-module of Vl' Let Qi(zi) be a vertex operator of weight li

(lsigN). Then the vacuum expectatioﬁ value of the composed operator
<¢1N(2N) ey (zl)> =.<O‘®Nl(ZN) crdy (z) 10>

is considered as a V' (A)-valued, formal Laurent series on (zN,~'-,21)

and is called an N—point Function (of weight AD. If @i(zi) is of type

v, (1<i<N),

N . : :
<@y (zy) o r @y (20> = Ez. ' Ic.o .z ez ,

where C eVY (A) and the sum is taken over integers m, €Z (1<k<N)
mN-~m1 k
with mNzo and mlso.

Let nikdenote the g—action on the i—-th component of‘Vv(A) and

introduce the operator Qik defined by

n . ' ,
Q., =3 n.HHT, HY + 3 1. XD, XD
ik j=1 & k J yea 1 k 7y

and denote R,=Q,,, then Q. = {(1,,10+2(1,p }id on vY .

Then we get a system of differential equations and a system of

algebraic equations for N—-point functions:

Theorem 3.
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Let’®i(zj) be a vertex operator of weight li (1<i<N), then the

N—-point function <¢N(ZN)~--®1(21)> satisfies the following equations:

(I>. (projective invariance) For m=-1,0 and 1,

N 9

S zT(zigg + DA, I<By(z) B (z D> = 0
i=1 i i !

(I1) (gauge invariance) For any Xe€g,

N

i§1‘Hi(X)<®N(zN)~--®l(zl)> =0 .

(I11) For each i=1, --+,N,

[(1+g>§— - § Pik ]<¢ () @, (z,)> = 0
3z . < z.—-z N ““N 1 1 - :
i k=1 i %k )
k= i
(IV) For each i (1<i<N) and any u €V, k=),
, “k
s [Li] T oz-2. X<oo X Nu sz 50, (12 ;., Y. kxml 23> = 0
m. LS N %9 UN’2N i ETr 2 10 Y177 = Vo
mi iTk=i
where m, = (ny, *~-,m.,--,m) € Z_ OV 1 4ith Sm =1L. = 8-1., 8 +1
i N’ 2 My "y >0 k i it :

k=i

Remark that the equations (ID~(III> are obtained in [4] and . the
equations (IV) are obtained by Theorem 2. The equations (II) and
(ITI> imply (I), and the system (III) of differential equations is

completely integrable.

5. Consider the systems E(AY of differential equations and B(A) of
algebraic équations for VE(A)—valued functions @(ZN,-°-,21) on the
manifold XN = {(ZN,°~°,21)€@N; z ,#2y (i=k) }

E (A [(£+ e - § —Eik—}¢<z ceeyz) =0 (1<i<ND
, 8057, 4 Z.-z N2 1=
» i k=1 i “k7 . .
k=i

and for each i (1<i<N) and any ukGVl (k#i),l’
k
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B(A 3 {Li] m < > K ¢ > (XN s, o xelyy = 0
Zy T2, Zyrs * s 2 Uprs * L ”s ° "y A u = )
| mj mi ki k i N 1 8 °N i 6 1
= P - .. ‘ N-l H = L= -
where m, = (my;, Py, ymy) € (ZZO) with 2 my Li‘ 2 (li,8)+L

Introduce the set ?Q(A) defined by
Py = {p=Cuys -y, Bgi @y, L@, 0905 “iépl . y=8g=0,
V.= [“tii_l]e(cc>£, ©. €8P (v O}
For each ﬁe?l(A), the N-point function

®_ (z ez = <0

p BN -®¢ (21)>

1

of type p is a formal lLaurent serijies solution of the joint system

( r).-
@y N

ED) and B(A). By the theory of partial differential equations with

regular singularities, we get

Theorem 4.
i) for any mE?Q(A), the Laurent series @p(zN,---,zl) is absolutely
convergent in the region %Z = {(zN,"~,zl)€€N; IZNI>'°-> Izll} and is

analytically continuated to a multivalued holomorphic function on XN'

iid {@P(ZN,~-~,21); pG?Q(A)} gives a basis of the solution space of
joint system EC(A) and BA).

As a corollary of Theorem 4, we get

Theorgm 5.

Let @i(zi) be the vertex operator of weight li and uiGVl (1<i<N).
, i

Then {@N(uN;zN),---,¢l(u1;zl)} is composable in the region %Z 0 =

{(zN,~-°,zl)ECN; Ile>'-‘>lzll>0} and the composed operator.

¢N(uN;zN)-?-@1(ul;zl) is analytically continuated to a multivalued



835

holomorphic function on the manifold My = {(ZN""’ZI)GXﬁ; zi¢0}.

13 AZ
M] and v, = (u P J satisfying (CG}£ and
4 "1

mappings wieff(vi) (i=1,2>, the composed operator @¢

6. For vertices Vo = [A

<W)¢@‘(Z) of the
1

vertex operators @w (w) and @@ (z) is multi-valuedly holomorphic on
2 1

2

the manifold M2.

For a quadruple A =(l4,13,12,11) of weights li with liEPl,

introduce the set IQ(A) of intermediate edges, defined by

i . A
N ) . - 3 N 2
IQ(A>_{W‘(“'¢2’¢1)’ MGPQ. vz(u)~(lz M]e(CG)l, Vl(u)—{

a i

1}6(CG)2

wieﬁf(vigu)) },

Let A = (Ly,k9, kg, 4>, then we get the g=isomorphism T: VR —s
VvV (&) defined by '

(Tw)(u4@u2®u3@u1) = m(u4®u3®u2®u1)

®u_.®u.®u, €V (D).

v -
for @€V (A) = Hom(V, 8V. ®V., ®V 4B o8u g8,

,O and u
Ly Az kg

14

For an intermediate edge p=(u, ¥y, 9,0€l, (A, similarly define the
A i

. = —_ (%21 = ~_("3 .
vertices vz(p)—{lz “], wl(u)—[u AI]E(CG)Q and consider the composed
operator ®— (W ®= (z) of the vertex operators ®— (w) and ®— (z2).
P9 ®1 P2 ¢

Assume that I, (A)=p and take #= G, 9y, @D €1, (A>. For a point (w,z)€

i2= {(zz,zl)ekz; >zl>0}, let ®¢ (z)¢¢ (w) denote the analytic

2 1

coninuation of the composition ®¢ (W)@¢ (z) of the vertex operators
' 2 1

along the path b(t), where the path b(td = (@), &) from the

Z9

point (w,z)612 to the point (z,w)GT2 = {(22,21)6R2; zl>22>0} on the

manifold M2 is defined by
nery = B2 4 JYTIL MZ ey =¥z VTIL W2 e, 1)),
Then
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Proposition 6. i) There exists a square constant matrix CA)=

. _ _ . .
[Cy(A)}mell(A),meli(A) such that for each intermediate edge mGIQ(A),
- = = N
= — — )
T Q(pz(z)d)(pl (w) _ > B @wz(w)d)(pl(z? CJIJ(A
mEIl(A)
ii) Let A= (t,A,,445,4,,0), then the braid relation holds:

321

C(l4, 13, 12, o) C (<, 113, Ays 2.2)(3(11, ig, ]_2, ad

Lo,k

A J)C(t,lz,ll,ls) .

= C(t,lg,l 1

2’ 23

1)C(l

Now our fundamental problem is

Fundamental Problem,

Determine the matrix C(A)=[Cﬁ(&)] for any quadruple A with IQ(A)¢Q.

7. Fix a quadruple A =(l4,13,12,11) of weights li with liEPQ' By
the projective invarianée, the system E(A of differential equations
is reduced to a differential equation RECA) for VE(A)—valued
functions of one variable, that is, 6n the projective 1ine Pl._This
equation RECA) is of Fuchian type and has regular singurities at 0,1
and «. The fundamental problem is reduced to the problem of how to
determine the connection matrix of the equation RECAY from 0 to .

We can solve the fundamental pfoblem for the case where Xn=An, 13

=1y = 1@ in A.
Now we prepare some notations and results on ag=sl(n+1,C) and its

n+l _

representations. Let b = an 2 CEjj be a Cartan subalgebra of g, where
i=1

Eij denotes the matrix element in gI(n+1;C).VA coroot basis is giveh

as {leEll_E22"..’anEnn_En+1,n+1} and {Al,-~-,An} denotes the

fundamental weights, that is , <K1,Kj> = 5ij . Introduce the
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nondegenerate invariant bilinear form on g as X,Y>= trXy (as in

al (n+1>), then (x,o)=2 for any root aeA'for (g, B,

Denote by AKX the set of all Young diagrams Y=[f,, Ig <, £, ] with

~depth(Y)$k,iwhere fjvméans the nqmber of the j—th row of Y. To any

n+l

Young diagram Y=[f1,'°-,fn+1]€A , define the dominant integral

) : ) n
and 2(YO= fl—fn+1:.§

’ n
weight 1(YO= >
< 55

b.A.€P
j=1 47

bj= (AY,0€e 7 by

2 YD “=0

bjzfj—fj+1 (1<j<n). Each weight AGPl has thé Young diagram expressibn

1= with YeA™ ! and 0= 2n).

Introduce Ejeb*rdefined by l(Y)+Ej = 1(Y+Ej), where the Young
diagram Y+Ej is

Y+ej = [f1"f"fj—l’fj+1’fj+1’""fn+1]'

Consider a quadruple A =(A4,A(D),1(D),ll) of dominant integral

weights with (4,,6<¢ (i=1,4)>, then we get that dimVE(A)ﬁZ. Write 4,

Then dimVY(A)=2 if and

BERFYSRE 0

. n — R
as ll=k§1bkAk = A(Y), where Y= [f

only if

1

(D2) 12 = p,+€ .42, (i<}, b. ,=1 and b,_,=1 (b,=+= for conveniece),
4 1 i 7y i-17 j—1 0

where 12 is the anti-weight of 4, i.e. -12 is the lowest weight of Vl‘
In this case, put‘d=d(!§)=j—i+fi—fj . The case (D2) 1is divided into

the following cases:

— ,
IS Y DU . ) _ = =
(DZ)21 £g = z{J 1+1+k§jbk} < 1 and j—i<n : IQCA)—{ll+ei, 11+€j}
(D2)22 £O<1? j*;=n and (9,11) < 2 _ : IQ(A)={11+61, 11+8j}
(D2)1 | 60=1, j—i=n and (9,11) = @ : IQ(A)={11+£n+1}f

The condition that ding(A)=1 is:divided into the two cases:

a _ = . - =
(Dl)1 14 = 11+2€i and bi_122 _ ; Il(A)—{ll+€i}

a _ -— = L . _ . _ —
(Dl)2 14 = Al+€i+€i+1 R bi_lzl and bi—O ) ; IL(A)—{11+€i}.
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Proposition 7. Let q = exp{gz;:l] (k=0+g=0+n+1). .

i) Cases (D2)21 and (D2

22°
-1 /qIaFI]Ia=1]
—(n+2) (-1 TaT— Td 7,
Y- Jq[d+1][d-1] q4 Y_
[d [d]
where [v] denotes the gq—integer
d
v Tz
=9 -1 - [ IC}
[‘V] a-1 and }:!: = (r{+d+1]r(¢d_1]]1/2 .

‘ ~(n+2)
i) Cases (D2), and M4 CW = - g2 M+
- (n+2)
i1i) Case (D, : CA = q-g2m*D

8. Let N22 and fix a dominant integral weight v with (t,0)<f. For
the (N+1)-ple At = (2,2 @,2 @, ---,1¢@), introduce the set ?Q(N;t)

defined by
?l(N;t) = {p=(lN,-'~,ll,lo); AN=t, 10=0, liGPl

A.=1, ,+&. for some j (1sisN)},
i i—-1 J
and for each me?l(N;t), define the Vg(Ar)—valued, multi-valued

holomorphic function ‘}’Xj(z,\I

3
pa

'~~.zl) on XN by

--,zl)(v,uN,~~~,u1) = <v(v)I@N(uN;zN)~~-¢1(ul;zl)IO>

TPCZN,-

for vGVra and uiEVl(n) (1<i<N), where @i is the vertex operator whose

initial term is a unique qlement ofvﬁf(vi) for the vertex vi(p)=

YR (=) +

[A 1 ] (1<i<N> and v is the isomorphism V:Vta———e Vt defined by
i“i-1 J

p(l-t8>) = <tl and vXv) = V(v)vg(X) (vevta, X€q), where I-t2> is the

image of 14> by the longest element of the Weyl group and Vg is the
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anti—atomorphism of g defermined‘hy”vg(X)=—X‘(1£iSn).

Let W(N;t) be the space spanned by {Tp(zﬁ,---;zi); pe@Q(N;t)},
then {Tp(z); peP, (N; o } gives a basis of WN;t) and the space W(N;©
coincides with fhe solution space of the‘analogous equations as E (A

and B(AY in §5.

The braid group BN of N strings of Artin is fhe fundamental group
of the.quotlent space of XN by thg 6N~act10n: (zN,~-~,zl)c = (ZCN)G’
-',z(1>0), o € GN' Hence the group BN acts on the space WWN;t) as

monodromies. The commutation relations of vertex operators gives a
factorization of this monodromy representation (KN,t’W(N;r))’ By the
explicit formulae of the representation TN ¢ obtained from

. 4 ’

Proposition 7, we get

Theorem 8. let q = exp(gE?:l).
n+2
2+

i) The'mohodfomy representation q EN,t of the braid group BN
on the space W(N;t) gives an irreducible and unitarizable |
representation of BN.

iid> This representatioﬁ faétorizés to a representatioﬁ 6f the Hecke

algebra HN(q) of type AN—l'

n+2
iii) Our representation (q2(n+1)nN t,W(N;t)) of the Hecke algebra
HN(q) is equivalent to the representation (xég’K),Vég’K)) constructed
by H.Wenz1[5], where t = (YD) for any Y eA&g’K), that is, for any

Young diagram Y=[f1,---,fg] on N nodes with fl—fgSK—g(=£).
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