Combinatorics on $P_{\kappa}\lambda$

福島高亨 阿部吉弘 (Yoshihiro Abe)

It is known that if $P_{\kappa}\lambda$ has the partition property, then κ is λ -ineffable. (Magidor [2]) We shall discuss the converse direction under the existence of stationary codings.

Definition. Let $X \subset P_{\kappa} \lambda = \{x \subset \lambda : |x| < \kappa\}$.

- (i) We call a function $F:\{(x,y): x, y \in X \text{ and } x \subseteq y\} \longrightarrow 2$ a partition of X. $H \subset X$ is homogeneous for F if there is a k<2 so that F((x,y)) = k for every x, y in H with $x \subseteq y$.
- (ii) X has the partition property (Part*(X)) if every partition of X has a stationary homogeneous set.
- (iii) X is λ -ineffable if for any $f:X \longrightarrow P_{\kappa}\lambda$ with f(x) < x for every $x \in X$ there is an $A < \lambda$ so that $\{x \in X: f(x) = x \land A\}$ is stationary.
- (iv) Let $t:\lambda \longrightarrow P(X)$. t' is a flip of t if $t'(\alpha) = t(\alpha)$ or $X-t(\alpha)$ for all $\alpha < \lambda$.
- (v) X has the flipping property if every $t:\lambda \longrightarrow P(X)$ has a flip t' so that $_{\alpha} \wedge_{\lambda} t'(\alpha) = \{x \in X: x \in t'(\alpha) \text{ for all } \alpha \in x\}$ is stationary.
- (vi) X has a stationary coding if X is stationary and there is a injective $c: X \longrightarrow \lambda$ such that $c(x) \in y$ whenever $x \subseteq y$.

Lemma (DiPrisco, Zwicker [1]). (iii) and (v) are equivalent.

Combining the flipping property and SC(stationary coding), we get;

Proposition. If X is λ -ineffable with SC, then Part*(X).

Proof. Suppose that X is λ -ineffable and $c:X \longrightarrow \lambda$ is a stationary coding. For a partition F of X, we define $t:\lambda \longrightarrow P(X)$ as follows.

partition F of X, we define
$$t: \lambda \longrightarrow P(X)$$
 as follows:
$$t(\alpha) = \begin{cases} \{x: F(c^{-1}(\alpha), \mathbf{x}) = 1\} & \text{if } \alpha \in \text{range}(c) \\ \\ X & \text{otherwise} \end{cases}$$

Since X has the flipping property, there is a flip t' of t so that $_{\alpha}\lambda_{\lambda}$ t'(α) = S is stationary.

Let $S_1 = \{x \in S: t'(c(x)) = t(c(x))\}$ and $S_2 = S-S_1$. Either S_1 or S_2 is stationary.

We shall show that both of them are homogeneous for F.

Suppose that $x \in y \in S_1$. Since $c(x) \in y$ and $y \in S$, $y \in t'(c(x)) = t(c(x))$. Hence F(x,y) = 1.

If $x \in y \in S_2$, $y \in t'(c(x)) = X-t(c(x))$. Thus F(x,y) = 0. \square

But it it is open whether a λ -ineffable set with SC exists whenever κ is λ -ineffable. If κ is λ -supercompact, the answer is of course "Yes". In fact, every X with normal measure one is λ -ineffable and there is a Y with normal measure one on which $\{\langle x, \sup(x) \rangle : x \in Y\}$ is a stationary coding. ([2] and [4])

Shelah proved the following.

Proposition (Shelah [3]). If κ is ineffable, $\lambda \xrightarrow{\mathbf{w}} (\omega)_{\kappa}^{<\omega}$ and $\lambda^{<\kappa} = \lambda$, then there is a stationary coding set.

Moreover it is well known that;

Proposition. If Part*(X), there is a Y C X with SC.

Proof. Define F by

$$F(x,y) = \begin{cases} 1 & \text{if } c(x) \in y \\ 0 & \text{otherwise.} \end{cases}$$

(c is any injective map from X to λ .) Let Y be a stationary homo-geneous set for F. Pick an $x \in Y$. Since Y is unbounded, there is a $y \in Y$ such that $c(x) \in y$. Hence F(x,y) = 1. This means F(x,y) = 1 for all $x \in Y$ in Y. Now we have shown that c is a stationary coding for Y.

The above proposition shows that every injection of $P_{\kappa}\lambda$ into λ can be a stationary coding if $P_{\kappa}\lambda$ has the partition property.

References.

- [1] DiPrisco, Zwicker, Flipping properties and supercompact cardinals, Fund. Math. 69 (1980), 31-36.
- [2] Magidor, Combinatorial characterization of supercompact cardinals, Proc. Amer. Math. Soc. 42 (1974), 327-359.
- [3] Shelah, The existence of coding sets, in Around classification theory of models, Lecture Notes in Math. 1182 (1986) 188-202.
- [4] Solovay, Reinhardt, Kanamori, Strong axioms of infinity and elementary embeddings, Ann. Math. Logic 13 (1978), 73-116.
- [5] Zwicker, $P_{\kappa}\lambda$ combinatorics I: Stationary coding sets rationalize the club filter, in Axiomatic set theory, Contemporary Math. 31 (1984), 243-259.