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ASYMPTOTIC THEORY IN CHANGE POINT PROBLEM

Kumamoto University X b i 8 (Toshio Sakata)

1. Introduction.

Let IIx be a normal population whose mean and variance are u«
and 0«2, respectively, k=1,2,---,n. Many authors have examined
the problem of testing the null hypothesis

Hit at1=p2=++-=4n
against the two sided alternative

K1:}§T3F41K1k, where Kik @ z1=p2=- =pifhes1=" " =Ln,

or against the one-sided alternative
: K : 1= = s o= Ze e ez .
Ke ¥§T§?Jt 2x, where Kox: n1=s2 BKOLK+ 1 Lo

This problem is known as the problem of detecting a change in
means, (see, e.g., Sen and Srivastava (1975), or Srivastava énd

Worslgy (1986)). Apart from normal means, Hsu (1979) treated the
problem of detecting a change of means in a sequence of gamma
variables. Worsley (1986) treated the problem somewhat
generally, that is, in the framework of a sequence of exponential
famiiy random variables. He derived the likelihood ratio test
for the two sided alternative and obtained the null distribution
of the test, conditional on the total sum of observations, in the

terms of iterated integrals. More recently, Yao and Davis (1986)



has determined the asymptotic null distribution of the likelihood
ratio test as the number of the populations n tends to infinity
for ‘the case of normal means. Siegmund (1986) also has -treated
the approximation of the asymptotic‘ null distribution of the
modified likelihood ratio test.

In this paper we will proceed as follows. In Section 2 some
mathematical preliminaries are provided. >Section 3 is expository
and the asymptotic distribution of the likelihood ratio test for
a shift in normal means given by Yac and Davis (1986) reviewed
briefly. In Section 4 we treat the asymptotic null distribution
of a modified likelihood ratio test for a shift in normal

variances.

2. Mathematical preliminaries

Definition 2.1. A process W(t), t20, satifying the following

conditions is called the standard Brownian motion.
(1) Gaussian
(2) EW(t)=0, Cov(¥W(s),W(t))=s"t
{3) continuous
Proposition 2.1 (Law of the Iterated Logarithm). Let W(t),

t20, be the standard Brownian motion. Then

Limsup (W(t)i/Jtlog|logt] =1 a.s.

limsup |[W(t)|/Jtlogllogt] =1 a.s.

il

Definition 2.2. A Gaussian process W2(t) defined by
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WO (L)=W(t)-tW(l), Ostsl,
is called the standard Brownian bridge.

Proposition 2.2. Let We(t) be the standard Brownian bridge. Then

We(0)=Ww2(1)=0, EW?(t)=0, and Cov(W%(s),Wl(t))=s(1-t), sst.

Definition 2.3. A statiohary Gaussian process X(t), -odto,

satisfying

EX(t)=0 and Cov(X(s),X(t))=e  (t-s), s;t, is‘ called the
Ornstein-Uhlenbeck (O-U)process.
Note that we use the symbol W(t) , We(t) and X(t) for these three
particular process respectively.

In this paper some transformations among these three process

play an essential role, and we summarize them here.

Proposition 2.4. Let Y((1/2)log t)=W(t)/Jt, t>0. Then Y(t),
-o¢t<®m, is the O-U process X(t). |
Remark: Proposition 2.4 implies that a square root boundary for
W(t) is transformed to a constant boundary for X(t).

Proposition 2.5. <(DeLong (1981), p. 2212). Let Y(t), tz20, be

defined by
Y(t) = (1+t)We(t/(1+t)).
Then Y(t) is the standard Brownian motion W(t) and

P{ max We(t)/Jt(1-t) < ¢} = P{ max w(t)/Jt < ¢},
ti{t<te 1<t<f (L, t2)

where f(ti,t2)=ta(l-t1)/t1(1-t2). \

Remark: Proposition 2.5 implies that a Jt(1-1) boundary for
We(t) is transformed to a Ji boundary for W(t) and therefore‘to
a constant boundary for X(t).,

Proposiﬁion 2.6 (DeLong(1981), p. 2203).
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_ ® -8 (¢,q)
P{ max |W(D)|/ft < ¢} = I ai(c,@)T ,
1< t<T i=1

where q=1/2, 8; is the i-th root of M(Bi+q,q,-c2/2)=0 , M is the
confiuent hypergeometric function, and ¢; is equal to

-0l
e %2 c2/9)Y M(pi+a,q+1,-c2/2)
T(q+1)B: (d/dX)M(X+q,q,-c2/2)

with the deriVative of M evaluated at x=8;.

Proposition 2.7 (DelLong (1981), p. 2205). For T and ¢ large,

"Cd/

2 .
e {(log T)(1-1/c2)+2/¢c2+0(c™4)}

P{max [W(t)|{/Jt 2 ¢} ~ —
1StsT Jox

Next we summarize the extreme value theory briefly, (see,
e.g., Resnik(1987), p. 9). Let Xi,XQ,‘..;Xn be a i.i.d. sequence

of random variables with common distribution F(x). Set Mn=T§x$Xi
is=n -

Definition 2.4. Suppose there exist an>0 and bnER; such that

P{(Mn - bn)/an < X} ---> G(X) weakly as n--->0 where G(x) is
non-degenerate. Then F is said to belong to the domain of
attraction of G and G is said a extreme value distribution.

Proposition 2.8 (Gnedenko(1945)). Extreme value distribution

is of the type of one of the following three cases:

n ¢d(x)= 0 for x<0 and exp(-x ) for xz0 with ¢>0

: o
(2) Wd(x)= exp(-(-x) ) for x<0 with ¢>0 and 1 for x=20

(3) Mx)=exp(-e %) x € R!.
An extension of an extreme value distribution to the
maximum of a stationary Gaussian sequence was - given by Berman

(1964) and extentions to the maximum of a continuous parameter
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stationary Gaussian process have appeared in various literatures,
(Berman(1974,1980), Pickands»(lgﬁé), etc). Recently Berman(1984)
has treated a stationary non-Gaussian case. Here we refer only
to a theorem by Pickands (1969).

Proposition 2.9 (Pickands(1969)). Let :Y(t), -olt<o, be a

stationary Gaussian process such that EY(t)=0 and

Cov(Y(s),Y(s+t))=r(t). Let

I
Z(T)= max Y(t). If r(t)=1-Cl{t] + o({t| ) and lim r(t)log t=0,
0StST

t-->0
then for all x, -od(x<{mo,

lim P{ a(T) ' (Z(T)-b(T))sx}=exp(-e %),
T-->0

where a(T)=(2log T)"!“2 and b(T)=a(T) ! +

t -1s2 1.0 (2-y 20
a(T)(((l[d—l/Z)loglog T+log((2x) C Hd2 )}
45
and 0 < H=lim T"!S es P{ sup Y(t) > s}ds < o,
¢ T--)>n Y 0=tsT

where Y(t)is a stationary Gaussian proéess with means and

covariances;

EY(t)=-It|u, Cov(Y(s),Y(t))=§s|d+ it!d+ |t—sla.

Remark: In the expression df b(T), (1/¢-1/2) is described as
(1/2-1/9¢) in the original paper of Pickands, but from the book of
Leadbetter et el (1983), p.237, Theorem 12.3.5 or from the
process of the original proof by Pickands we know (1/0-1/2) is
a correct one.

For the O-U process X(t), r(t)=e-t=1-fti+o(|t]), and C=e=1.

For o=1, Hd=1 (Pickands (1969), p. 77), and we have the next



proposition.

Proposition 2.10. Let Z(T)=.max X(t) and
0staT

a(T)=(2log T)- 1”2 and b(T)=a(T)"! + a(T){(1/2)loglog T-log JYx}

Then. : '
%im) P{a(T) Y (Z(T)-b(T))sx}=exp(-e %),
-=>®

and moreover

Tli? P{ a(T)-1(Z(T)~b* (T))sx}=exp(~(1/dm)e x),
-=>0

where b (T)=a(T) 1+(1/2)a(T)loglog T.

Proof of Proposition 2.10. The former part is trival from

Proposition 2.9. We must show the last part of the proposition.
Since b(T)=b*(t)-a(T)log Y7,

%im> P{a(T) " (Z(T)-b"(T)) = y-log Jry=exp(-e~¥),
-0

and setting x=y-log /7, e-¥=(1/Jx)e %, which show the last

part of Proposition 2.10.

3. A shift in normal means

For a shift in normal means the likelihood ratio test

rejects H if T is too large, where T= max {T«| and
1sksn-1

Te =(Se/dn - (Ge/m)Sa/dm)/JK/m (1= (k/m)

and for a one-sided shift, T must be‘replaced by T where

0 vx

T =max{0, max T«}, and Si= Xi, k=1,2,...,n, (see, e.g., Yao
1sks i

n-1 1
and Davis, (1986), p.343).

Hawkins (1977) tried to determine the normalizing constants
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and the limiting distribution from heuristic arguments, and
suggested an approximation by an stationary Gaussian sequence
satisfying Berman's condition(1964): r(n)log r(n)--->0. Yao and
Davis(1986) determined exactly the normalizing constants and the
limiting distribution.

One of the motivations of this section was to understand the
reason why the coefficients 2/Jx or 1/J7 appear in the limiting
distribution in Proposition 3.1., which do not appear 1in the
extreme value disrtribution of i.i.d. sequence, A(X)=exp<—e‘xj,
in Proposition 2.8. Another was to know the origin of the
normalizing constants an, and bs.

Proposition 3.1 (Yao and Davis(1986)).

lim> P{T 5 anx + bn}=zexp(-(2/x)e " *},
n-->0

Iim) P{T* S anx + ba}=zexp{-(1/J1)e %},
n-->n

where an=(2loglog n)~'72 and bn=an"! + (an/2)logloglog n.

For T* their arguments are briefly reviewed here. First
note Tk is represented as

Te = WOt /Jte(I-tW), te=k/n, k=1,2,...,n-1,

and the distribution of T' is essentially approximable by that of
the maximum of a stationary Gaussian sequence, (see, Hawkins,
1979, p.184). They proceeded as follows. First they showed from
the arguments based on the law of the iterated logarithm of the

Brownian motion W(t) and the symmetry of the Brownian bridge

wé(t) that
P{ max Tk £ anX + ba} ~ P{ max Te' S anX + ba}?

1£ksn-1 1sksn/log n



where T«'=W(t«)/Jtv, k=1,2,...,n/log n. Secondly, noting that
the sequence Tu'=W(tx)/J?], k=1,2,...,n/log n, 1is equal in
distribution to the sequence T«''=W(k)/Jk, k=1,2,...,n/log n,

they showed that

P{ max Te' S anX + bn}2 ~ P{ max Tk'' S anX + bn}?2
1sksn“log n 1sksn/log n
~  P{ max Te'' S @ans10g n X + bns1og n}2.

1sksn/log n

Finally the last term was evaluated through the theorem of
Darling and Erdos(1956). |

The theorem by Darling and Erdos(1956) is now briefly
reviewed below. In short, the therom evaluates the maximum of
Te' ' =W(k)/Jk, k=1,2,... ,n, by making the transformation given
in Proposition 2.4 , that is, by'embedding this into the O-U
process X(t). Further the limiting distribution of the maximum
of the sequence X(z«), T«=(1/2)log k, k=1,2,...,n, is shown to be
the same with that of the maximum over the ‘interval (0,Tn), and
the limiting distribution of the last quantity is evaluated.

Proposition 3.2 (Darling and Erdds(1956)).

1im P{ max S«/JK S anx+ba}=exp{(-1/2Jx)e %},
n-->» 1kSn-1

where an=J210glog n and ba=an~! + (an/2)logloglog n.
The proof of Proposition 3.2 is sketched as follows. After
observing that

P{ max S«/JK S anx+ba}=P{ max X(Tx) S anx+bn},
15ksn 1sksn

where X is the O~U process and t«=(1/2)10og k, they showed the
next lemma.

Lemma (Darling and Erd8s(1956)).
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(1) 1lim P{ T(c)> u(c)y} e v,
c--> 0

(2) (1/2)1og N(c)-T(c) --->0 in probability as c--->o.

where T(c)=inf{t>0; X(t)zc}, N(c)=min{k21l; X(z«)Zc}, and

2
p(e)=(J2x/c)ec 72,
Note that (1) implies that

lim P{ max X(t) s cy=1lim P{T(e) > z(clyl=e" Y,
c-->n  Ostsp(e)y c-= 0

and this is rewritten that

lim P{ max X(t) s d(T) }=e" Vv,
T-->0 0stsT

where d(T)= a(T) ! +(1/2)a(T)loglog T - a(T)log Jry,
and a(T)=(21og T) 172, Setting b(T)=a(T) ! + (1/2)a(T)loglog T
and x=log Jry, we see that (1) implies

lim P{ max X(t) S a(T)x + b(T)}=exp{-(1/Jr)e *}.
T-—>m OStsT

This result is coincident with Proposition 2.9.

On the other hand (2) implies

lim P{ max X(t) = ¢¥=1lim P{T(c) > w(e)y}=lim P{(z 2 #(c)y}
c-->0  Qstsu(c)y c-- 0, . c-->o  N(¢) o
=lim P{ max X(Tk) s ¢)= lim P{ max X(t) = a(T)x + b(T)}
¢-->0 0stysu(Cl)y c—=>0 0SgsT

=exp(-(1/Vx)e *}.
That is, (2) implies the limiting distributions are identical for
the maximum of X(t) over the discrete points <©«, k=1,2,..n and
over the interval [0,Tn], and (1) is applicable. By éolving the
equation 2(c)y=(1/2)log n, the normalizing constants a. and b. in
Proposition 3.1 was obtained, and this constants: are also the

normalizing constants for the likelihood ratio test T or T* , as
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shown by Yao and Davis,
Finally we close this section after stating a question:
Question : Can we get Proposition 3.1. ?, by observing

P{ max Wa(tk)/Jfk(1~tk5$C}=P{ max X(zk)sc },
1sksn 1sk=n

where ti=k/n and z«=(1/2)log (t«/(1-t«)), and then following the

line of the proof of Lemma of Darling and Erdss.

4., A shift in variances

In this section we treat the problem of detecting_a change in
a sequence of variances. of univariate normal populations and
study the asymptotic behavior of the modified like}ihood ratio
test as the number of populations, n, tends to infinity.

Let X«, k=1,...,n be distributed as x?(v«) multiplied by a
constant 0«2, where x2(v) denotes a chi-square random Qariabie
with v degrees of freedom. OQur problem is to test the null

hypothesis

against the alternative

!

]
Q

[
£

n-1
K = %T%Kk, where K«: 021 =...= 02 # 02%¢+1 =

k 1] n
Sk = .§.X;, and S«* = ¥ Xi, (k=1,...,n-1) and S = _§ Xi

10
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The likelihood ratio test rejects H if max T« is too
isksn-1 =

large, where each T« is the likelihood ratio test for testing H
against K« and given by the following quantity,
Te = Nlog(S/N) - Nklog(S«x/Nk) -Nklog(Sx*/N«*).
In the pfoblem of detecting a change of normal means,
Siegmund(1986) proposed the modified likelihood ratio test
given by

max A,
1<{masksmi<n

where A« is the likelihood ratio statistic for testing the null
hypotesis against the alternative that a change has occured
between the k-th population and (k+1)-th population. He\ treated
the asymptotié approximation of the probabability of the first
kind of error for the modified likelihood ratio test statistic
when the number of the populations n,'and me and m: tend to
infinity in such a way that
Condition (A): for some OCta<ti<l, me/m -->ta, mi/m--->t
In this study wé take thé same modification for the
likelihood ratio test. That is,

let T(me,mi) = max T«
1<{masksmi<n

and we call this as the modified likelihood ratio test statistic.
In the following we say simply that.n tends to infinity if the
condition (A) holds, and we consider all the limit theorems under
the null hypothesis. Finally it should be also noted that the
terminology of "asymptotic equivalence" about two statistic Fi

and F2 is used for both cases Fi=F2+0,(1) and Fi=(1+0,(1))F2.

11



First we have the next limit theorem.

Theorem 1. Let Tl(ma,m1) = max Tlx, where
1<{mesksmi<n

Tl = (Nk/2) {(1-(S«/Nk)/(8/N)}y 2 + (Nk*/2){1-(Sx"/Nx*)/(S/N)}2.
Then T(me,m1) and Tl(ma,m1)#is asymptotically equivalent when n
tends to infinity.
Proof. thhout loss of generality we assume . ie=1,
i=l,...,n. Then from Central Limit Theorem, all of §/N,
S«/Nk, and Sk;/Nk' converge to 1 wifh probability 1. Since T« is
revwrited as\‘ |
Te=-Nelogll-{1-(S«/N«)/(S/N)}] = Nk-logll-{1-(S«"/Ni*)/(S/N)}1,
taking the Tailor expansion of the 1log function about 1, we
obtain

Tx = Tlk + 0o(1), K = ma,...,m1.
This completes the proof of Theorem 1.

Corollary 1. Let T2(ma,m1) = T2«,

1<mu2ﬁ§mx<n
where

T2x = (N«/2){(8/N)-(Sk/Nk)}? +‘(Nk'/Z)((S/N)—(Sk'/Nk‘)}e.
Then T2(me,m1) is asymptotically equivalent to T(me,m:) when
n tends to infinity.
Proof. This is easy to see if we note that

Tl(me,m:) = (S/N)-2T2(me,m1)
and (S/N)-2 converges to 1 with probability 1.
Next simulation results ishow to what extent the

approximations of T(me,m:) by Tl(me,mi) and T2(me,m2) are good.

Note that the results are based on the 10,000 generations of the

-12
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statistics.
Table 1
The quantiles of T(me,m1), Tl(me,m1), and T2 (me,m1)
n = 50 % T(me,m1) T1(ma,m1) T2 (me,m1)
2?; 4? 10 1.3258 1.3156 1.31383
ez 30 30 2.7112 2.17388. 2.1685
50 3.02059 3.0044 3.00169
60 3.56599 3.559 3.5462
70 4.23738 4.1963 4.2154
80 5.14256 5.1173 5.0125
90 6.6528 6.624 6.6366
95 8.2040 8.2562 8.35647
Table 11
The quantiles of T(me,mi1), Tl(me,m:), and T2(me,m:1)
Ea:ul)g % T(ma,m1) T1(ma,m1) T2(ma,.m1)
mi= 90 10 1.459 1.4626 1.4506
ve="30 | 30 2.3075 2.3042 2.298
50 3.2262 3.2176 3.207
60 3.7859 3.7395 '3.7515
70 4.423 4.4177 4.4198
80 5.3976 5.3462 5.3417
90 6.938 6.9399 6.9465
95 8.4808 8.4511 8.4777

The purpose of this section is to give the convergece

5. Convergence of T2(me.my)

theorem of T2(me,m:) to a functional of the standared

13




Brownian bridge. First we state a well-known lemma.

Lemma 5.1( Donskar, see Biilingsley(19685, p. 137). Let &1,...,¢n
be identically and independently distributed random variableé
with mean 0 and finite Variance 62. Let Yn(t)=Stat1/Yng. Then
when n tends to infinity Yn(t) converges to W(t), 0=tsl, weakly,
where W(t) denotes the standard Brownian motion.

Theorem 2. Assume vi=...=va=v, When n tends to infinity

T2(ma,m1) converges to Z in law,

where

Z = max { We(t)2/t(1i-t)}
ti1<t<te

Proof. Let,§=S'N,‘§1=Sk‘Nk and’§L'=Sk"Nk'. Then §} Sk, aﬁd S
are the sums of identically and independently distributed randpm
variables with mean 0 and finite variaﬁce J2v, respectively. It
is easy to see T2« is rewritten as ‘

T2x=(1/2v) [ (n/K) ((/n) (8/4n)-8u/dny2 +

(/") ¢ k*/n) (8/4n)-Sk*/Iny2]1
=(1/2v) (n/k + n/k*) ((k/n) (§/4n) <5/ In) 2
Set Yn(t)5§1nt1/lﬁ'J§3, 0st=1. Then T2« is also rewritten as
T2«= (n/k + n/k*) {((k/n)Ya(1)-Ya(k/n)}2.

When n tends to infinity, since Yn(t) converges to W(t) weakLy,
T2(me,m1) converges to Z in law, which completes the proof of

Theorem 2.

6. Evaluation of the limiting distribution of T(mg.m;)

We have the following evaluation about the limiting

14
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distribution of T(me,m1).

Theorem 3.

8

-gi(c,q)
lim P{T(me,mi)Sc2} = ¥ o;(c,q)T
n--->o ~ i=1

where q=1/2 and T = t2(1-t1)/ti1(1-t2)

Proof of Theorem 3. This . is immediatly deduced from

Corollary of Theorem 1 and Propositions 2.5 and 2.6.

Theorem 4. For large c,

2
lim> P{T(me,m1)2c2} ~ (ce ¢ “2/J27){(1ogT)(1-c~2)+2/c2+0(c" %)}
n--->

Proof of Theorem 4. This 1is an immediate , consequence of

Corollary of Theorem 1 and Propositions 2.5 and 2.7.
Next table III represents the approximations of the upper tail

probability by the formula in Theorm 4.

Table 111

n me mi ce exact P approximated P
50 5 45 8.2040 0}05 0.07753
100 10 90 8.4808 0.05 0.0688

Note that the used datas are parts of Tables I and II./The
approximation errors seem to be moderate. '
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