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§1. Results

In this paper, we report the results of Kenmochi-Kubo [2] and

give the outline of proofs. Let QCRN ({N21) be an open bounded set

with smooth boundary I'. We are interested in periodic behavior of

solutions to parabolic-elliptic problems with mixed-type boundary

conditions prescribed on time-dependent parts of the boundary.

Assume that ' admits the decomposition: T FD(tﬁ/PN(t)LTU(t), for

each t€R, where Fi(t) (i=D,N,U) are mutually disjoint measurable

subsets of I'. Let  p:R—R be a non-decreasing Lipschitz-continuous

function. The following system is studied:

o(v)’ - Av £ in (0,x)xQ,

p(v(0,)) = u, in Q,

v =0 on t>0{t}XFD(t)’
3 v=20 on t>0{t}XFN(t),
v = 0, avv <0, v-va =0 on k{>o{t}XFU(t).



Here D(V)'=§%D(V) and 3  is the outward normal derivative on I'. These
kinds of problems arise from the free boundary problems for
satulated—unsatuiated flows in porous media. 'We refer to [3, 4] and
their references for related topics. 1In order to give a notion of

weak solutions in variational senée, let us introduce the convex sets
K(t) = {Z€H1(Q); z=0 a.e. on Ip(t), 2zs0 a.e. on FU(t)}, for té€R.

Definition. Let J=R or R+. Let fELioc(J;LZ(Q)). Then a

function vELiOC(J;H1(Q)) is called a weak solution to E(K(t),p,f) on
J, if v(t)EK(t) for a.e. tEJ,'p(v)éwlég(J;Lz(Q)) and v satisfies

the following variational inequality for a.e. t&€J:

J (p(v) 7 (t)-£(t))(v(t)-z)dx + j Vv(t)V(v(t)-z)dx = 0,
Q Q

for all z€K(t).
Let us assume the following geometric condition.

(A.1) For each téR+ there is‘a C1—diffeomorphism 6(t,-):§ — Q
such that.
(i) 6(0,+) = Id;

(ii) Fi(t) = e(t,ri(O)), i=D,N,U, for all tﬁR;;

2
‘o ) 9 9 0 = .
(iii) —a-aer a—te, 5;5—8?9 e C (R+><Q):
(iv) measrfwtzorD(t) > 0 (measr denotes the surface measure on I).
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Lemma 1 (cf. Kenmochi-Pawlow [3]). Assume {(A.1) holds as well as
1,1 p 2
(A.2)‘ . féwloc(R+,L {(Q)).

Let U be such that there is VOEK(O) with uo=p(v0). Then there is a

unique weak solution v to E(K(t),p,f) on R, satisfying p(v) t=0 = Yg-
Also the existence of a periodic solution is known.

Lemma 2 (cf. Kenmochi-Kubo [1]). In addition to (A.1) and (A.2)

assume that there‘is a constant T>0 such that
(A.3) £(t+T) = f(t) and Fi(t+T,-) = Fi(t) (i=D,N,U), for all th+.
Then there is a weak solution y to E(K(t),p,f) on R+ such that

+

wl(t+T) = w(t), for a.e. t€R .

Such a solution y is called a T-periodic solution. Any

T-periodic solution can be extended as a solution on the whole of R
by using T-periodicity, provided that we extend the function f and
Ti(t) (i=D,N,U) periodically on R. The main result is stated as

follows.
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' Theorem. Under conditions (A.1), (A.2) and (A.3), T-periodic

solution w to E(K(t),p,f) is unique and asymptotically stable in the

sense that for any weak solution v to E(K(t),p,f) on R+

0(v)(t) - plw)(t) — 0  in L2(Q) and weakly in H'(Q) as t—.

Moreover the T-periodic solution w is the only orie weak solution on R

such that the trajectry {w(t); t€éR} is bounded in LZ(Q).

We shall give the outline of the proof of this theorem in the

next section. For the detailed proof, see [2].

As far as Lemmas 1 and 2 are concerned,

Remark (cf. [1, 3, 4]1).

condition (iv) of (A.1) can be replaced by weaker one:

(iv)”’ meas FD(t) > 0, for all tER+.

§2. Outline of Proof

The proof of Theorem is based on the following two lemmas.

Assume (A.71), (A.2) and (A.3) hold. Let w and v be

Lemma 3.
weak solutions to E(K(t),p,f) on R+. Suppose that w is T-periodic

w2 V) a.e. in R+xQ. Then we have

and that w s v (or

(1) p(v)(t+nT) — p(w)(t) in LZ(Q) and weakly in H1(Q) as n—®

for all t€R+.

-4 -
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Lemma 4. Let v and ¢ be weak solutions such that v s Vv a.e in

R+xQ. Then

1/2

v

(2) avv(t) 2 avﬁ(t) in the sense of H_ (T) for a.e. teR_,

/2(F) with z20. Here

(T) and H1/z(r>.

that is < v(t),z> z < 0(t),z> for all zeH"

<e,e> denotes the duality between H'j/z

Proof of Lemma 4. Fix téR+. For each A>0 and u>0 let

VA u(t)€H1(Q) be the solution to
7 i “

v u(t) - AAVA,u(t) = v(t) in Q,

-3 v, (t) (e)1”" on T,

1
vV Asu - EXFD(t).V)\r [v

(t) +
Mo

1
wArpe) T

where y (t) and Xr (t) are the characteristic functions of the sets
Ip U

A

FD(t) and FU(t), respectively. And let vy u(t) be similarly defined.
14

The boundary conditions imply that avv u(t), 5 ¥ u(t)éLz(I'). Also

VoA,
(t). Consequently

Ay

it follows from wv(t) s ¢(t) that u(t) s 9

vx’

Ari
_avvk,u(t) < -aka,u(t) on I'. Since avvk,u(t) and vak’p(t)
converge to avv(t) and ‘Bvﬁ(t), respectively in H_1/2(F) “as uvo

and A+0, we have (2). See [2; Proposition 4.1] for the detail.

g.e.d.



153

Proof of Lemma 3. We shall prove in the case w s v. The case

w2 v is similarly proved.-

Since t »[[p(v)(t)—p(w)(t)]+{ 1 is non-increasing (cf. [3,
L-(Q)

41), we have by v z @

t & j'{p(v)(t)*p(m)(t)}dx is non-increasing.
Q

In particular, since w is T-periodic, .

J p(v){(mT)dx .= j p(v)(nT)dx : for all n = m (n, méN).
Q Q
Therefore
(3) lim J p(v)(nT)dx exists.
n—oeo ’‘Q

Next by Viftue of [1; Theorem 1], {p(Vv)(t); téR+} is bounded in

H1(Q). Hence on account of the convergence result [4; Theorem 1.4],
*

there are a subsequence {nk} of {n} and a weak solution v. to

E(K(t),p,f) on R+ such that

(4)  p(v)(t+n, T) — o(v ) (t) in L?(Q) and weakly in H' (2) as k—

for all t6R+,

We are going to show that v = w. Then the entire sequence

p(v)(t+nT) converges to p(w)(t) and we have (1). First by (3) and
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‘(4) we see that

(5) f o(v) (nT)dx = lim J'p(vx(nT+nkT)dx~
Q ko /Q
= lim J p(v)(mT)dx (put m = n+nk)
M—sco ‘)

- lim f o (v) (n, T)dx
kK Q

H

*
J plv )(0)dx, for all neN.
a .

* -
Therefore from the egquations for v. and it follows' that

nT 4 .
fo dtafjﬂ{p(v ) (£)-p () (t)}dx

o
i}

nT .
- J dtj AV () -(t))dx
0 Q

nT .
J <3 (v(£)-g(t)),1>at, for all neN.
. . o

‘ *
On the other hand, it is evident that 3 < v . Therefore by (2)

1/2

* -
3vw(t) z avv (t) in the sense of H (r) for a.e. tER+.

Hence we have
<av(V(t)—w(t)),1> = 0, for a.e. t€R+.

From this we can conclude that
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_1/2(F) for a.e. téR+.

* .
(6) B w(t) = 3,v (t) in H
Next put T, = N ' (t) and Vv = {zéH1(Q)' z—b on T} Since
P 0 tz0° D poe= 0 °
measrfo > 0 by assumption, for each tER+ there 'is a unique solution

u(t)ev of the following variational problem:

(7) ‘ J Vu(t)+Vzdx = J {Q(v*)(ﬁ)—o(w)(t)}zdx for all z€V.
Q Q )

It is seen from Poincaré's inequality that there exists a constant

C1>O such that

(8) Vu(e) |,

for all tER+.

s ¢, lov (- ()]
; L (Q) '

From (6) and (7) we observe that

1 dlv 2
5= u(t) |
2dt LZ(Q)

I

f Va ' (t)*Vu(t)dx
Q

1

* .
JQ{D(V Y(t)-p(w)(t)} Tu(t)dx

J AV (£)-w(t))u(t)dx
Q |

[}

- JQV(V*(t)—w(t))'Vu(t)dx

it

* * ‘ ‘
- JQ(V (t)-w(t)){p(v )(t)-p(w)(t)}dx.
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Hence by (8) and the Lipschitz continuity of o,

1 4 2 2
5 yu(t) + C,|vu(t)| .
29t | '1.2(9) 2! L2 (qg)
1.4 2 * Ve 2
< = yu(t) + Colp(v ) (t)-plw)(t)
25%| !LZ(Q’) 3l [LZ(Q)

A

! dguie))? + J (v (£) = (£)) {p (v ) (£)=p(y) (£)}dx
1 f _
<t o) g ~

A

0, for a.e. t€R+.
From this inequalitiy we can conclude that

and J Iva(e) |2, At < .
0 L7(Q)

IA
(=]

! 2
yu(t) -
el ILz(Q)

Consequently

IVu(t)l 2 — 0 as t—ow.
L7 (qQ)

Combining this with (7) we obtain

(9) J (o(v ) (E)=p(p)(£)}2dX — 0 as t—w for all zev.
Q. ~ |

*
Since (plv J(t)-p(y) (E); téR+} is bounded in LZ(Q) ([1; Theorem 11)
and V is dense in LZ(Q), the'convergence (9) holds for all zéLz(Q).

In particular (z=1)
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j (p(v ) (nT)=p(w) (nT)}dx —» 0 28 nse.
Q .

On the other hand, the T-periodicity of u and (5) imply that

J (0(v ) (nT) =p(w) (nT) }dx = f {p(v )(0)-p(w)(0)}dx  for all neN.
Q Q .

Hence
. :
[ o™ @-p(w (01}ax = 0.
Q
* *
Since p(v )(0) z plw)(0), we have p(v )(0) = pl(w)(0). This
implies v* Z w. Thus we have proved Lemma 3. - - : g.e.d.

Proof of Theorem. First we shall show the uniqueness of
LZ(Q)—bounded solution‘on R. Uniquehéss of T-periodic solution
follows from this. Let y be a T-periodic solution and let v be a
weak solution on R such that {v(t); t€R} is bounded in L2(Q). We
first assume that u s v a;e. in RxQ. Since L2(Q)—boundedness
implies H1(Q)—boundednéss (cf. {1, 3, 4])( there is a subsequence

% , .
{nk} of {n} and a weak solution v on R such that
* . 2 . 1
v(t—nkT) — v (t) in L°(Q) and weakly in H (Q) as k-,

On the other hand it follows from (2) and @ s v that

~10 -
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ao g it = [ avier-u(e)ax
Q Q
= < (v(t)-w(t)), 1>
s 0.
Hence
(11) lim J {p(v)(t)-p(w)(t)}dx = d exists.
t—-o ‘Q )

Therefore for all té€R

4 = lim J {p(v) (t-n, T)=p(w) (t-n, T)}dx = J‘{p<v*)<t5-p<w)<t)}dx,
Q Q

k-—-)-OO

By the way, since 5 v, it follows ffom Lemma 3 that
*, v . - _ 2 : ' 1 : LT
v (t+nT) - p{t+nT) — O in L°(Q) and weakly in H (Q) as n—w,
Consequently'

0 = lim J {p(v*)(t+nT)-p(w)(t+nT)}ax = 4.
Q

N—>>o

Therefore it follows from (10) and (11) that J {o(v)(t)-plw)(t)}dx
Q

is non-negative and non-decreasingly. converges to d-= 0 as: t—-x,

Hence J {p(v)(t)-plw)(t)}dx = 0 so that p(v) = plw) Dby v 2 w.
N

Therefore v = . Similarly we can show that v = p in the case y z v.

- 11 -
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Now let v be an arbitrary LZ(Q)—bounded solution on R. For each
n€éN, put Ug,n = p(V)(-nTﬁJp(m)(fnT)L and let v  be the weak solution

to E(K(t),p,f) on [-nT,») satisfying o(vn)|[t=—nT = uO,n’

Comparison result implies that vz vVw on [-nT,»). Also
LZ(Q)—boundedness,on v implies the uniform LZ(Q)-bOundedness of

(Vi nen- Therefore there is a subseguence {n

k}.Qf {n} and.an

*
LZ(Q)—bounded solution v on R such that

v (t) — v*(t) in LZ(Q) and weakly in H1(Q) as k—row .
Kk . ‘ ; .

for all téR.

* : ’ ’
Clearly v 3z vV, on R. Therefore from the argument before we have

* . B R ¢ - :
Vv = p. Similarly there is an LZ(Q)—bounded solution v, on R such

that v, < vAp- And v, = . Hence we have Vv = .
Next we shall show the asymptotic stability of the T-periodic
solution . Let v be any weak solution on R+. Then as before there

are weak solutions ¥V and v such that v < vAy g VVy £ V. By Lemma 3,

p(V)(t+nT)—b(w)(t+nT) —s 0 (n—w). On the other hand (cf. [3; Lemma

A

5.41), [p(F) (£)=plu) (£)] 4 lo () (s)-plw) (s)] , for all
L' (qQ) L' (Q)

Ogsst<w. So we have (V) (t)-p(p)(t) — 0 (t—w): Similarly
p(Z)(t)-p(m)(t) — 0 (t—s»). Since p(z)(t)-p(m)(t) <
o (V) (E)=pl) (£) s o(F) (t)-ply) (£), we obtain o(v)(t)-plw)(t) — O

(t—w) . q.e.d.

- 12 -
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