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1. Introduction. Let V be a Banach space densely and
continously imbedded in a real Hilbert space H. Our purpose in
this paper is to consider the existence of solutjons of the
initial value problem

d—‘:+Au+G(u>=f, 0<t<T,

a. n
u(Q) = ug >

where A is a monotsne operator from ‘V into V’,VG:V > H is a
éontinuous mapbing and f:(O.t) >V ié a measurable function.
Problems of this kind has béen sfudiédkby many authors. The
case A is linear was studied by Browder(5) and Pazy (14). The
nonlinear case ‘' was studied by Attouch & Damlamian (1), Crandall &
Nohel (7), Hirano (10).,, and Vrabie (15, 16). In (15 and (16), Vrabie
studied the problem (1. 1) under the assumption ‘that A generates a

compact semigroup on H, and satisfies
a.2 (Ax - Ay, x — y) + clx - yl2 2 wllx = yli® for x, y = V,

where rc, w >0, p22 and ll-ll, |+]| denotes the norms of V and H,
respectively.

In this paper, we consider the <case G is a compactly
continuous mapping from V into V’. Our afguﬁent is Baséd on the

existence results for pseudo—monotone mappings (cf. (4, 6)).
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2. Statement of main results. Let p, q and T be constants such
that T > 0, p e 2 and 1/p + 1/q = 1. V will denote a reflexive
Banach space densely and continuously imbedded in a real Hilbert
space H. Jdentifying H with its dual, we have that VC HC V’,
where V’ is the dual space of V. the norms of V, H and V'’ are
denoted by ll+ll, |+]| and Helly, respectively. Let (x,y) denote the
pairing of an element x & V énd an element y € V', If x,y £ H,
then (x,y) is the ordinary inner product of H Let A be a mapping
from V into V'. Then A is called monotone if (Ax — Ay, x — y) 2 O
for x, y € V. the mapping A is said to be hemicontinuous if for
each x, y £ V, A(+tv) converges to Au weakly in V’, as t = 0. A
is called pseudo—-monotone if A satisfies the following condition:
2.2 If {un} is a sequence such that u converges weakly to

u £V and lim sup (Aun, u = u) S 0, then

(Au, u - v) S lim inf (CAu , u — v) for each v £ V.
n s n n

Let E, F be Banach spaces, and let g be a mapping from E into F.
We denote by Ew and Fw the spaces E and F endowed with their weak
topologies, respectively. Then g is said to be weakly continuous
if g is a continuous mapping from Ew into Fw. The mapping g is

called demicontinuous if g is a continuous mapping from E into Fw'

For each r =2 1. We denote by Lr(O,T;E) the space of E-~valued
T r
measurable functions wu:(0,T) = E such that J ludtdll"dt < «, The
' 0

pairing between Lp(O,T;V) and Lq(O,T;V’) is denoted by <., >, Then

for each wu, v € L2(0,T;H), <u, v> is the ordinary innner product

<
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of u and v in L2(0,T;H). The norms of Lp(O,T;V), L2(0,T;H),

L9¢0,T;V’) are again denoted by ll+ll, ]+]| and H~H*¢ We denote by J
the duality mapping from Lq(O,T;V’) onto Lp(O,T;V), i.e.,

- p 2 _ 2
(2.1 J@ = {v & L7, T;V:<v, u> = [Ivli® = llully)}

for each u € Lq(O,T:V’). By using the Asplund’s renorming theorem,
we may assume that J is a "single valued monotone anH demi—
continuous mapping(cf. ~Proposition 2.14 of (3)). We will denote

by L the operator defined‘by

t . .
wH ) = I f(s) ds for each f = L2((0,T))
0
The adjoint operator L* of L is given by
* T 2
CHW = J f(s) ds = for each f = L°(C(0,T).
t

Then L and L* are positive operators on L2((0,T3).l

In thé following we will assume that the mapping A:V =» V°*

satisfies the following conditions:

(Al> . A is a monotone hemicontinuous mapping from V. into V’';

(A2) there exist positive constants Cl’ 02 and C3 such that

2.8 lAxll, S C, IxIP71+ 1>, for each x = V
and
(2. 4) CollxlI® S Cgp + (ax, for each x = V.

We impose the following conditions on G:
: L}
(G1> G is a completely continuous mapping from V to V:

(G2) There exist positive constants a, b and C such that

3
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2.5 GO, x) & -C for all x € V;

2. 6 Ieoo I, S allxi®P™h + b for all x € V.

We now state our result:

Theorem . Suppose that (A1), (A2), (G1) and (G2) hold. Then

for each ug £ H and f € Lq(O,T;V’), there exists a solution u of,

(1. 1) such that

2. u £ CW,T;H n LPw, ;W
2. 8 9% e L9¢0, T:V").
3. Propositions. Throughout this section, we assume that

ug ¢ v, f. & L9, T;V’), and that (A1), (A2), (G1> and (G2) hold
We denote by V¥, H, and V' the spaces LP(0,T;V), L2¢0, T;H) and

LYo, T;V’), respectively. A denote the operator defined by
Auw) (1) = Au(t) + uo) - f(t), for each u eV and t = 0, T.

Also we denote by G the mapp ing defined by

Gu) (1) = Gt + u gy for each u € V and t = (0,T).

~

Then it is easy to see that A is a monotone hemicontinuous mapping

satisfying the following conditions:
(3. 1 Rully, < e <1 + uli®~ 1y for u & V

3.2 czuunp S eyt <Au, u> for u £ V,

<
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1’ C2’

CB’ T, u, cand f. It is also easy to see that G is a continuous

where e Cq and Cq are positive constants depending on C

~ ~

mapping from V into H satisfying that
3.3 <Gu, uw> 2 ¢ for all u = V;
3.0 HEUHiS ellull®™! + g for all u & V,

where ¢, o, 8 are constants depending on C, a, b and T and ug-

We now consider the equation of the form
(3. 5 v+ A+ ®LY =0

Let V s v be a solution of (3.5). Then it is easy tb see that

u = Lv + ug is a solution of (1.1). On the other hand, if u iS a
solution of (1.1), we have that v = Q% is a solution of (3. 4).

Since L* is injective, the equation (3.5) is equivalent to
3.6 ¥ + L& + DHLv = 0.

Then we will show the existence of fhe solutions-of (3.6
instead of (1.1). In the rest of this‘gection, we assume, for

simplicity, that Ug = 0 and f = 0. The proofs remains valid for

each u0 € V and f = v’ with minor changes.

. . X X ~ ~ .
Proposition 1. the mapping L + L (A + G)L is a pseudo—

monotone mapping from V into V’.
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¥ b S ~
Proof. From (A1), it is easily verified that L + L AL:V -» Vv
is a monotone hemicontinuous mapping. Let {vn} C V be a sequence
such that v converges to v weakly in V and
. * X o~ o~
(3.7 lim sup <L Vo + L (A+G)Lvn, v o~ v> S 0.

Since v converges to v weakly in G, we have that for each
t = 0, T, (Lvn)(t) converges to (Lv) (1) weakly in V. Since G is
completely continuous, we find that G((Lvn)(t)) converges to

GCLv) (t)) strongly in V* for all t £ (0,T). Then noting that
Gy >l s all v > ol M+ b g arZsup v P! 4 b
for each t = (0,T), we obtain by Lebesgue’s bounded convergence

theorem, that E(Lvn) converges to a(Lv) strongly in V'. Thus we

obtain that

(3. 8 <GLv, Lv> = lim <6Lvn, Lv >

Therefore we have by (3.7) and (3.8) that
1im sup <L*v + L*KLV , V. — v> S 0.
n n n
Then by lemma 1.3 of Chap II of (2), it follows that L*vn+ L*ZLvn
% Ko~ o5
converges to L v + L ALv weakly in V' and

<L*v + L*XLV, v> = lim <L*vn + L*KLvn, vn>.

Then from (3.7), (3.8) and the equality above, we find that
* ¥ Tw Co * K o~ o~
<L’ v + L (A+G®)Lv, Lv = z> S lim inf <L Vo + L (A+G)Lvn, v~ z>

for each z = V. This completes the proof.



Proposition 2. Let {vn} be a sequence in v’ such that v
converges to v weakly in‘V’, {Lvn} c v, Lvn converges to Lv weakly
in V and

lim sup <(K+E)Lvn, Lvn—‘Lv> s 0.
Then A + E)Lvn converges to A + OLv weakly in V’, and
3.9 lim <(A+®Lv_, Lv > = <A+®Lv, Lv> .

Proof. Let {vn} be a sequence in V’ satisfying the hypothesis

of Proposition 2. Then by using (3‘15 and (3.4), we can see that

that (HKLvnH*} and {"ELvnﬂg are bounded. We . first show that

(3. 10 lim inf (A((Lvn)(t)) + G((Lvn)(t)), (Lvn- Ly ) 2 0
for all t £ (0,T). Suppose that for some t = (0O, T),

3.1 ‘lim inf (A((Lvn)(t)) + G((Lvn)(t)),=(Lvn— Lv) (t))> < 0.

From (A2) and (G2), we have that
(3.12)  (ACLv ) (D) + G(ALv D (1)), @v_ = Lvd ()
P_ _ _ ' p—1
= C2"(Lvn)(t)" C3 C Cl(l + "(Lvn)(t)" YHAv) (I
- Gl I+ piay .

Then it fﬁllows fromA (3.11) and (8.12) that {"(Lvn)(tSN} is
Bounded. Then since G is 'compltétly coniinuous, 'G(Lvnj(t)
converges to G(Lv) (t) strongly in Vf Therefore we-have that

lim (G((Lvn)(t)). (Lvn)(t) - (Lv) (1)) = 0. On the other~hand, we

have from the monotonicity of A that

lim inf (ACLv ) (1)), @Lv_ - Lv) () 2 0.

63
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for all t £ (0,T). Then we have that
lim inf (A((Lvn)(t)) + G((Lvn)(t)), (Lvn - Lv) (t)) =2 0.

This contradicts to (3.11). Thus we have shown that (3.10) holds

for all t = (0,T). We can see from (3.12) that
h (1) = (ACLv. YD) + GC(Lv D> (1)), (Lv - Lv) ()
n n n n

P
2 K, IILv ) I7 + K,

for all t sv(O,T) and n & 1, where Kl’ K2 are constants depending

on C, C C o and b. Then by Fatou’s lemma, we have that

1! 2! 3’ a’

T
3.13 0 = J lim inf h_(t> dt
0 n

T
S lim inf J h (2 dt £ 1im sup <(A+G)Lv , Lv - Lv> 5 0.,
v o N , v n n

T
The inequality above implies that lim J.Ihnl dt = 0. Then we can
. 0

choose a subsequence {hn } of {hn} such that
i

3.14) 1im (A((Lvn)(t)) + G((Lvn > (1)), (Lvn - Lv) (1) = 0,
: : i S i i

a.e. t = (0,T). By (3.12) and (3.14), we find that {(lLv_ ()ll} is
o i

bounded for a.e. t £ (0,T). Since (Lvn ) (t) converges to (Lv) (v
i

weakly in V’, we have that G(Lvn ) (1) converges to G(Lv) (¥
. i v

strongly in H, for a.e. t £ (0,T). Therefore it follows from (2.6)
that

lim (G((Lvn ) (1)), (Lvn)(t) = (Lv) (t)) = 0. Then we have:
i i

lim (A((Lvn ) (1)), (Lvrl - L) =0 a.e. t e 0,T.
i i



Then since A is monotone, we have from lemma 1.3 of Chap.II of (2)

that A(Lun (1)) converges to AC({LWV) (1)) weakly in V’. Here we
i

observe by. using (3.1>-(3.4) that for each z & V and t = 0,D,

there exist real numbers K3. K4 such that

(3. 15 (A + G)((Lvn)(t)), (Lvn)(t) - z()) 2 K3Hz(t)ﬂp + K4

for each n 2 1. Then from Fatou’'s lemma, we find that

(3.16) <A + ®Lv, Lv - z>

T

I lim (A((Lvn () + G((Lvn ) (L)), (Lvn)(t) - z(t)) dt
0 : i i , i

I

< lim inf <A + §)Lvn . Lvn - z>
, i i

S lim sup <A + 6>Lvn, Lv_ = Lv) + @Lv - 2)>

<t

S lim sup <A + a)Lvn, Lv = z>, ~for all z

The inequality above implies that (K+5)Lvh converges to (K+E)Lv

weakly in G’. We also obtain from (3.13) that (3.9) holds.

Proposition 3. For each k > 0, the equation
* * ~ ~
3.1 Lv +kJv + L (A +G&G®Lv=20

has a solution v & V*,

Proof. Let Br = {v = V: vl s r} for r > 0. Since the mapping

~

L*+ L*(K+E)L :V - Vv is pseudo—monotone and J:V - V(C V’) is

7
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b 3 K o~ ~
mono tone hemicontinuous, we can see that the sum kJ + L + L C(A+GL
is also‘pseudq—monotone (cf. Proposition 23 of (4)), for each
k > 0. Then we have ,by using theorem 7.8 of (68), that for each n

P2 i,.there éxists a solution v, E Bn bf the inequaliiy
¥ K o~ o~ . ’
(3. 18 <L v. + kJv. + L A+®Lv._, z - v.>2 0 for all z = B .
‘n n n n n

The inequlity (3.18) implies that for each m 2 1,
(3.19) lim sup (<v_ + (A+G)Lv_, Lv. = Lv. > + k<Jv_, v_ = v >
noo n n n m n n m

= lim sup <L¥v + kJv_ + L¥G+®Lv , v - v > S 0.
noo n n n n m

By putting v = 0 in (3.18), we have

2 P ~ '
(3. 20 k"vn"* + czﬂLvnH +c¢c S g for all n & 1.
The inequality above implies that - (anﬂ*} and -{"Lvnﬂ} are

bounded. Then we may assume without any loss of generality that Vo
converges to v £ V' weakly in V' and Lvn'converges to Lv weakly in

V. Then from (3.19), it is easy to see that

(3.21> lim sup(<v_+ (A+GdLv_, Lv. — Lv> + k<Jv_, v - v> £ 0.
n n n n n
Here we choose a sequence {z } C V' such that z € co{v }, z
: n n n n

converges to v strongly in V' and LG converges to Lv strongly in

V. Then since <Lv. - Lz , v. — z. > 2 0, we find, by letting
n m n m : .

m, n » o that

(3. 22 lim inf <v_, Lv_— Lv> 2 0.
n n .

Also we have by the monotonicity of J that

70
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(3.23 lim inf <Jv_, v_ = v> 2 0.
: n n

Combining (8.22) and (3.23) with (3.21), we have
(3.23) lim sup <(A + §>Lvn, Lv_ = Lv> 5 0.
Then we obtain by Proposition 2:that (K+§)Lvn converges to (K+§)Lv

weakly in v’ and

(3.24) lim <A + ®Lv , Lv > = <@& + OLv, Lv>

Then thevinequality (3.18) implies that

3.25) <L¥v + kJv + L¥ @+ Lv, z> 2 <@E+ELv, Lv> for all z = V.

Since z £ V is arbitrary, we find that L'v + kJv + LYXG+®Lv = 0.

4. Proof of Theorems. In the following, we assume that (Al),

(A2, (G1> and (G2) are satisfied. We first show that the

assertion of Theorem 1 holds for each u0 £ Vand f £ V.

Let u0

€ V, f & V' and let K, G be as in section 3. Then by
Proposition 3, there exists a solution v £ V' of the equation

“. 1 *v o+ Ly + *GA+OHLv =0
n n n . n

for each n & 1. Multiplying (4.1) by v, we find that

2

1
“.2>  Slv Iy

) P . _ .
+ c2HLvnH + c S Cq for each n & 1.
From (4.2), we have that {HLvnH} is bounded. Then it follows from

(3.1 and (3.4) that {lALv I} and {ﬂaLvnﬂg are bounded. It also

s/
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X
follows from (4.2) that lim H%Jvnﬂ = 0. Since L is injective in
V’, the equation (4.1) can be rewritten as

1.3 v +ia® v o+ G+OLY. = 0 for each n 2 1.
n n n n

He;e we note that <(L*)—1Jvn, Jvn> 2 0 for n & 1. Then

multiplying (4.3) by Jvn, we have

2

@4 vl S IE + DLy I Iv IS BALy, e+ (8Lv, D llv, .

for n & 1. Thus we find that {anﬂ is bounded. Then we may

%)

suppose without any loss of generality that vn’converges to v & ¥V

weakly in V* and Lvn converges to Lv weakly in V.
While, we have by multiplying (4.1) by VT Vo that
4.5 <v + (R + ®OLv, Lv. - Lv.> + <xJy_, v - v.> = 0.
n n n m n' n n m
Then since %Jvn converges to 0O in Vas n » o, we find that
4. 6 lim <v_+ (A+G)Lv_, Lv.— Lv > = 0 for each m 2 1.
n n n m

n-oo©

Then it is easy to see from (4.6) that

. lim <v_+ A+GLv_, Lv - Lv> = 0.

Since 1lim inf (vn, Lvn* Lv> Z’Q, we have by (4.7) that

4. 8 lim sup <(K+E)Lvn,van— Lv> S 0.

Then by Propostion 2, we find that (K+§)Lvn converges to (A+G)Lv
weakly in V’. Therefore we obtain from (4.1) that

¥ + L¥GA + ®Lv = 0, i.e., (1.1> has a solution.

o~
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Now let ug, € H and {ug} C V. be a sequece such that ug converges

to ug strongly in H. Then by the argument above, we have that for

each n & 1, there exists a solution u, of the problem

du
<_i—t+Au +G(un)=‘f, .0 < t < T,
4. 9
w@ = ul.
n

Here we assume for simplicity that f = 0. Then multiplying (4. 9D

by u, and integrating, we have

4.100  iu w1%+ ¢ ITH» (s)IIPds < (C + COT + sup |ul]?
: 2'"n 2 0 un s s 3° _ np n'

Then {u_} is bounded in V. Also by (2.3) and (2.6), we see that

du
n . A -
{dt . is bounded in V', Here we put Vo it for each.-n & 1. Then

from the observation above, we, may:supposeiha‘tvvn converges to

v = V° weakly - in v and u = LV +'u0 cohverées to u=Lv + u
n n n 4]
weakly in V. We set (Az) (t) = ACz(1)) and ©Gz) (1) = GC(z(t)) for

each z ® V and t = (0,T. Now we multiplym(4.9) byvun— u and

integrate. Then we have

(4.11> lim sup <G + & WLv_+ u®), @v.+u® - @v + ud>
TR : n n-* n n 0
du >
= ]lim sup <dt t u - un> | N % .
s lim sup <—|u<T)—u (T)l + lug - 9212+<<§ n T UM S0

Therefore the hypothe51s of Proposition 2 is sat 1sfled w1th Lv

replaced .by Lvn+ ugt and Lv:.replaced by Lv + ug.. It is easy to-

verify that.the proof of Propostition 2 remains valid for A; G, Lv

/3
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and Lvn replaced by K, E, Lv + u0 and Lvn+ ug, respectively.

Therefore we find that (K+E)(Lvn + ug) converges to A+C) (Lv + uo)

weakly in V. Thus we obtain v + (A+G) (Lv + uo) = 0. This implies

that u = Lv + u0 is a solution of (1.1). We can see that

u € C,T;H) by the usual argument(cf. theorem 4.5 of (3)),
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