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Nonlinear Nonautonomous Differential Equations
By Naoki TANAKA (H & #H ® )
( Waseda University, Japan )
Introduction.

Let X be a real Banach space with norm |/.|| and let C =
C([-r,0];X), O0<r<«, be the Banach space of all continﬁous func-
tions from [-r,0] into X. We denote the norm of ¢ «C by ||¢ “C’
icee, lloll ¢ = supg [y oyl 6COD I -

This paper is concerned with the abstract nonlinear functional
differential equation

u'(t) + A(t)u(t) » F(t,ut), t e[s,T] (s=0)
(FDE3¢) ¢

u, = ¢,
where u:[-r,T] »X is the unknown function; {A(t); t ¢[0,T]} is a
given family of operators in X; F:[{0,T] xC~+X is a given function;

¢ is given in C. The symbol u  denotes the function u (e) =

t
u(t+e), 6 e[-1,T].

We assume that the following conditions (A.1) — (A.4) hold:

(A.1) There exists a constant a, such that for each t ¢[0,T],

0

A(t) + o, is accretive and R(I + XA(t)) = X for 0< A< l/max(O,aO).

0
(A.2) There are a continuous function h:[0,T] - X which is of
bounded variation on [0,T], and a monotone increasing continuous

function L;:[0,«) + [0,=) such that
1A, (0)x = A (]| s [[h(t) = A0 [ Ly Cllx][ )L+ [|A, (x| )

for 0<A< l/max(O,aO), t,T ¢[0,T] and x ¢X, where

1

J, () = (I +AA(£))™" and A (1) = AT - g ().

(A.3) There exists a constant By > 0 such that for ¢,y €C

and t ¢ [0,T], |[F(t,¢) - F(t,9)|| <8yl ¢~ vl (-
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(A.4) There are a continuous function k:[0,T] + X which is of
pounded variation on [0,T], and a monqtone increasing function
LZ;[o,oo) + [0,») such that for t,t [0,T] apd ¢ ‘eC,

IF(t,0) = F(,0)]| = [Ik() - k()| L, [[¢]] o)

The_purpose of this paper is to show the existence of a gene-
ralized solution of (FDE;¢)S. In particular, in case X is reflexive,
we show that the generalized solution is the strong solution‘of‘«
(FDE;6) g
/ Recently, Kartsatos [6] has proved the existence of the evo-
lution operator associated with (FDE;¢)S under the following con-

ditions (B.2) and (B.3) instead of (A.2); (A.3) and (A.4).

(B.2) There exists an increasing continuous function L:[0,«)
+ [0,~) such that for all x>0, x.¢X, t,t €[0,T], |
1A, (0% - A (x|l < [t=t] LOJIx|| )@ + || A (0)x]]).

(B.3) There exists a positive constant b such that

”F(T:fl) - F(t’f‘z)“ < b(|t-1] + Hf‘l - fz”' C)

for every t,t e[O;T], fl,f2 eC,

In order to apply the method of sﬁccessive approximations td
(FDE;¢)S, he essentially used conditiohs (B.2) and (B.3) which
imply that Ak(t)x and F(t,f) are Lipschitz continuoqs in t. How-
ever this method does not seem to be directly epplicable uhder
(A1) — (A.4). Also, it has not been proved that the generalized
solutions in the sense of Kartsates are weak solutions, except
on a small interval in which they are Lipschitz Centinuous. (Fof
a refined definition of weak solutions, see Definition 2.)

Now, in order to improve these points, we use the nonlinear

evolution operator theory of Crandall and Pazy [2] as the main
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tool for solving (FDE;¢)S. Various author have so far considered
(FDE;¢)S underdifferent setting in nonlinear operator theory.
(For example, see [3,4,10].)

This paper consists of three sections. In section 1, we recali
the nonlinear evolution operator theory. In section 2, we show
that the existence of generalized solutions>of (FDE;¢)S and it is
represented as the uniform limit of a sequence of strong solutibns
of the approximating equations for (FDE;¢)S involving the Yosida
approximations, Finally, in section 3, we investigate .some pro-.. .
perties of generalized solutions and consider weak solutions and
give the exiStencé for strong solutions of (FDE;¢)S when X is

reflexive.

1. Basic concept of nonlinear evolution operator theory

We discuss briefly some concepts in the nonlinear evolution
operator theory. Let Y be a.Banach space with || ||y. A family
{V(t,s); 0Oss<t<T} of operators Vtt,s):;Y-+Y is said to be a family
of operators,'if |

V(t,t)y = y for all y €Y and t €[0,T],

V(t,r)V(r,s) = V(t,s) for 0<s<r<t=<T,

Let {V(t,s); 0<s<t<T} be an evolution operator and define the
operator B(t) by |

D(B(t)) = {y €Y; 1imh;0+(1/h)(V(t+h,t)y - Yy) exists}

-B(t)y = limh+0+(l/h)(V(t+h,t)y - y) for y eD(B(t)).
If D(B(t)) is non-empty for each t= 0, then the family -B(t) is

said to be the infinitesimal generator of V(t,s).
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Consider the problem (FDE;¢)S. Suppose that for every ¢ «C

and s 0, (FDE;¢)_  has the unique solution u(s,¢)(+) and that
A(t) and F are continuous. Then one can find that the infinitesi-

mal generator of the evolution operator V(t,s), defined by

V(t,s)¢ = u,.(s,¢) is given by

D(A(t)) = {¢ C; o' €C, ¢(0) eD(A(L)),
(1.1) ¢'(0) + A(t)9(0) » F(t,¢)}
Actde = -¢'.

Conversely, given the family A(t), we shall prove that under
suitable conditions on A(t) and F, A(t) generates an evolution
operator V(t,s) such thaf V(t,s)¢ gives the segments of a solution
of (FDE;¢)S. This will rely on the following result due to
Crandall — Pazy [2]. |

A subset B of YXY is in class A(w) if for eaéhbx> 0 such that

Aw>1 and each pair [yi,zi] €eB, i=1,2, we have
(102) ”(yl +‘ >\Zl) - (yZ + )\\_zz) ”Y2 (1 - }\w)“ yl - y2“ Y*

B is called accretive if B €A(0). Also, (l.ijimpiies that
(I + AB)—1 exists on R(I + AB) and is a Lipschitz?an.with constant
(1 -»Aw)_l. Let B ek(w) and R(I + AB) = Y for all 0<AX = Ad.
Define |By| by |By| = 1imx+0+llBAYI'Y’ where J, = (I + AB)_l
and B, = A"1(I - J,). (Note that this limit exists, although it
may be infinite.) For such B we define B(B) = {y €Y; |By| <=}
which is called a generalized domain of B.

Theorem 1. (Crandall-Pazy). Let T> 0 and w be real number and

assume that B(t) satisfies the following conditions:

(C.1) B(t) cA(w) for 0<tsT,
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(C.2) R(I + AB(t)) =Y for 0<t<T and 0< ) < Ag» where Ao > 0

and )\ w<1,

0
(C.3) There are a continuous function £:[0,T] - Y which is of
bounded variation on [0,T], and a monotone increasing function L:

[0,o) ~ [0,o) such that

A

1B, (8)y = By ()y fly < [[ECE) - £C0) [[LCy|[ ) (2 + [[B, (Y]] y)

A

for O<}‘<}‘O’ O0<t,t<T and y €Y.

Then
n t - s t - s -1
(1.3) V(t,s)y = 1lim 1 (I + (=5—)B(s + i( ) Y
n»eo i=1

exists for y eD(B(t)) and 0<s<t<T. The V(t,s) defined by (1.3)

for 0<s<t<T and by V(t,t) = I for 0<t<T is an evolution ope-

rator on D(B(t)).

2. On the existence of generalized solutions of (FDE;¢)s

We define for each t €[0,T] an operator K(t):D(R(t))<:C-*C by
(1.1).

Proposition 1. Suppose that conditions (A.1)-(A.4) hold. If
{R(t); t €[0,T]} is the family of operators defined in C by (1.1),
then there exists a family of nonlinear evolution operators

V(t,s): D(A(t)) < C=C such that for all ¢ eD(A(t))

-

n ~ - -
lim 1 (I + (& ——=)A(s + i (% —))) Y
ne i=1
(2.1) V(t,s)¢ = | D<s<ts<T,
{ ¢ 0<s=t=s<T.

Proof. We are going to apply Theorem 1 for B(t) = A(t) and
Y = C. Under assumptions (A.l1) and (A.3) we can apply [11, Pro-
position 1] to show that A(t) eA(wO) for t ¢[0,T] and

R(I + XA(t)) = C for 0<A< 1/w0, where wg = max(O,aO+80). Thus
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conditions (C.1) and (C.2) hold for K(t). Next, by using the same
érgument as in [4, Theorems 12 and 13] and the inequality

|h(t) = h(x)|| * ||k(t) - k(r)|| < |g(t) - g(x)|, where g(t) =
Var ([0,t]3h) + Var([0,t];k) and Var([0,t];h) denotes the total
variation of h on [0,t], we will show that K(t) satisfiés (C.3)
with B(t) = A(t) and £(t) = g(t)I, where I denotes the identity

in X. To this end, set ¢(t,-) = (I + xA(t))—lw,w‘ec. Then we have

0
5 (t,0) = ¥Ry (t,0) + J L7570/ 2y () ds, and by ¢(t,+) <
5]

D(A(t)), we have ¢(t,0) = $(0) + A¢'(t,0) = p(0) - AA(t)$(t,0)
£ AF(t,6(t,+)), deew, ¢(t,0) = (I + AA(£)) T(w(0) + AF(t,q(t,+))).
Now, for 0< )X <1 with Awg < 1/2,
I oCtss) = o)l ¢ = || 9(t,0) = ¢(T,0)]]

+

(T + AACE)) T (0) + AF(t,9(t,+)))

(1 + AA() 7T (0) + AF(z,0(r,+)) |

n

(1 = aag) TIF(t,6(t,0)) - Flr,e(t, )|
A JIR(E) = B Ly C[[9(0) + AF(x,0(t, D) ||)
Cox (1 [IA (D@0 + AF(T,6(t, ) ).
But, |

1A, (0 W(0) + AR (T, (1)) |

A0+ AF(r,6(t,)) = I, (1) (9(0) * AF(t,0 (1)) ]

A

IR vl g * IFCe el
which implies that
”q)(t") - ¢(T,')” C

< AL - aag) T8 lleCt,) - el ) ]l ¢
F k() - k([ LyClleCt, )l )T+
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# AJIB(E) - R Ly C w0+ A [|FCr0(r,)) ]| )

x @ A @]l g+ IFGeCe, )]

Thus there exists a constant Kl such that

(2.2)  Jle(t,") - o, ¢

< Kpale(t) - g1+ JIA (@]l (JIL,C e, ) || Q)

(1 [[Flr0 (o)) I CHlw (O ||+ A [[Elzy0 (T, )],

. Suppose that y ¢C and 90 ED(K(O)). Then ||F(T,X)” <

8ol llxll ¢ * ol ¢ * 11X = k|| LyCflogll ) *+ [IFC000) ]

and hence }1F(T,X)|| is bounded by an increasing function of

Il x| g+ It remains to prove that || ¢(t,+)|| o sLg(]| y|l o) for

some monotone increasing function L;. From (2.2), || ¢(t,*)|| o=
< 11600, )|l ¢ * Xpalgle) - g0 [ + [|&, (0)y]| ] =
e, ) ¢ |

+ (1 + || F0,0(0,%)) ] L (v ()| + MIFC0,600,-0) 1)1
However || & (000l ¢ = I v - 3, (0wl ¢ =l wll ¢ * 11 600,)]l ¢

and if ¢, eD(A(0)) then

1600, )l ¢ = |l (@ + xR0 Yyl ¢

IA

@ - awgd LY - egll o * ARl ¢l *+ Il égll ¢

IA

KLl vl * llogll ¢ * 1 AW4g]l ] for some K,

which implies that

]{¢(0,-)[[c is bounded by a monotone increasing function of

| |l - Thus A(t) satisfies (C.3) with B(t) = A(t) and £(t) =
g(t)I. Therefore, the conclﬁsion of the pfoposition follows from

Theorem 1. ' Q.E.D.



Note that, as was proved in [5], B(K(t)) is independent of t
pecause R(t) satisfies (C.3) and also ﬁ(A(t)) is. independent of
t because of (A.2). In what follows, 50

and ﬁ stand for a genera-
1ized domain of R(O) and A(0), respectively. |

As in [3, Proposition 1], we have the following
Proposition 2, Suppose that conditions (A.1)-(A.4) hold.
If u(s,9) () for each ¢ 560 and s> 0 is defined by
(2.3) u(s,s) (t) = $(t-s) s-r<tscs,
(V(t,s)¢$)(0) s<tsT,

where V(t,s) is as constructed by Proposition 1, then

u(s,¢)(+) eC([s-r,T];X) and V(t,s)¢ = ut(s,¢) for t ¢ [s,T].

Remark. We introduce the following stronger conditions than
(A.1)-and (A.2):

(A.1)' There exists a constant aq > 0 such that for x,y ¢X,

|| A(t)x - A(t)y]| s<x1H x -yl

(A.2)' There are a continuous function h:[0,T] -~ X which is

of bounded variation on [0,T] and a monotone increasing continuous

function L4:[0,w)—>[0,wj such that
I A()x - Ax|| s [[h(t) - B ]| L Clxl )@ + || Ax]])
for all t,t ¢ [0,T] and x eX. :

Since (A.1)' and (A.Z)'Wimply (A.1) and (A.2), Propositions 1 and

2 hold, although (A.1) and (A.2) are replaced by (A.1)' and (A.2)'.

Next, we recall the following expreSsion for DO'
Lemma 1 ([4, Theorem 10]). Let A(t) and F(t,¢) satisfy
conditions (A.1) and (A.3). Then

A

Dy = {¢ €C; ¢ is Lipschitz continuous function .and ¢(0) €D}.

43
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Remark. If ¢ is Lipschitz continuous function and ¢ (0) ¢D,

then the function defined by (2.3) is a Lipschitzian. In fact,
for such ¢, by [2, Proposition 2.3] and Lemma 1, there exists a

constant K such that for Oss<t,t<T, [[V(t,s)¢ - V(t,s)¢]| c S

< K|t - 1]. So that our assertion holds.

Definition 1. A function u(s,¢)(+) ¢C([-r,T];X) is said to be
a strong solution of (FDE;¢)S if it is an absolutely continuous
function is which differentiable a.e. on [s,T] and satisfies

(FDE;¢)S a.e. on [s,T].

We shall first prove the following uniqueness result for
strong solutipns of (FDE;¢)S.

Proposition 3. ;Assume that {A(tj;‘t ¢[0,T]} and F:[OQT]$<C
> X‘satisfy conditions (A.1)-and (A.3). Then there exists at most
one strong sbiufion of:(PDE;¢)g. | |

Proof. Let u(s,¢)(t) and v(s,¢)(t) be two strong solutioné‘
of (FDE;$) . Then lluls,9) (£) - v(s,0) ()| is differentiable
a.e.t and (d/dt) |[u(s,s) (t) - v(s,0) (t) ] -

[u(s,¢) (t) - v(s,d)(t),u'(s,¢)(t) - v'(s,¢)(t)]_

[u(s,4) (t) - v(s,8) (t),F(t,u, (s,6)) - F(t,v, (s,6))],

A

- [u(s,9)(t) - v(s,¢) (t),F(t,u . (s,4)) - u'(s,9)(t)
- F(t,v (s,0)) + v'(s,4)(E)],.

By A(t) eAQxO) and (A.3), we obtain that
(d/dt) [Ju(s,$)(t) - v(s,9) ()]

< (ag * B llug(s,0) - vi(s,0)l o ace.te[s,T],



which yields that for t ¢[s,T], | | B 45

supee[s_r,t]ll LI(S,¢)(6) - V(S,(P)(G)H

t
{~(u0 + Bo)fo supee[s_r’T]]|9(5,¢)(e) - v(s,¢)(e)]| dt

g t if ay + By> 0,
0 / otherwise.
By Grownwall's inequality, we have that |
suPg s-r,7] 18(5:0)(8) - v(s,8)(0) || = 0, i.e., uls,0) = v(s,0).
Q.E.D.

We next prove the existence of strong solutions to (FDE;¢)S
under stronger conditions than those in Propositions 1 and 2.

Proposition 4. Suppose that conditions (A.1)',(A.2)", (A.3)
and (A.4) hold. If u(s,$¢)(:) is the function defined by (2.3),
then u(s,o) (+) eCl([s-r,T];Xj;and satisfies

(2:4)  u'(s,0)(t) *+ A(t) (uls,9) (£)) = F(t,u,(s,4))"

for t ¢ [s,T] and for all ¢ eLip={¢ <C; ¢ is Lipschitz continuous},

Proof. By Remark after Proposition 2, {V(t,s); 0<s<t<T}
deflned by (2. 1) is an evolutlon operator. We approx1mate V(t, s)
by the evolutlon operator V (t,s) generated by A (t) = A(t)J (t)
(I - J (t)). From [2, Lemma 4.2], we see that for ) eDO,
1i m 0+ A(t s)¢ = V(t,s)? uniformly in t € [s,T].
Also, the approximate problem |
u'(t) + A (0)u, (t) = 0, t e[s,T], u,(s) = o,
has a unique continuously differentiable eolution uk(t) = Vk(t,s)¢.

Hence, we have that

t A t A ~
V(6,50 = 6 - | K@V = o - [ A@F, 0V, (00 e
S : S

- 10 -
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Taking account of the definition of D(R(f)), we obtain that

(2.5)  (V,(t,5)6)(0) = ¢(0)

t A ~
- js [A(x) (3, (1)V, (1,5)0) (0) - F(t,J, (1)V, (r,5)6)] dr.

Now, by (A.1)' and (A.3), we see that

b
]

t A
L 1A G @Y (96 () - A@ TG99 )] d
. |

A

t A
ap [ I3V, @9 - Vil ¢ de

and

=t
]

t ~
) fs][F(T,JA(TJVA(T,S)¢" F(t,V(t,8)9) || dt

. t A y
8, js 13, ()Y, (2,808 = V(x,s)0]| ¢ dr.

A

Let ¢ GBO; note here that ¢ e¢Lip by D(A(t)) = X and Lemma 1.

For each 1 ¢[s,T], we have for ) with xml<_1,

I3 = || 3,0V, (1,506 - V(t,8)e] ¢
g

A

(1 = awp) TV, (1,8)8 - V(t,8)¢] ¢
+ “EA(TjV(?fS)¢ - V(T,S)¢[[C , Where wy = oq 7 BQ'

N ) ) - ./\ : A .
By [2, Proposition 2.4], V(t,s)¢ eDO for ¢ eDO. This implies that
the second term of the abovebinequality‘tends to zero as A~ 0+,
Hence 13-+0 as A4¥0+-

Next,'we note that
(2.6) HSA(T)VA(T,5)¢l]C
s @) IV, 806 < el g+ 1T, (el ¢

Since (C.3) is satisfied with B(t) = A(t) and £(t) = g(t)I,

it follows that

- 11 -
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(2.7) |19, Gl ¢

A

13, (el ¢ + 2lgC) = gL o]l @ * [ A (de]l o)

A

VA (el ¢+ 1l ol ¢

* gl - )L oll QA+ || A (o]l )

A

(@ - awp) RG]+ el ¢
Falg() - 8L o]l DA+ (1 - awp) A6

Besides, since Limx+9+{§uPT€[s,T] Il VA(T’S)¢ - V(t,s)¢| C}.= 0,
we see that there exists Al such that if 0< ) < Al’

SUP, e[s;T]” V. (t58)¢ - V(r,s)9]| o < 1. Thus it follows from (2.6)

and (2.7) that SuPO<X<A1(suPTe[s,T] I 3A(T)VA(T,5)¢H C) is

bounded. By the Lebesgue's dominated convergence theorem, we

obtain that I.,+0 and I,+ 0 as A~ 0+. Therefore, letting X~ 0+ in

1 2
(2.5) yields (2.4). , | L Q.E.D.

Remark. In general setting u(s,¢) (+) defined»by (Z.S)kneéd
not have a strong derivative. We may have regard the function
u(s,p)(t) as a generalized solqtioh'of (FDE;¢)$ and investigate
" the meaning of generalized solutions. For convenience, the function

u(s,¢)(t) defined by (2.3) is called a generalized solution.

Now, we consider the approximate problem

ub (€) + Ag(t)u, (¢) = F(t,u t e[s,T]

)
(FDE; ) Pt

Ygs T ¢ o
where AB(t) is the Yosida approximation of A(t).
We define AP(t): D(AF(t)) < C»C by
RBiye = 0 |

DAP0) = 16 €Ci 0t <€, 87 (0) * AL(DIO(0) = F(t,0)).

- 12 -
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Clearly AB(t) satisfies the conditions of Proposition 4 with

ay = 3—1(1 + (1 - Bao)-l); see [2, Lemma 1,2]. Therefore, there
exists a family of nonlinear evolution operators {VB(t,s); 0<sx<
t< T} generated by Ks(t). If uB(s,¢)(-) is defined by

‘ p(t - s) s-r<tges,

{ (VB(t,s)¢)(0) s<t<T,

then uB(s,¢)(t) is the strong solution of (FDE;¢)§ and by Propo-

uB(s,¢)(t) =

sition 2, VB(t,s)¢ =u, (s,p) for s<t<T and ¢ ¢Lip. By the
t

B

proof of [2, Lemma 4,2], 1im6_>0+(1 + AAB(t))-lx = (1 + AA(t))-lx
for x ¢X and sufficiently small A. Thus, by [10, Lemma 3.2], we

. . o -1 " -1
obtain that 11m8_*0+(1 + AAB(t)) ¢ = (1 + XA(t)) "¢ for ¢ €C

and small ). Also, it follows from [2, Lemma 4.1] that AB(t)

satisfies (A.1) and (A.2) uniformly in B8, sufficiently small and

hence Ks(t) satisfies (C.1)-(C.3) uniformly in B, sufficiently

small. (To speak more carefully, by the same way as Proposition 1,

we have thaf

NogCess) = og(t, )1l ¢

< Kpile(e) - gL+ [[ APyl 1Ly (] ogCr, )]l ) * |
+ (1 + IIF(T,¢B(T,-))II)Ll(lIWCOJII * AIIF(t,¢B(T,¢))lI)],

where ¢, (t,) = (1 + AB(t)) Ly, v ec,
and if x ¢C and ¢, ¢D(A(0)) then
|| F(t,x)|| is bounded by an increasing function of || X“C'

Now, in this case, we must prove that

{2.8) H(DB(T,')HC £ Ls(”d’” C)

for some monotone increasing function L5. However, since

1

lin, o, (1 + AP e = 1+ M) Ye  for all ¢ eC,

8
I|¢B(T,')H c < lleCt,*)|l o+ 1 for all small g. Therefore,

- 13 -
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using |[¢(T,°)||C < Ls(llwllc) (see, Proposition 1), (2.8)‘i5
proved and hence AB(t) satisfies (C.3) uniformly in g.) We can
apply the Crandall-Pazy approximation theorem [2, Theorem 4.1]
to give 1im8_+0+VB(t,s)¢}= V(t,s)¢ for gll ) eDO. Therefore, by

proposition 2 and Lemma 1, we have that

Theorem 2. Let ¢ eLip with ¢ (0) eﬁ. Suppose that {A(t); t e
[0,T]} and FE[O,T]><C-+X satisfy conditions (A.l)—(A;4). If
u(s,¢)(+) is a generalized solution of (FDE;¢)S then
u(s,¢) (t) = 1im8_*0+u8(s,¢)(t) uniformly in t ¢[s,T], where

uB(s,¢)(-) is the strong solution of (PDE;¢)S.

3. Properties for generalized solutions and existence of

weak solutions and strong solutions.

Our first result in this section is on the comparision of

two generalized solutions.

Theorem 3. Let ¢, eLip with ¢, (0) €D for i= 1,2. If
u(s,¢i)(-) is a generalized solution of (FDE;¢i)S, then we have
’-aot' ,
(3.1) e 7 [lu(s,97)(t) = uls,¢,) ()|

"G.OT

—e O fluls,eq) (1) - uls,e) (]

IA

t -a,g 4 ~ ‘ C
[ e s, (8) - uls,0,)(8),F(Esug(5,01)) - F(E,ug(s,0,))], ¢

T
for s<st<ts<T, where the symbol [x,y], is defined by

: . -1 A
[x,y1, = 1imy o A “Cllx + ay[l - llx|]) for x,y eX.

Proof. Let uB(s,¢i)(t) be the strong solution of (FED;¢1)§

such that 1im8-+0+u6(5’¢i)(t) = u(s,¢i)(t) uniformly for t € [s,T].

- 14 -~
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Then || uB(s,¢1)(t) - uB(s,¢2)(t)” is differentiable a.e.t ¢ [s,T]
and (d/dt)|| UB(5,¢1)(t) - UB(S,¢2)(t)H

= Tug (5,010 (8) = vy (556, (8], -Ag (8] (ug (5,61 (2)) + F(t,ug (s,9;))

A () (ug(sy0,) (1)) - F(t,ust(s,¢2))]~;

where [x,y]_ = -[x,-y],.

. -1 .
Since [x - y,AB(t)x - AB(t)y]+ s magy (1 - Buo) | x -yl , it
follows that

(d/dt)|] ug (s,67) (8) = ug(s,0,) (V)]
< agl - Bag) Ml ug(5,87) (8) - ug(s,0,) (8]
* g (501D (8) = up(5,0) (€),F(E,ug (5,81)) = E(t,ug (5,801,
Integrating the above inequality, we have for s<ts<t=<T,
| ug (55010 () = ug(s,0,) (] = [l ug(s,07) (1) - ug(s,0,) (0l
-1 t

< 0yl - gay) fTH ug (5,00 (6) - ug(s,0,) ()| a8

t
+ jT [ug (5,91) (6) - ug(s,05) (6),F(E,ug, (5,01)) - FlE,up (5,05))], .
Letting B~ 0+ in this inequality, we see‘that for s<st=<t=<T,
(3.2) |l uls,00)(8) - uls,6,) (0| - [l uls,0;)(x) - uls,e,) ()|

t
s ag | a6 @) - ulse) @] de
T
t
+ f’r [U(S,(bl)(g) - u(5:¢2) (g)’F(g’ug(syq’l)) - F(E.»:u (S’¢2))]+ dg-

By the standard argument one can prove that (3.2) implies (3.1).

(For example, see [9].) Q.E.D.

The following theorem gives the existence of integral solutions.

- 15 -
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Theorem 4. Let u(s,¢)(*) be a'generalized solution of (FDE;¢)S.

Then the following inequality holds:

~Q Ot o OT
(3.4) e || us,¢)(t) - x|| ~e ° | u(5,¢)(T) - x|

f(t et
o [e T @ - x Fius,00) - vl, *e(em) &

T
for ss<tTXZ t, [X,Y] EA(r)’ T E[O:T]) _
where 6 (£,7) = Ly(|| x|[ ) |[[h(g) - h(x)|| (2 + [[¥][ ).

Proof. Let u(s,p)(¢) be a generalized solution of (FDE;¢)S.
By Theorem 2, 1im8_*0+u8(s,¢)(t) f u(s,¢)(t) wuniformly for t
[s,T], where u8(5,¢)(t) is the strong solution of (FDE;¢)E. Let
[x,y] €A(r) and set Xg = X *+ gy. Note that x = JB(r)xB and y =
AB(r)XB’ where Js(r) and AB(r) are the. resolvent . and the Yosida

approximation of A(r), respectively. Then

(d/dt)l‘u8(5?¢)(t) _.xgl

1

[ug(558) (€)= Xg, = Ag(£) (ug(5,8) (£)) + F(t,ug (5,0))]_

A

[Ug (5,0) (£) - X, -Ag(£) (u,(s,0) (£)) * ¥]_

+ [u8(5’¢)(t} - XBQ F(t’uBt(s’¢)) = Y]+

IA

871 (lug (5,00 (8) = xg + B(-A (1) (ug (5,6) (£)) + )|

lug (5,63 (€ = xgll ) + [ug(,6)(8) = xg, F(t,ug (5,63) - Y1,

]

87117, (8) (g (540) (80) - T @xgll - [lugls,0) (8) - xgll)

+

[ug (550 (8) - xg, F(t,ug (s,0)) - ¥l,

LyClixgll ) IIm(e) = h@) |l @2+ iyl

+

a1 - Bag) " flug(s,0) (&) - x|

+

[ug (s,0) (t) = X, F(t,ug (s,0)) - yl, by A(t) eklag) and (A.2).

- 16 -
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Integrating these inequality over [r,t]c< [s,T],

lug (5560 () = x| = [lug(s,6) () - x

ol ol

t : ‘ ,
< | Uil IR - @ A+ |iy]])
T

. a0c1;-»sao>’lllu6(5’¢)(€) - x|

+ [UB(S:QS)(E) - XB’ F(E;u

g, (5:0)) - vl,} de.
£ | |

Letting g+ 0+, we see that for s<t=<t=<T,

(3.5)  Jluls,$) (t) - x|| = |ju(s,¢)(x) - x||

t ' ‘ B _
< j ([u(s,6) (6) - x,Fle,u (s,0)) - ¥], * 0(g,m)} de

T

oot ‘
*ag [ lluts,ed ) - x| e,
‘ T S

which yields (3.4). Q.E.D

Next, we recall the definition of weak solutions in the sense
of Kartsatos and Parrott [6,7] and consider fhe existence of weak
solutions of (FDE;¢)0.

Definition 2. A function u(t) e€C([-r,T];X) is said to be a

weak solution of (FDE;¢)0_if u(t) = ¢(t) for t e[~r,0] and

v'(t) + A(t)V(t) 3 F(t,ut), t €[0,T]
v(0) = ¢(0) |

(DE)

has a solution v(t) in the sense of Evans [5] such that

v(t) = u(t) for t €[0,T].

Remark. By definition and [S5, Theorém’S], there exists at
most one weak solution of (FDE;¢)0. Indeed, if ul(t) and uz(t)

are two weak solutions, they satisfy the integral inequality

- 17-
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Juy (8) = uy(t)]] < jolchT,ulT) S Pl || dre (see [5, (5.3)].)

Thus, by (A.3) and the Grownwall inequality, ul(t) = uz(t) for

te[0,T].

Theorem 5. Suppose that {A(t); f e[O,T]}”satisfy (A.1) with

ag = 0 and (A.2) and F:[0,T]xC~+ X satisfy (A.3) and (A.4). If

¢ € Lip and ¢ (0) eﬁ, then (FDE;¢)O has a unique weak solution.

Proof. If sﬁffices to show a generalized solution u(0,¢) (t)
of (FDE;¢), is a weak solution. Note that te—F(t,ut(O,¢)) is of
bounded variation by (A.3) and (A.4) because u(0,$)(t) is Lipsch-
itz continuous. Then (DE) has a solution v(t) in the sense of

Evans, i.e., there exist sequence {ti} and {ui} such that

n n
u - u
k - Yk-1
S s A(ti)ui 5 F(tf(‘,utn(o,w), where 112 = t’i - tﬁ_l,

hy x ~

i)

ii) the step functions Vn(t)_(z‘un n

on [0,T] to v(t).

Note here that
ul! - ol '
M = max {sup||ui” , sup || 45——H—E:l - F(ti,u (0,00} < =
h ty
k : k
(See [5, Proof of Theorem 2].)

Let vi gA(ti)ui. By (3.5) we see that

lu(0,6) (t) = uwpll - [lu(0,6)(x) - upl]
t , : ' . 7 ,
< f {[u(0,6) (8) - up, F(5,u (0,6)) - vil, + 0, (€,t3)]} de
T : : , ‘

t
*aof uaer @ - Wl e,

T

- 18 -
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where ql(g,r) = Mln'h(g) - h(r) || and My = Ll(M)(l + M).
Since hy[u(0,9) (g) - ups F(g,u,(0,9)) - vil,

< JJu(0g)(8) - up gl - [l u0,6) () - upl]

|| PGy, (0,4)) - Pctk,u (0,6))] »

t
it follows by the standard argument that
£ |
jt; let06) () - v "Il - [[ul0,8) @) - vR@I| ) dn
| t n, n,, n ’
s [ Al e - EDI - e E) - b)) &
T K .

t? ot | ,
' J ‘Jllj lag lu(0:0)€) - v ()| +_e§1(§ on)
| FE,y (0,6)) - FP ()|} d& dn,

where e?'and Pn are functions defined by

.1 n

el(g ,n)'=6'1(€. ’tk) forn é(tk 1? k]
and

n n n .

F(n) = F(tk,u (0,0)) for n E(tk_l,tk], respectively.

tk | S :

. n_,, .,n.__, . .

Letting ti-+t ’ tj+Jr as n+o and applying [8, Proposition 2.5]

we obtain that u(0,p)(t) = v(t) for t e[O,T].. Q.E.D.

Finally, we consider the existence of strong solutions of
(FDE; ¢) ..

Corollary 1. Let ¢ eLip with ¢ (0) eB; Assume that {A(t); t e
[0,T]} and F:[0,T] x C+ X satisfy conditions (A.1)-(A.4). If X is
reflexive, or, more generally, X satisfies the Radon-Nikodym

property, then (FDE;¢)S has a unique strong solution.

- 19 -
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Proof. By virtue of Theorem 2, there exists a generalized
solution u(s,¢)(t) and by the Remark after Lemma 1, u(s,¢)(t) is
Lipschitz continuous and hence u(s,¢)(t) is differentiable a.e.t ¢
[s,T]. Now, let h> O‘and to,be any innt at whichvu(s,¢j(') is

differentiable. Putting ¢ = r = to‘and,t = t, + h in (3.5), we

.0
see that
[u(s,6) (tg * B) = x|| = [Jus,0) (tg) - x|
(teth S » : |
s [0 (s @) - x, Fle,u(5,00) -y, ¢ eE,t)) &
0

t,+h : .
agf O luGs,0) (@) - x|l de for [x,y] eAlty).
t 0 : :
Dividing the above inequality by h and letting h+ 0, it follows

[u(s,6) (tg) - x, u'(s,8) (ty)],
S [3(20) (tg) = X, Flrgoug (5,60) = yl, + s [Jus,0) (tg) - Il
ive., for [x,y] eA(ty)
(3.6). [ucs,é)(ﬁo) © X u(si8)(5g) * Fleguy (5,0)
v agu(s,8) (tg) - (age + Y1, = 0.

By condition (A.1), it is easy to see that A(to) +‘d0 is
m-accfetive. fherefore,lby (3.6), we see that
W (558 (2g) + ACtg) (a(s,) (8)) 2 Fltg, up (556))-

a | ‘ Q.E.D.

Acknowledgement, I would like to express my thanks to Prof. N.
Kenmochi of Chiva University for valuable comments, and to Prof.

I. Miyadera for his encouragement.

- 20 =



96

[1]

[2]

(3]

[4]

[5]

[6]

(7]

[8]

[9]

[10]

[11]

References
Crandall M., A generalized domain for semigroup generators,
Proc. Am., Math. Soc. 37, (1973) 434 — 440.
Crandall M., § Pazy A., Nonlinear evolution equations in Banach
spaces, Israel J. Math. 11, (1972) 57 — 94.
Dyson J. G Villela Bressan R., Functional differential equations
and nonlinear evolution operators, Proc. Roy. Soc. Edinburgh
75 A, (1975/76) 223 — 234,
, Semigroups of translations associated with functional
and functional differential equations, Pro. Roy. Soc.
Edinburgh 82 A, (1979) 171 — 138.
Evans L., Nonlinear evolution equations in an arbitary Banach
space, Israel J, Math. 26, (1977) 1 — 42.
Kartsatos A. G., A direct method for the existence of evolution
operators in general Banach spaces, to appear in Funkcialaj
Ekvacioj.
Kartsatos A. G. § Parrott M. E., A simplified approach to the
existence and stability problem of a functional evolution
equation in a general Banach space., Lecture Notes in Math.,
1076, Springer-Verlag, Berlin, 1984.
Kobayasi K., Kobayashi Y. § Oharu S., Nonlinear evolution
operators in Banach spaces, Osaka J. Math. 21, (19384) 281 — 31i0.
Kobayashi Y., Difference approximation of Cauchy problems for
quasi-dissipative operators and generation of nonlinear semi-
groups, J. Math. Soc. Japan 27, (1975), 640 — 665.
Parrott M. E., Representation and approximation of generalized
solutions of a nonlinear functional differential equation,
Wonlinear analysis 6, (1982) 307 — 318.
Webb G., Asymtotic stability for abstract nonlinear functional
differential equations, Proc. Am. Math. Soc. 54, (1976)

225 — 230.
- 21 -



