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2
Let Q be a bounded domain in R with smooth boundary

L. In Qp 1= @%x(0, T, we consider the following

magnetohydrodynamic equations for an idea} incompressible fluid

coupled with magnetic field:

9,u + (u, V)u - (B, B + vea/2)1Bl7y Vi = f in Qp,
atB - AB + (uy, VDB - (B, V)u = 0 i . in QT’
(%) divu=20, div B =0 ’ in Qp,
u-v = 0, B-v = 0, rot B = 0, on 3Rx(0, T),

U, = u,, B t=0 ° By
Here 'u = u(x, t) = (ul(x, ), uz(x, t)), B = B(x, t) =
(Bl(x, ﬁ), Bz(x, t)) and n© = n(x, t) denote the unknown

velocity field of the fluid, magnetic field and pressure of the
1 2
fluid, respectively; f = f(x, t) = (f (x, t), £ (x, t)) denotes

1 2
the . given external force, u; = uy(x) = (yy(x), Uy (x)) and By,
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1 2
= By (X) = (By(x), By (X)) denote the given initial data and v

denotes the unit outward normal on 3%.

The first purpose of this paper is {o state‘the existence

and unigqueness of a global weak solution of (*) without

restriction on the data. In case B is identically equal to
zZero, i.e., in the case of the Euler equations, such a problem

for global weak and classical solutions was solved by Bardos [1]

and Kato 54], respectively. (Kikuchi [5]1 extended the result of

Kato I[4]1] in an eXterior domain.) Using the energy method

developed by Bardos [1]1, we can obtain a global weak solution in
our case.
Our second purpose is to state the existence and uniqueness

of a localv classical solution of (%). Although the method of

characteristic curves for the vorticity equation plays an

important role in a global classical solution of the two-

dimensional " Euler equations, such a method seems to give us only

a local classical solution of (%) because of the additional terms

(B, VB and (u, V)B - (B, Vu. Our result on classical
solution is considered, however, a generalization of that of Kato

[4] in some sense.

1. Notation.

Let us introduce some function spaces. Cco () denotes the

0,0

o ' k 1 2
set of all C -real vector-valued functions ¢ = (¢ , ¢ ) with

compact support in Q such that div ¢ = 0. H 1is the



2
completion of Cg 0(52) with respect to the L -norm |l ; ¢ , )

. 2
denotes the L -inner product. V denotes the set of all vector-

1
valued functions u in H () with divu=0 in & and

u-v = 0 on 3R. Equipped with the norm Il i

2 2 2
Wl = lirot ull”™ + Hull™,

v is a Hilbert spacé. By Duvaut-Lions [2, Chapter 7 Theorem

6.11, we have

Hall scllull for all u V.
H () ' ’
Hence the norm Il is equivalent to the one usually induced
1
from H (%) and V 1is compactly imbedded into H.
I£f X is a Hilbert space, then Lp(O, T; X) (1 S p ¢ ®)

denotes the set of all measurable functions u(t) with values in

T
X such that [ Hu(t)u§ dt < o (ll lly is the norm in X).
), |

Lw(o, T, X) denotes the set of all essentially bounded (in the
norm of X) measurable functions of t with values in X.

Let Cm([O, T1l; XD denote the sei of all X-valued m-times

continuously differentiable functions of 1 (03t 3T).

C?([O, T); X) is the set of all X-valued m-times continuously
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differentiable functions on [o, T) with compact support in
o, T.

cK*® 5y  with integer k 2 0 and O S « < 1 denotes the

usual Holder space of continuous functions on Q. | lk+a

K+a , =

denotes the norm in C (). Ck

’J(éT) with integers k, j 2 0

is the set of all functions ¢ for which all the 828€¢ exist

and are continuous on QT for 0 = lgql =%k, 0sr=sj.

Ck+a’J+B(6T)- with integers k, j 2 0 and 0 S «, 8 < 1 is the

subset of Ck’J(éT) containing all functions ¢ for which all

the 3§8§¢, 0 S Iql Sk, 0SS r £ j, are Holder continuous with

exponents o in x and K in t. if

R _ _ , oo
($) = $yp t)EQT|¢(X’ t) P(x’, t)l/ix x| +
(x’ ,t)eQT
Ix-x'1<1
+osup, .= 1®(x, t) - ¢(x, t)1/1t - t*18
14'44 £)€Q, ' , ’
(x, t’)eéT
lt-t’ 1«1
. ) k+eat, j+B =
we define the norm | lk+a,j+B in C Q) by
- q K% 8 _.q
11y o, jog = SUP iqisk!Px? 1o, 1+ Yiqr=kK Dy hy ¢).
s (x, t)GQ rsi



For the spaces of vector-valued functions, we shall use the bold-

facéd letters analogously.

2. Definitions and results.

Our definition of a weak solution of (#) is as follows.

Definition. Let Uy € H, Bpb€H and f €L (0, T; L (®)).

A pair of measurable vector functions u and B on QT is

called a weak solution of (%) if

’ 2 o . 2 ’
(i)lléLP(O, T; HOAL (0, T; V), ESELm(O, T; HYANL (0, T; V);
T
(ii) J {-(u, BtQ) + ((u, Wu - (B, VOB, ¥} dt
0
T

= (y,, ®(0)) + j (f, ®) dt
o |

T : ,
I {-(B, ato) + (rot B, rot &) + ((u, V)B - (B, V)u, ®)} dt
o ‘ ,

= (B,, 9(0))

1
for all @€ C,([0, T); V).

Concerning the uniqueness of weak solutions of (%), we have

Proposition. There exists at most one weak solution of (%).

1f {u, B} is the weak solution of (%), after a suitable

redefinition of wu(t) and B(t) on a set of measure zero of the

17
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time interval [o, T1, we have - that u€C(lo, Tl; HY an

BE C(IO, T1; H).

For the ©proof of this proposition, see Temam [6, Chapter 3
Theorem 3.2], we omit it.

Our result on the existence of a weak solution now reads:

: . - , 2
Theorem 1. Let u, € V, B, €V and f€L (0, T; L (&)

2 2 -
with rot £f €EL (0, T; L ()). Then there exists a weak solution
{u, B} of (%) such that ueé Lw(O, T; VO>)NC(LO, Tl; H) and

2 2 "
BeL (0, T; H (®OIMNCLo, T1; V).

We next proceed to our result on classical solutions. To
this end, we make the following assumptions on the domain R} and

the given data u,, B, and f..

Assumption 1. The boundary 3% of & consists of m + 1

sufficiently smooth, simple closed curves S,, S;,..., Sm’ where

Sj(j =1,...,m) are inside of S; and outside of one another.

.- Gunter [3, p.22] refers to the above assumption as ’’Case

J’.
Assumption 2. For some 0 < 8 < 1, uge ¢ *%@®, B e %@
” 1+6,0 7 .
and fecC Q). Moreover, U, and By satisfy the

T



conditions div uy, = 0, div B; = 0 in @, Uy,-v = 0, By-v =0

on 9.

Our result on the existence and uniqueness of classical

golutions reads:

Theorem 2. Let the assumptions 1 and 2 hold. Then there is

a positive number C, = C*(Q, T, |“0|1+8’ lf|1+8,0) such that if
v . . 1,1 -
|Bol2+e s C*, there exists a scolution {u, B, n} € C (QT)X
2 1 - 1 0 o
xC ’ (QT)XC ’ (QT) of (%), Such a solution is unique up to

adding an arbitrary function of t +to .

Remark. Taking B = 0 in Q, we may cover the result of

Kato [4].
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