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' On the effectiveness of the method of regularization

- In the Case of Numerical Harmonic Continuation -

Takashi Kitagawa
N E R E AT

1. Introduction. We consider the problem of harmonic continuation of
a function which shall be stated that given a harmonic function h(r,8) in
the unit circle with known r < 1, find h(r,0) for r=1. If we set
g(8) = h(r,8) -

and

f($).= h(1,9%),

then this problem can be formulated by the Fredholm integral equations of
the first kind of the form

1 Jzn 1 - r2

(1.1) f(t) dt = g(s).

2n 0 1-2rcos(s-t)+r
from which’ we diréctly recognize>the problem is ill-posed. This can be
viewed as direct inversion of Poisson integral to find g(s) in the unit
disk from ifhe; bouhdary valué ofo(t) for t on the unit circle which we
denote C(1). *

The diffigulty Qf‘this problem can be understood from‘the relation of
the Fourier‘coefficients*{ak) and {b,} of f and g that if-

o

£(8) = ‘a, + ¥ (a,cos(k8) + b
k=1

ksxn(ke)),

then
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g(8) = a, +

0 sin(k8)).

k
. r (akcos(kB) + bk

i

k

This explains " that if r <1 is very small and the g is contaminated

some perturbation, 'say Ag, the pérturbation introduced to f can

magnified by the factor of l/rk.

In the present paper we propose a method for this problem based

the fundamental solution method and {he method of regularization which

applicable for harmonic continuation not only to the unit disk but also

any simply connected region. In Section 2 we give a brief introduction

the fundamental solution method and basic result on convergence.

Section 3, we. present numerical scheme for harmonic continuation and

discuss the convergence of the method in Section 4. In Sections 5 and

by
be

on
is
to

of

In

wve

6,

which is the main part of this paper,‘we examine thé‘numeriéal'stability

of the method based on our previous papers [10] and [11]1. Some numerical

examples are’includéd'in the last tw0'sectioﬁs./

2. Fundamental Solution Method. To.-illustrate the idea of fundamental

solution._methoq, we first consider the Dirichlet problem of Laplace

equation of the form
(2.1) | | A'ﬁ =0 in Q
(2.2) u=g‘on N,
2

where @ = { w € R 'HWHZ <P}

The fundamental solution method épprokimates the solution u(x) by

(2.3 un(x) =

k k

I Ms

c G(x,yk) , X € Q
1 .

where G(x,y) is the Green's function for (4,Q),



182

1
G(X.Y) = = - lﬂg Hx - YHZ y X, Y € Rzo
2

points yk's, called charge points, are chosen appropriately and ck's are

n

constants to be determined. The vector ¢ = (c c ...,cn)t € R is

I

called charge and determined in such a way that un(x) satisfies the

boundary condition

~

(2.4) u L) o= . i = 1,2,...,n,
n(XJ) g(xJ) J n

~

where xj's are properly chosen n collocation points on the boundary. Let
the <charge points Yi1Ygse eV be on the auxiliary boundary which is the

outer circle with radius R (with "outer"” we imply R > P).

2n ,
With the collocation points xk = P e and the charge points
2n
- (k-1)i
Yk T Re" , k=1,2,...,n, the following results are known.

Theorem 2.1.(Katsuradaf{8]) a) The approximate solution u, converges

to the solution u exponentially with respect to n. More precisely

(2.5) hw-u I, s
2 ‘ : n/3 n/3
sup lu(x) | ————— ((1+C(R,P)) (P/r) + 4(p/R) Y,
lixll,= T, 1 - p/ry :
where we suppose that the harmonic extension of u exists in Qr = {w |
0

HwH2< ro) with P < rO . C(R,P) is a constant depends on R and P.
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b) The condition number of the coefficients matrix of the equation (2.4)
which determines ' the <charge ¢ grows eXponentially with respect to n. .

Approximately the condition number Cond(n,R) can be estimated by

log R R
(2.6) Cond(n,R) ~ —— pn (—)N/2
2 p

The estimate (2.6) follows from the fact that the coefficient matrix for

~

the particular location of x and yk is circulant. For the properties of

k
circulant matrices, see e.g. Davis{1l]. Numerical stability of this me thod

is studied in Kitagawall0].

3. Numerical Scheme for Harmonic Continuation
The numerical scheme proposed here makes use of the fundamental

solution methbéw and the method of regularization. Suppose that thg

harmonic function h(x), X € R2 to be continuated is given on a circle C(P)
with radius P and we shall seek its harmonic continuation on the circle
C{(¥) with radius ¥ > P. We also assume that the function h(x) = h(r,8) is

harmonic for r < ry and Ty >« > P. The process of the fundamental

solution method for this problem of harmonic continuation shall be as

follows.
STEP 1. Let R be the radius of the auxiliary circle C(R) on which we

2n

— (k-1)i
scatter the charge point y = (yl,yz,...,yn) with yk = R e n R

k=1,2,...,n, where i denotes the imaginary unit. We determine the charge c¢

(cl,cz,...,cn) in such a way that
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Cc

) = g(w,) ,j = 1,2,...,n,
1 J

(3.1) hn(wj) =

[N agi=]

where wj's are properly chosen n collocation points on‘fhe circle C(P).

STEP 2. We approximates the values of the harmonic continuation h(x)

of h(x) on the circle C(¥) by the formula

(3.2) o h (x) =

) c ‘
n ck G(x,yk) , X C()

s

k=1

One may consider this approach 1is quite straight forward and the
method .should work out well as in the case of the Dirichlet problem. The
situation, however, 1is completely different from the casé Qnd the direct
application of above numerical method produces unacceptable results. This
is especially true when the ratio R/b is'rélatively IArge.vIn the rest of
the} paper, we deal with the convergence and the numerical stability of

numericai procedure proposed above in detail.

4. Convergence of the Method. Since we have the convergence result
in the <case of the Dirichlet problem, the convergence of the numerical -
method for harmonic continuation proposed in Section 3 is rather straight

forward. See [12] for details.

5..Numerical Stability of the Method.

5.1. Formulation and Basic Results. The method of Section 3 reduces
to the numerical process of the following two steps:
1) Weksqlve an ill-conditioned\lingar‘syétem of (3.1) in the form of

(5.1) 'c=¢g
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for given data g which may be contaminated by some perturbation Ag, where

g€ Y =1R", ce x=R" and [':X 2 Y with

(T c)j’%k-_z_1 cy g(wjfyk} = g{wj), w; € C(my, ; = 1’2’7"’§’
2) We use the intermediate solutjqnacito obtain the final result f by
(6.2) f =Ac, | | o
where f € X and A':vX'* Y with

n
.‘=‘_ . = s = oy . € ) ) i = gl g e ey
fJ hn(xJ) kgl ) G(xJ Yy (A c)J X; C(¥), i 1,2 n

Due to the ill-conditioning of (5.1), some 'large’ pertﬁrbati&n Ac
may be introduced to the intermediate solution <c¢. One may aséume
intuitively that the error ||Af|| in the final result f is on a level with
lacll or as large as ||All  (lacll. If this is the case, the method of
regularization Groetschl(6] and Tikhonov et al.[14], applied to (5.1) may
be very effectjve. But this is not always true. Even if the error |lacll is

B

Véry large, VHAfH‘ ban be very small. In this cése, we do not necessafily
have to use the method. In some cases, we may have worse result by using
the method. To examine whether the method of regularization is effective

or not for ‘this class - of numerical procedures, we have the following

results.

Wg assume that given data g = g + Ag and the interﬁeéiéte solution ¢
= ¢ + Ac . We havé‘ F‘E = g as well as §5;1). Let qiz 6242‘:.. Z;Gn 20
be : singular values of I and (ui) i=1,2,...,m, (vj) j=1,2,...n be singular

vectors of I'. Reflecting the ill-conditioning of I', we assume that Gn 2> 0

as n » ®, We can see that ||Ac]| » « as s * 0 from
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—

n
(5.3) Ac = ¥ — (Ag, u) v,

a

Next, we suppose that the final result f = f + Af. We have f = A ¢

~

as well as (5.2). Let 612 62 e ... & Gn = 0 be singular values of A and

(ui) i=1,2,...,m, {vj) j=1,2,...n be singular vectors of A. As for [|Af]],

we have the following result from Theorem 4.1 in Kitagawa[l01].

Theorem 5.1

(5.4) ot s Iz * el [lagl!
where
(6.5a) = =(%,.) , =o, / o
ij ij i J
(5.5b) 8 =8, .) , 8, .= (v,, v.,), i,j=1,2,...,n.
’ ij ij i Jj .

E * O represents the Hadamard product of the matrices E and © and ”.”F

denotes the Frobenius norm.

We here construct the matrices 6 and £ to examine the numerical
stability of the method of Section 3. We compare the matrices with those
of the case of the Dirichlet problem and conclude that, unlike the case of
the Dirichlet problep,

(i) the whole numerical ©process of 1) and 2) for harmonic continuation
~shall be very unstable as the ratio R/P becomes large
(ii) we need to employ the method of regularization to stabilize ‘the ill-

conditioned linear system of (4.1).
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5.2. Matrices = and 8 for Harmonic Continuation. The elements Eij of

which we called explosive factor matrix in [10-11], represent the upper

—
=)
—

’

bound of magnification of the ui-component (Ag,ui) of perturbation Ag to

"~

uj- component (Af,uj) of Af. For instance, the largest element Eln gives

Py

the ‘upper bound of dl/ Gn which coincides with the straight forward upper

bound with. the spectral norm'HﬂHS of matrix given by |lAf]l S “HFfIH 5
1Al S lagll, since HF-IH S Al g = O 1/ o . On the other hand, the
elements eij of ®, which we <call distortion coefficients matrix,

represents the actual ratio of propagation of (Ag,ui) to (Af,uj). The

P

actual magnification of propagation of (Ag,ui)'to (Af.uj) is given by Eijx
gij and the .upper bound of the total propagation of Ag to Af is given by
the square root of the sum of squares of Eijx eij’ or ||E =* OHF.

Fig. 5.1. and - 5.2. represents typical patterns of Z and ©
respectively in the case of Dirichlet problem. The elements of matrices =
and © are given by the rounding off the fractions.of logarithm with basis

10. For instance, an element a;; = 5 stands for 10%'% g a;; < 10%°5. we

set the parameters R = 4, P = 0.5 and n = 16. As is shown in {101, the

elements Eij grow large for small i's and large j's (upper right corner of

(1]

) and the diagonal elements Eii's are almost uhity, while the elements

eij almost vanishes except for near diagonal elements-and the diagonal
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Fig.5.1. EXPLOSIVE FACTOR MATRIX FOR DIRICHLET PROBLEM
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elements are. again almost ﬁnify. Consequently, the large elements of Eij

cancel out by'multiplying the cprresponding'elements of eij (Fig. 5.3).

Fig.5.4vand 5.5 represents the typical patterns'of the matrices Z and
(3] respectivéiy in the case of‘harmonic continuation. The parameters R, P
and n are identical' to ‘thgse‘of the case of Dirichlet problem and the
radius of; thebcirclg where the harmonic continuation of h(x) shall be
sought is set to 2. Thé matrix-E shows‘quite different feature from'tﬁat

of the Dirichlet problem. The elements Eij for large j (right half) do not

decrease to unity even for near diagonal elements. This is because the

decay of the singular vaiues Gi of T is much faster than the singular

A

values Gi off A. Table 5{1 and 5.2 shows the decay of both singular values

of {Gi) and {Gj) respectively. The corresponding elements Bij of near

diagonal elements ‘are close tq uhity as. is in the case of Dirichlet

problem. Thus .the large elements of Eij remains at lower right corner of

Ex9 as is shownvinvFig. 5.6, and accordingly the pertnrbétion (Ag,ui) for

o~

i = n shall be significantly magnified and propagates to (Af,uj) for j =

n. This ' explains the numerical instability of the fundamental solution
method for harmonic continuation and implies the necessity of employing

the method of regularizaiton.
6. Effectiveness of the Method of Regularization

The method of regularization applied to the equation (5.1) with

perturbation Ag can be written as

10
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6.1) (rir+uw1rc = Thg +ag)

We write the solution of (6.1) C(u,Ag). To examine the effectiveness of

the method of regularization, we have the next result from Theorem 3.1 in

n

Kitagawallll. We use the notations of f(,Ag) = A c(L,Ag) and Af()r,AZ)

f(1H,Ag) - £(0,0) in the theorem.

Theorem 6.1

(6.2) Hat O )l S Hzg % QHF llgll + H:p * GHF Ilagll
where
- _.:C g _ 0 2
(6.3a) Ee —(Eij) , Eij =0, N / (cj(6j+ W)
= _, P p _ * 2
(6.3b) = -(Eij) s gij = Gi Uj / (dj+ W)

and the rest of the symbols are the same as Theorem 5.1.

Based on the Theorems 5.1 and 6.1, we can examine the effectiveness of the

method of regularization very clearly. Letting

(6.4) : T = £(1,0) - £(0,0)

and

(6.5) P(K,Ag) = f(1,A8) - £(O,0),

we have

(6.6) HAf LA L S [IPOL AL + SOOI

P(n,Ag) defined by (6.5) represents the error due to Ag to the solution f
with 'regularization. If we compare the error due to Ag with that of f
without regularization, we <can recognize when the regularization is
effective. |

More specifically,'we have

12



192

(6.7) lleou el s 112, * 8l llagll
and ,from Theorem 5.1,
(6.8) latll s 2 = ellg laell.
Checking c¢orresponding elements of Ep ,= and O, we can examine the
effectiveness of the regularization. We also have
(6.9) llsooll s g, * 8ll; llell.
This explains that we should avoid using the method of regularization when
it is not effective and we should choose the regularization parameter M
carefully.

We actually construct the matrices Eg ,Ep and © and we examine how

the method of regularization stabilizes the numerical process and how we

choose the regularization parameter.

6.2. Matrices Ep and Eg for Harmonic Continuation. We first note

that since the elements Bij of the matrix 6 is independent of the

regularization parameter ¥, the distortion coefficients matrix @ is common
with that without regularization given by Fig. 5.5. We set the parameters
R=4, P=0.5, x =2 and n = 16 which are identical with those of Section

5.2. The regularization parameter is set as H = 10—9 for the first set of

figures from Fig. 6.1 to 6.3 and Table 6.1. We also note that the matrices

and © do not depend on g or Ag at all and,

[1]

S and E as well as

acbordingly. we do not have to construct these matrices for different

funétions of g.

13
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First we examine the elements E?j of matrix Ep due to perturbation
pg to study how the method of regularization stabilizes the numerical
process 1) and 2) ~of Section 5.1. The elements are again given by the

rounding off the fractions of logarithm with basis 10. Fig. 6.1 représents'

the explosive factor matrix Ep,with regularization. The elements E?j of

eritical part of lower right corner ( i = n and j = n ) are less or equal

to 0 and significantly smaller than those of Z without regularization of

Fig. b.4. This can be understood very easily if we compare the elements

[1]

E?j and Eii 6f, and Ep. As we have seen in Section 5.2 the elements Eij
grow large fof large i and j mainly pecause the denominator cj‘approaches.
to zero as j = n.

On the contrast, the denominator (6§+ H) of the elements E?j do not

approach to 2zero even if j » n and Gj approaches to zero as far as the'

regularization  parameter ¥ > 0. Since the numerator of the elements E?j

are irrespective to ¥, the elements E?j for large j's do not grow large as

in the case of Eij of Z-without regularization. Accordingly, as is shown

in Fig. 6.2, the corresponding elements E?j* e in lower right corner of

ij
matrix Ep* 8 are much smal}er than those of the matrix =0 (of Fig. 5.6).

The harmful elements larger than 2 have disappeared in Fig.6.2.

{1]

Moreover the Frobenius. norm of p* 0 reduces . to 2.38><102 from

1.54x10° of HEp* oll g+ This explains that the method of regularization

19
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y

significantly = reduces the magnification of the prbpagation of the.
perturbation Ag +to the final approximation f in the case of harmonic
continuation. This 'situation is totally different  from the caée-of
Dirichlet problem in which the method‘of fegularization is not effective.

Another factor of error &(X) which is defined by (6.4), héwever,
shall be inevitably introduced when  we employ the method of
regularization. Though the upper bound of the error &$(u) is given in

(6.9), its interpretation is somewhat more delicate than the case of Eb

The element Efj X gij of the matrix Eg * @ involved in (6.9) represents

the magnificatidn of the propagation of (g,ui) to (Af.uj) due to
introduction of the regularization parameter H. The size of (Ag,ui) may
not differ much among different i's, but the fourier coefficients (g,ui)

of g may be quite different in size. This is because the function g is
harmonic and very smooth, which may results in very rapid convergence of

the coefficients (g,ui) to zero.

For our example for harmonic function h(x) = h(s,t) = 32 - t2 + 25 -

2t + 1, the Fourier coefficients (g,ui) are given in Fig.6.4 which shows
that the qoefficients from (g,ul) to (g,us) are significant and the rest

of them are numerical zero. This means that from the first to the fifth

columns (left part indicated by rectangle in Fig. 6.3) of the matrix Eg*

-~

© are of great significance. Fig. 6.3 represents the matrix :g* 6, which
we temporarily call zeta-magnifier matrix, for the regularization

parameter M = 10—9.

/6
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Fig. 6.3. ZETA-MAGNIFIER MATRIX WITH REGULARIZAITON

-9-14-13 -9 9-1 6 -3 -3 -2 -3 -1 -1 08 08 2
-17 -7 6-10-10|-6 6 -4 5 -2 -2 -2 -1 0 0 1
-17 -6 -7-106-10{-6 6 -4 4 -2 -2 -2 -1 -1 0 1
-18-14-14 -3 -4/-7 6 -3 4 -2 -3 -1 -1 08 0 1
-19-15-14 -4 -3 6 -1 -3 -3 -2 -2 -2 -1 -1 -1 1
-18-14-14-10-10|-1 -1 -3 4 -1 -1 0 -1 1 -1 1
-18-13-14-10 -8 -1 -1 -3 -3 -2 -2 0 -1 0 0 2
-19-15-15-10-10/ -6 -6 2 2 -1 -1 0 0 0 2 2
-19 -15 -16 -8 -11{ -6 -7 -2 2 -1 -1 © 6 1 1 2
-19 -15 -16 -11 -11| -7 -6 -2 -3 3 2 1 1 2 1 2
-19 -16 -15 -11 -18{ -6 -7 -2 -3 2 3 O 0 L 2 2~
-20 -16 -15 -11 -1} -7 -1 -3 -3 -1 -1 3 3 3 2 3
-19 -17 -16 -12 -12| -7 -8 -3 -4 6 -1 3 3 2 3 3
-20 -16 -16 -11 =12y -7 -1 -3 -3 -1 -1 1 1 4 4 3
-20 -17 -17 -11 -13| -8 -8 -3 -3 -3 -1 2 1 4 4 14
-20 -16 -16 -1 -11{ -7 -1 -3 4 -1 -2 6 1 3 3 ¥%

Table 6.1. REGULARIZED SOLUTION

REGULARTZATION PARAMETER

= 1.E-8
TRUE FUNC. W/8 REGULA. WITH REGULA. ERR. W/0 REG. ERR. WITH REG.
0.90000E+01  0.S90256E+01 0.9000CE+01  -0.25608E-01  -0.29564E-04
0.59932E+01 0.59887E+01 0.59933E+01 -0.54388E-02 -0.68188E-04
0.10000E+01°  0.SB6S55E+00 0.93837E+00 0.34452E-01 0.32425E-04
-0.399326+01  -0.39365E+01  ~-0.39933E+01 -0.5667SE-01 0.73671E-04
-0.70000E+01  -0.70700E+01 ~0. 70000E+01 0.69967E-01  -0.19073E-04
_p.70547E+01  -0.69828E+01 ~ -0.78546E+01 -0.718926-01 -0.6198SE-04
-0.46569E+01 -0.47202E+01  -0.4656SE+01 0.63382E-01 0.31471E-04
-0.13978E+01  -0.13526E+01  -0.13979E+01 -0.45197E-01 0.10872E-03
0. 10000E+01 0.98016E+00 0.99995E+00 0.19843E-01 0.54777E-04
0. 16636E+01 0.16551E+01 0. 16637E+01 0.85666E-02 -0.21219E-04
0.1600CE+01 0.10364E+01 0.10000E+01  -0.36360E-01 0.29206E-05
0.33636E+00 0.27723E+00 0.33633E+00 0.59132E-01 0.24438E-04
0. 1000GE+0L 0.1072SE+01 0.10001E+01 -0.72886E-01  -0.58770E-04
@.33978E+01 0.33214E+01 6.3397SE+01 0.76459E-01  -0.98944E-04
0.66563E+01 0.67258E+01 0.66569E+01  -0.630832E-01 0.47684E-05
0.90547E+01 0.90032E+01 0.90546E+01 = 0.51465E-01 0.61989E-04

Fig. 6.4. FOURIER COEFFICIENTS OF G

-0.400E+01
-0.302E+01
0.262E+01
-0.6836+00
0. 185E+00

B.793t-06 -

0.131E-06
-0.277E-06
-0.118E-05
-0.103E-05
-0.105E-05
0.231E-06
" 0.838E-08
0.190E-06
0.31SE-06
0.611E-06

/17

vs. NONREGULARIZED SOLUTION
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If there exist some large elements, say on a level with 0 or larger,

—

within the columns 1-5 of the zeta-magnifier matrix Eg* 0O, it is fatal for

our example and the approximation of harmonic continuation shall be

instantly demolished, since (g.ui) for i=1,...,5 are much larger than
(Ag,ui) and error as large as llgll shall be introduced. This is the case

when we choose the regulafization parametéer too large. For the zeta
magnifier matrix of Fig. 6.3 ,’since the maximal element in the first 5
columns is -3, weican expect the method of regularizatibn works out well.
The Table 6.1 presents éétual'numerical‘results dh accuracy attained
wi thout regularizétion (denoted by " w/0 reg." in the table) and with

regularization (denoted by "‘with reg." in the table) for u = 10_9. "Tfue

func." in Table 6.1 gives the exact value of the harmonic continuation on
the circle C(¢) and "err." stands for error. Numerical result without
regularization attains accuracy of only 1 or 2 décimél digits, while that
of with regularization attains 4 or 5, which shows the examinétions of
matricés abo?e are reliable and the method of regulazization is effective.

The lastISet of Table 6.2 and Fig. 6.5 shows the case when we choose
the regularization parameter too large and the parameter M = 1072, In this

—

case, Frobenius norm of the matrix :p*e‘due to perturbation Ag is as

sma{l as 2.4X100 and there shall be virtually no magnification of

propagation of Ag to f. Table 6.2, however, apparently shows that the
regularized solution is completely destroYed._Fig.G.S of zeta-magnifier

matrix Eg* ©® explains the reason clearly. The first 5 columns of EC* O}of

Fig. 6.5 include the elements of O and 1, which is fatal as is mentioned

above and the regularized solution immediately breaks down.

/9
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Table 6.2. REGULARIZED SOLUTION vs. NONREGULARIZED SOLUTION

REG.PARAMETER =

TRUE FUNC.

0.S0000E+01
0.59932E+01
0. 10000E+01
-0.38832E+01
-0. 70000E+01
-0.70547E+01
-0.4658SE +01
-0.13978E+01
. 10060E+81
. 16636E+01
. 10000E+01
.33636E+08
0.10000E+01
0.33978£+01
0.68569E+01
0.90547€+01

[aNoN ool

1.E-2

W/0 REGULA.

0.90256E+01
0.59887E+01
0.96555E+00
-0.39365£+01
-0.70706E+01
-0.69828E+01
-0.47202E+01
-0.13526E+01
0.98016£+00
0.16551E+01
0.16364E+01
0.27723E+00
0.10729E+01

0.33214E+01 .

0.67258E+01
0.90032E+01

WITH REGULA.

0.25576E+01
0.18431E+01
0.99680E+00
0.15047E+00
-0.5639SE+00
-0.10365E+01
-0.11965E+01
-0.10226E+01
-0.54424E+00
0. 16443E+00
0.SS68CE+00
0.18292E£+01
0.25378E+0t
0.30162E+01
0.31901E401
0.30301E+01

ERR. W/0 REG.

-0.25608E-01
~0.54388E-02
0.34452E-01
~0.5867SE-01
0.68867E-01
~0.71892E-0L
0.63382E-01
<0.45197E-01
0.19843E-01
0.85865E-02
-0.36360E-01
0.59132E-01
~0.72886E-01
0.7645SE-01
-0.69032E-01
0.51485£-01

ERR. WITH REG.

0.64424E+01
0.41501E+61
0.31997E-02
-0.41437€+01
~0.64360E+01
-0.60181E+01
-0.34603E+01
-8.37524E+00
0.15442E+01
0.14982£+401
0.31988E-02
-0.14928E+01
-0.15378E+01

- 0.38164E+80 .

0.34667E+01
0.60245E+01

Fig. 6.5 ZETA-MAGNIFIER MATRIX WITH REGULARIZAITON

-2 -8 6 -5 -5{-49 49 -2 -3

-10 |0 0|-6 614 -4 -4 -4

-10 | 0016 -5{-4 -4 -3 -3

-11 -7 -7 1 0|-5 49 -3 -4

-12 -8 -7T.0 _ 1l{-4 -4 -3 -3

-11 -7 -1 -6 6|2 2 -2 -3

-11 -7 -7 -6 -6y 2 2 -3 -3

-12 -8 8 6 6|49 4 -2 2

-2 -8 -89 -6 6|4 -5 2 2

-12 -8 -9 -7 -7T}{-49 -4 -2 =2

-12 -9 -8 -7 6|49 4 -2 -3

-13-16 -8 -7 -7T|-4 -5 -3 =2

-12 -10 -9 -7 -T{-5 -5 -3 -4

-3 -9 9 - -71{-5 -5 -3 -3

-13-10-108 -7 -8|-6 -6 -2 -3

-13 -9-10 -7 -7 {5 -5 -3 -3

This implies that the matrices Eg

choice of the regularization parameter. We

that

i) we reduce the size of element E?j of Ep whose corresponding elements of

8. . of © are close to unity

ij

ii)we avoid contaminating the elements

elements of ©

Fourier coefficients (g,uj) are significant.

of

ij

0

/

7

-2
-2
-2
-2
-2
-1
-2
-1

-3
-2
-2
-3
-2
-1
-2
-1
-1

2

3
-1
-1
-1
-1
-2

and O give us an idea on the

should choose M

3
1]

OV WWOoOO0OODOO O

of

-1 8 0
-1 0 @©
-1 -1 @
-1 0 0
-1 -1 -1
-1 1 -1
-1 8 0
86 0 2
0 1 1
1 2 1
g 1 2
3 3 2
3 2 3
1 4 4
1 4 4
1 3 3

=Z_ whose corresponding

<

NDWWWNNNNRN e )

in such a way

are close to unity and the corresponding j-th
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7.Concluding Remarks. We considered a method of numerical harmonic

continuation wusing the fundamental solution me thod and the method of

regularization. It is demonstrated in this paper that Theorems 5.1 and 6.1

can

be wuseful not only to examine the numerical stability of a class of

numerical procedures given by 1) and 2) of Section 5.1 but also, as a tool

for

those who design a numerical method, to study whether the method of

regularization is effective or not and how to choose the regularization

parameter when one applies it.
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