On a question of expansion of closure-preserving families (General Topology, Dimension and Set Theory)

Author(s)
Mizokami, Takemi

Citation
数理解析研究所講究録 (1988), 649: 92-95

Issue Date
1988-04

URL
http://hdl.handle.net/2433/100307

Type
Departmental Bulletin Paper

textversion
publisher

Kyoto University
On a question of expansion of closure-preserving families

溝上武男 (Takemi Mizokami)

(Joetsu University of Education)

Through this paper, all spaces are assumed to be T_1 topological spaces.

We introduce the d-IP-expandability and IP-expandability as follows:

Definition 1. We call a space X d-IP-expandable if for a discrete family $\mathcal{F} = \{ F_\lambda : \lambda \in \Lambda \}$ of closed subsets of X and a family $\mathcal{U} = \{ U_\lambda : \lambda \in \Lambda \}$ of open subsets of X such that $F_\lambda \subset U_\lambda$ for each λ, there exists an interior-preserving family $\mathcal{V} = \{ V_\lambda : \lambda \in \Lambda \}$ of open subsets of X such that $F_\lambda \subset V_\lambda \subset U_\lambda$ for each λ.

Definition 2. We call a space X IP-expandable if for a closure-preserving family $\mathcal{F} = \{ F_\lambda : \lambda \in \Lambda \}$ of closed subsets of X and a family $\mathcal{U} = \{ U_\lambda : \lambda \in \Lambda \}$ of open subsets of X such that $F_\lambda \subset U_\lambda$ for each λ, there exists a family $\mathcal{V} = \{ V_\lambda : \lambda \in \Lambda \}$ of open subsets of X such that $F_\lambda \subset V_\lambda \subset U_\lambda$.
for each λ and $\{ V_\lambda - F_\lambda : \lambda \in \Lambda \}$ is interior-preserving in X.

These spaces have the following properties:

Proposition 3. If a space X is collectionwise normal, then X is d-IP-expandable.

Proposition 4. If a space X is orthocompact, then X is d-IP-expandable.

Theorem 5. If a space X is submetacompact and d-IP-expandable, then X is orthocompact.

Corollary 6. Let X be a developable space. Then X is d-IP-expandable if and only if X is non-archimedean quasi-metrizable.

Theorem 7. For a space X, the following are equivalent:

(1) X is an orthocompact developable space.

(2) X has a development $\{ \bigcup_n : n \in N \}$ such that each \bigcup_n is interior-preserving in X.

(3) X is a d-IP-expandable developable space.

(4) X is a semi-stratifiable, non-archimedean quasi-metrizable space.
Corollary 8. If for each \(n \in \mathbb{N} \), \(X_n \) is an orthocompact developable space, then so is \(\prod_{n=1}^{\infty} X_n \).

Theorem 9. If a space \(X \) is non-archimedean quasi-metrizable, then \(X \) has the property (P):

(P) For a closed \(G_\delta \)-set \(F \) of \(X \), there exists a family \(\mathcal{U} \) of open subsets of \(X \) satisfying the following:

1. \(\mathcal{U} / (X - F) \) is interior-preserving in \(X - F \).
2. For each open set \(V \) of \(X \), there exists \(U \in \mathcal{U} \) such that
 \[V \cap F = U \cap F \subseteq U \subseteq V. \]

Corollary 10. If a space \(X \) is perfect and non-archimedean quasi-metrizable, then \(X \) is d-IP-expandable.

Corollary 11. Under the same hypothesis as above, every closed subset \(F \) of \(X \) has an outer base \(\mathcal{U} \) in \(X \) such that \(\mathcal{U} \) is interior-preserving in \(X - F \).

Theorem 12. Let \(X \) be a developable space. Then \(X \) is IP-expandable if and only if \(X \) is d-IP-expandable.

Theorem 13. Let \(X \) be a stratifiable space. Then \(X \) is an L-space if and only if \(X \) is IP-expandable.
Theorem 14. If a space X is semi-stratifiable, then d-IP-\(\star\) expandability implies D-expandability.

Finally, we propose the following question:

Question. If a space X is developable and quasi-metrizable, then is X d-IP-expandable?

This is equivalent to the well-known problem due to Junnila whether every developable quasi-metrizable space is non-archimedean quasi-metrizable. For the further details, see [1].