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QUANTITATIVE STUDY OF THE DISSIPATIVE TODA LATTICE

—~ preliminary results -
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the behavior of a soliton in the Toda-lattice. From both numeri-
cal and experimental results we find e.g. a noticeable tail

effect, which has not yet been expléined theoretically.

1. Introduction

We are now celebrating the 20th anniversary of the Toda lattice
model [1]. It has turned out to be a fruitful prototype of a dis-
crete integrable model, and has been studied intensively. It has
also been generalized into various directions (see e.g. the inte-
grable Toda molecules, Sec. 3.3.2, 3.4.4 and 3.5.2 in [2] and

references therein).

The continuum limit of the Toda lattice model is given by the
Korteweg - de Vries [3] or Boussinesq [4] models. Thus one can
study also some effects of the continuum models using discrete

methods, and vice versa.

An attractive feature of the Toda lattice is that it has a simple
experimental realization through an LC~lattice,‘as was first pro-
posed by Hirota and Suzuki [5]. This provides us with perhaps the

easiest experimental method .to see various soliton phenomena [6].

* Supported by the Academy of Finland énd Ministry of Trade and
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2. Experimental realization

The experimental system consists of a chain of LC-circuits
(Fig. 1) in which the voltage dependency of C is nonlinear. The

nonlinearity is described by [7]

The circuit equations are:

LatIn = Vho1-Vn: 9t9n = In-Ins1s (2)

}VO+Vn
Qn = C(v) dv,
Vo

which together with (1) imply
LQ(V)9e21nl1+V,/F (V)] = Vo _1+V,1-2V,. (3)
This can be further transformed by

V, = vy Fg, t = [LQy/Fg1l/2 ¢ (4)

Fig. 1. Part of the nonlinear transmission line.
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[Qg =’Q(VO)’ Fg = F(Vg)1 to the canonical dimensionless form

Qtzln(1+vn) = Vpo1*+Vn+1-2Vns (5)

from which the original Toda lattice is obtained by the substitu-

tion 1og(1+vn) = Xp—X With this circuit it is easy to observe

n+1-
such basic soliton phenomena as initial pulse decomposition into

solitons and soliton scattering [6].

3. Dissipation

In a real system there are always some losses, nonuniformities
and other effects that cause deviations from the ideal system. In
practice it seems that the resistance in L causes most trouble.
Such dissipative effects have been studied for the Korteweg -

de Vries equation [8] and for the Toda lattice [9,10,11].

The circuit diagram in the case of a nonzero resistance and con-

ductance is given in Fig. 2; the equations in this case are:

Fig. 2. Part of +the transmission line with resistance R and

conductance G.-
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L¢In + R I = Vg 4-Vy,

(6)

9tOn + G Vy = Ip-Tj4qs

which can be transformed by (4) to

3t21n<1+vn).+ ﬁgtln(1+vn) + aikvn + RGv, = v 4 + Vp,1 — 2vg

where R = R/Ry, G = GRqy, and Rg=(LFy/Qq)t/2.

A formal continuum limit of (7) yields [3]

Upyy - 6UUy + Ups + (12/t7)u = 0, (8)
where

(t* )71 = (R/L + G/Cy) /vy | (9)

vy = (LCg) 172 | (10)

Later we will discuss how good an approximation this continuum

limit really is.

4. Numerical results

We have studied numerically and experimentally the behavior of
solitons described by Eq. (6). For numerical calculations we used
the four step Adams-Moulton method with Adams-Bashfort correc-
tions. The first four steps were obtained by the Runge—Kutté”
method. It should be noted that soliton equations are usually not
well behaved in numerical studies, because as stiff systems they

tend to have bad stability properties.

Figs. 3 to 6 illustrate how the soliton changes due to dissipa-
tion. We have given the soliton at various lattice points for
R =‘5, 10, 20 and 50 Ohms. The amplitude is given in Volts as a
function of time in nanoseconds. - An ideal soliton was put in

the lattice centered at lattice point 12 at t=0. The initial
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Fig. 3. A: Results from numerical integration of (6) at various
lattice points for R = 5 Ohms, L = 22 pH, Qg = 583 pC, Fp= 6.2 V.
The initial soliton with an amplitude of 2 Volts was centered at

lattice point 12 at t = 0. B: An enlargement at lattice point 50.
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Fig. 4. Same as Fig. 3 but R = 10 Ohms.
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Fig. 5. Same as Fig. 3 but R = 20 Ohms.
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Fig. 6. Same as Fig. 3 but R = 50 Ohms.
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amplitude was in each case 2 Volts. An enlargement of the situa-

tion at lattice point 50 is also displayed.

The main new feature is“‘the raised tail which decreases slowly.
The oscillations éround this tail increase initially as a fﬁnc—
tion of 1lattice point, but decrease quickly at each lattice
point. The oscillations depend strongly on the type of the 1ini-
tial pulse: For Fig. 7 we have fed a square pulse in the 1lattice
and as a consequence the oscillations are much stronger, but the

average tall is as before.

The effects caused by nonzero conductance are quite different. In
Fig. 8 we have results from numerical integration of (6) with

R=0, G = 9.3%x107> Ohms”l. Note that the tail has opposite sign.

R=20

\v/%[\xV//\\J/ﬁ\v/’\\/"~/—‘—*"‘~: n-éo

1200 3600

Fig. 7. The solution of (6) when a square pulse (width 135 'ns,
amplitude 2 Volts) was fed to the beginning of the transmission
line. R = 20 Ohms.



38

3.0
G=9.3%10"
-0.2
0 ‘ ' 3600
Fig. 8. The solution of (6) for R = 0, G = 9.3%x107° Ohms_l,

otherwise as in Fig. 3.

5. Experimental results

To find out how well a real system is described by equations

(6,7) we constructed an experimental LC lattice with commer -
cially available components. For C(V) in (1) we found at Vg = 1.5
V the following characteristic constants: Fg = 6.2V, Qg = 583
pC, Cy = 94 pF. These values imply vy = 2.2 107 1/s and Rg = 484

. Ohms. The series resistance R was variable between 5 and 55 Ohms
and L = 22 pH. The experimental measurements were made through a
gated integrator and boxcar averager. This improved = the data

considerably from what has been observed so far. .

Experimental results with R = 10 and 20 Ohms are given in Figs. 9
and 10 at various lattice points and with enlargements at lattice
point 50. A square pulée (Vin = 4V, dt = 140 ns) was fed at the
beginning of the lattice, by lattice point 20 it had ' already
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Fig. 9. A: Experimental measurements at various lattice points

for R = 10 Ohms. A square puise (width 140 ns, amplitude 4 Volts)
was fed to the beginning of theAline. B: Enlargement of the situ-

ation at lattice point 50.
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obtained the shape of a soliton. The noise is very small as can
be seen in the enlarged figures. The jaggedness in the curve is
about .1% of the size of the soliton, while in the oscilloscope

screen the noise is typically 4%.

6. Characterization of the data

The observed pulse can be divided into a soliton part and a tail
part. The soliton part is (at least initially) close to the ideal
soliton. To characterize it one should be able to describe the
time dependence of its amplitude, half width, and speed. In Aa
system without dissipation these properties havé definite rela-

tionships,xbut in a real system some deviations are expected.

At each lattice point the soliton part is followed by a tail
part. The tail is best described by a slowly decaying basic level
together with exponentially decaying oscillations around it. We
have found that at each 1lattice point the tail can be well

described with the function

Viail(t) = B exp(-bt) + C exp(-ct) cosl(d + f exp(-gt))t] (11)

As functions of the lattice point b, d and g are almost constant,
f and B are slowly varying functions, but C and ¢ do not seem to
have simple behavior. C and c depend also' strongly on the initial

pulse shape, compare Figs. 5 and 7.

7. Problems in the theoretical‘description

In the continuum limit of the - Toda lattice. both parallel and
series resistance contribute the same way (8,9), but numerical
results from (6) show that— they have different effects, in par-
ticular for the tail (compare Figs. 3 and 8}). Thus the continuum
limit destroys some essential features of the dissipative Toda
léttice, and one cannot expect any method starting frqm (8), like
the Karpman-Maslov (KM) method [12], to'ekplain the tail, not
even in the limit when R and G are small.

r 3
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- Even though the KM method fails for: the tail, it might be able to
describe the slow decay of the soliton part. To -test this we have
-in Fig. 11 compared the KM-solution and the numerical results
(with the same initial conditions). The ideal soliton is included
as a reference. The velocity and amplitude of the soliton, as
calculated from KM-theory, are near the numerical solution, but

obviously there is room for improvement.

Kako has treated the dissipative Toda lattice using perturbation
theory for fhe inverse scattering transform ({9]. Due to its
starting:point this methdd should be able to diffefentiate
between resiétance R and conductance G. Unfortunately Kako's so-

lution for the soliton tail is}very»complicated, and in any’ case

2.6
~-0.2
1000 : . ' 3600
Fig. 11. The Karpmaﬁ—MaSlov solution (dashed 1line), numerical

results (solid line) and the ideal soliton without dissipation

(thin line) with the same initial conditions as in Fig. 3.
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the sign of the tail is negative everywhere (see Fig. 3 in Ref.
[9]) regardless of the values of R and G. iThere is another trou-
blesome feature in the case of G = 0 and nonvanishing R: the time
development of the additional eigenvalue is not as expected : (see
Fig. 2 in Ref. [9]1)]. ‘

‘Kako's predictions forwthe main éoliton,part are given in  Fig.
12. The results are somewhat more accurate than those obtained

from the KM-theory.

Since the soliton part is fairly accurately described by both KM
and Kako we have analyzed it further by calculating the logarith-
mic derivative of "the soliton amplitude, k = (L/R) th/A; ‘The
results are shown in Figs. 13 and ‘14 with R = 2 and 5 Ohms. The k

quantity seems to' have two limit values. In the case of  small

2.6
R=5

nﬂ
70
60
50

-0.2

1000 / , 3600

Fig. 12. The‘soliton part of the solution calculated by Rako's

theory (dashed line), otherwise as Fig 11.
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dissipation and.»largewamplitude k approaches the KM and Kako
value.2/3 for the soliton part. In the limit of stfong. dissipa-
~tion and small amplitude k has value 1/2, which can be obtained
from the damping of a linear wave. Note also that the curves for
the same resistance but different initial amplitudes seem to have
a common envelope curve. This curve is reached rather quickly and
its very existence suggests phat there is a solution which does

not depend on the details of the initial condition.

8. Conclusions

In this article we have described our preliminary results on the
behavior of solitons in the dissipative Toda lattice. Apart from
the expected decay in the amplitude of the soliton one observes
that the scliton has a slowly decaying positive tail. The pertur-
bative methods of Karpman - Maslov and Kako give a qualitative
explanation for the decay of the soliton, but fail on the finer

details, e.g. in the description of the tail.

0.00 ’ ' ; ' ' N - 8.00

.Fig{ 13.1The logarithmic derivative of the soliton amplitude as a

function of the amplitudé fromAnﬁme:icalvintegratipn, R ='2 Ohms .
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Fig. 14. Same as Fig. 13 but R=5 Ohms.
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