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1. Introduction

- The index theory for finite factors was introduced by Jones in
[3]. In the paper, the fol]owing‘sequence {ei;i=1,2,...) of
projections plays an important role:

(a) e;e . e = Aei " for some ‘A =51

(b) e.e. = e, for li-jl 2 2

(c) the von Neumann algebra P generated by (ei;i=1,2,...} is
a hyperfinite IIl—factor,

(d) tr(wei) = Atr(w) if w is a word on l,el, €pseev€ 1
where tr is the canonical trace of P and 1 1is the identity
operator.

If Q is a subfactor of P generated by {ei;i=2,3,...}, then
the index [P:Q] of Q in P is 1/A. In the case‘of A>1/4, Q@ has
the trivial relative commutant in P and [P:Q] = 4cosz(n/m) for
some m= 3,4,... . Hence by his basic construction, we have the
family (ei;i=...,-2,—1,0,1,2,...} of projections with the properties
(a),(b),(c') and (d');

(c') {ei;i=0,t1,i2,...} generates a hyperfinite IIlfactor M

(d") tr(wei) =Atr(w) for the trace tr of M if w is a word

on 1 and {"ej;j<i} (cf.[51).
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We shall call this family (ei;i=0,i1,i2,...) the two sided Jones'

projections for A. The main purpose of this note is to show the

following theorem.

Theorem . Let (ei;i=0,i1,i2,...} be the two sided Jones'
projections for A=(1/4)secz(n/m) for some m (m=3,4,...). [£f M
(resp.N) is the von Neumann algebra generated'by {ei;i=0,il,i2,...}
(resp. (ei;i=il, +2,...}), then N 1is a subfactor of M with the
index

[M:N] = (m/4)cose02(n/m),

and the relative commutant of N in M is trivial, that is, N'n\ M =

c1.

2. Notations and Preliminaries

Let B be a subfactor of a IIl-factor A. Then Jones defined in
(3] the index [A:B]l] of B in A wusing the coupling constants of A
and B due to Murray and von Neumann ([4]) and he (also, Pimsner-Popa
in [5]) gives some methods to get the number [A:Bl. In [6], Wenzl
gets another method to compute [A:B] in the case where those
factors are og-weak closures of the union of increasing sequences of
finite dimensional algebras, which satisfy some good conditions.

In this note, we shall use results in [6] and give a proof of

Theorem.

{(2.1) Let A be a finite dimensional von Neumann algebra. Then
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A is decomposed into the direct sum 2T=1 +* A, of the a(i) by adi)
matrix algebra Ai’ The vector a=(a(i)), is called the dimension
vector of A following after Wenzl[6]1. Each trace ¢ on the algebra
A is determined by a column vector w =(w(i)) which satisfies P(x)=
ET=1w(i)Tr(xi) for xeA, where x= 3 + X, (x,eA.) and Tr is the .
usual nonnormalized trace on the matrix algebra. The column vector

w is called the_weight vector of the trace ¢. Let B. be a von

Neumann subalgebra of A with the direct summund B = Z ?=1 + Bi of
the b(i) by b(i) matrix algebras Bi' The inclusion of B in A
is specified up to conjugacy by an n by m matrix [gi jJ, where

g is the number of simple components of a simple Aj module viewed

i,J
as an Bi module. The matrix [gi j] is called the inclusion matrix
, . sesl 4
of B in A which we denote by [B = Al. Let b = (b(i)) be:the
dimension vector of B and v the weight vector of the restriction

of ¢ to B, then
(e) bIB = Al = a .and (B = Alw = v,

(2.2) Let (ei;i=0,il,i2,...} ‘be two sided Jones' projections
for ACA = 1). A reduced word is a word on e, .8 of minimal length
for the rules (a),(b) and ei2 **ei. If a reduced word is further

reduced by cyclic permutations, it is said totally reduced ([3]).

- Lemma.l . The von Neumann algebra N  generated by (ei;i=i1,i2,

oo} is a subfactor of the hyperfinite II,1 factor M generated by

Proof. By the theory of the basic construction, M is a
hyperfinite ILlrfactor., Let ¢ be a faithful normal normalizédftrace

on N. It is sufficient to prove that ¢ 1is the restriction of the
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trace tr of M: to  N. rLet A(resp.B) - be the von Neumann algebra’
_generated by (ei;i=v1,2,...}(re§p.{ei;i=-1;—2,...)). Then- N is the
g~-weak closure of linear combiqations‘of {ab;a(resp.b) is a reduced
word in A(resp.B)}. Since ab=ba for ag£A and beB, it is
sufficient to prove that  ¢(wv) = tr(wv) for totally.redﬁced words
wEA and veB. We use a similar technique as - “in [3] or [6]. Let - wgA
and veB be totally reduced words. Then there is an infinite sequence
of totally reduced words {w,) in A such that wiéw, VoW W

1

for all k,i, and tr(HW_ w..) = tr(w)™ for all m, and <{k., K.}
i=1 "Kj i J

with kj#ki(i#j). If g 1is a finite permutation of positive

integers, there is a unitary ug in A such that ugwiug =vwg(i)

for all i by [2]1. Put pi=wiv for all i, then (pi} is a
sequence of projections. The group S of finite permutations acts on
the von Neumann algebra generated by the sequence {pi} by g(pi) =

pg(i) for all i and ge&S. The action is induced by (ug;geS} in A.

Since ¢ is a trace on N, ¢ 1is invariant under the action. The

action is ergodic. Hence ¢@(wv) = tr(wv).

(2.3) The factor M is the o-weak closure of the union of the
increasing sequence of the following von Neumann algebras{Mk;

k=1,2,...}:

Ml-Cl, M, = (ej;ljl = m-1)', M P,

2m ‘Mz

2m+1- m’e2m

The subfactor N of M 1is generated by the following increasing

sequence of (Nk; k=1,2,...}¢

= ~ . = » 1 < - (] = [
N,=N,=Cl1, N2m (ej,O#lJI =m-1}"", *N2m+1 {N, ,e, }''.

1 72 2m

2m

The algebras M and N are all finite dimensional¢[2]). We denote

K" Kk

-4
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by ak(resp.bk) the dimension vector of Mk(resp.Nk). In the case

where Mk is the direct :sum of dk matrix algebras, we say dk' the

dimension of the dimension vector ak.'

(2.4) Every Nk is a subalgebra of M Let E(B) be the

K*
conditional expectation ef M onto the von Neumann subalgebra B of-

M conditioned by tr(xE(B)(y))= tr(xy) for xg€B and yeM.

Lemma.2 E(Nk+l)E(Mk)=E(Nk) and E(N)E(Mk)=E(Nk) for all K.

Proof. Since E(N YEM, Y=E(N, ) if and only if E(Nk+l)E(M )=

k+1 k k K
E(Nk+1)E(Nk)E(Mk),it'is sufficient to prove that tr(yE(Nk+1)(x))
=tr(yE(Nk)(xﬁ), for xéMk, yeNk+1. Every reduced word y£N2m+1 has a
form y=vw1emw2, where v is a reduced form on (ei;i=—m+1
-m+2,...,-1} and- wi(i=1,2) is a 'reduced word on {ei;i=1,2,...
,m-1}., Let w be a reduced word in M2m’ {hen

tr(yE(N2m+1)(w))=tr(yw)=Atr(w2wvw1)=Atr(E(2m)(w)vwlwz)
=tr(w2E(N2m)(w)wlem)=tr(yE(N2m)(w)).
Since each algebra is generated by reduced words, E(N2m+1)E(M2m)
=E(N2m). Similarly E(N2m)E(M2m*1)=E(N2m_1). Since E(k+1)E(Mk)
=E(Nk+i)E(Mk+i-1)E(Mk)=E(N )E(Mk)=...=E(Mk), E(N)E(Mk)=E(Mk) for

k+i-1
all k. '

(2.5)  Let (Ak) and (B, ) be sequences of finite dimensional.

k
von Neumann algebras such that Bk Ak for all k. Following after
[6], we write (Ak)k (Bk)k if (Ak)k (resp. (Bk)k ) genera#es a

IIl—factor A (resp. a subfactor B of _A) and satisfies the

property of Lemma 2. So, by_(c'), Lemma 1 and Lemma 2, we have

-5-
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(Nk) (Mk). Such the sequence (Mk) is said to be periodic with

period r if there is a number m such that M, r L [Mn -
Mn+iJ for n2m Fi=1,2,...) and the matrix [Mn‘% Mn+k] is

primitive for n=2m. The sequences (Mk)k (Nk)k is periodic if ©both
(Mk) and (Nk) are periodic with same period r and [Nn+r - Mn+r]

= [Nn - Mn] for a large enough n ({61). In section 6, we show the

periodicity of FNk)k (Mk)k‘

3. Bratteli diagram for (M) and path maps

k

For convenience' sake, throughout the bellow, we put
(3.1) for a positive integer k, p=[5] and g=k-p.

In this section, we shall get, for the segquence (Mk} in (2.3), the
components of the inclusion matrix [Mq - Mk]’ which we need to obtain
' . . - - (]

the inclusion matrix [Nk - Mk]’ Let Ak—{l,el,...,ek} . Then Mk

is T-isomorphic to Ak—l for k 2 2. On the other hand there is a

[

unitary u in M which satisfies ue,u™ = e . and ue .u™ = e,

2m i -i -i i
for all 1i=0,1,...,m-1 ([21). Hence L Mk+1]=[Ak—l = Al for all
k2 2. It is clear that [M1 - M2] is the 1 by 2 matrix I[1,11].
In (3], Jones gets the Bratteli diagram ([1]1) for the sequence (Ak),
and so we get the Bratteli diagram for (Mk). The dimension vector

of M the dimension dk of ak and the weight vector wk _of

ax K’
the restriction of tr on Mk are as follows:

(3.2) 1f A S 1/4, then

dy= p+l, a, (i)= k ) - ( K if i=1,2,...,d,.-1
p+l-i p-i
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1 if 1—dk
oy PFl-d .
Wy €i=A Pk—1-2p+2i(k)’

where Pj is the polynomial defined in .[2] by Pl(x)=P2(x)=1 and
Pn+1(x)=Pn(x)—xPn_1(x).

[Mk - Mk+1] = [ 81,j + oi+1,j ]i,j, for Kronecker's Si,j'
where i=1,2, .,[k—;l]ﬂ and j = ) 1,2, .,[k;’1]+1 if k is even

1 1.2, ,k;3 if k is odd.

(3.3 If A > 1/4, then A = (1/4)sec2(n/n+2) for some
n=1,2,... . The Blatteri diagram for M1<f M2C'...<1Mn has the same

form as in the case of A = 1/4 and the diagram for Mn+2i—1<‘M

n+21k’Mn+2i-1) is same as one for Mn_1CMn (resp. the reverse

n+2i

—

(resp. M

form of one for Mn_1<an), for all i=0,1,2,... . Hence {dk, K’

tk} follows after the movement of the diagram. For examle,

dk ={p + 1 if Kk < n-1,
[%]»«1 if k=2 n-1 and n is odd,
g if k< n-1, k 1is odd and n 1is even,
g + 1 if k=2 n-1, k 1is even and n is even.

Now we consider the Bratteli diagram for (M, ) as a graph N,

Kk
the set of vertices of which is the set of points where ak(i)
Gk=1,2,...,i=1,2,...,dk) stand. We denote the vertex in A
corresponding to ak(i) by the same notation ak(i). We denote by
[ak(x) - ak+1(3)] the edge from ak(l) to ak+1(j). A path on A
is a sequence £ = (Er) of edges such that Er =
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[ (i ) )1 for some i J and Kk{(r) such that

ak(r) r - ak(r)+1(J1‘ r’ r
k(r+l) = Kk(r)+1l. The set of all paths in A with the starting point

ak(i) and the ending point ar(j) is called a polygon from the

vertex ak(i) to the vertex ar(j) and denoted by [ak(i) - ar(j)].

Also the set of all paths in A with ak(i) as the starting point

and for some j ar(j) as the ending point is called a path _map from

the vertex ak(i) to the floor a. and denoted by (ak(i) - ar).

Let Em be the set of paths on /A consisting of m edges. For a

£ in El and y in Em let & y = (& n;7ey). Let erm be a

polygon. If there are polygons y and 2z in Em—l such that as sets
of paths x is either the union of & y and 7 2 or the union of vy

§ and z 7 for some & and 7 in = we say x 1is the direct sum

1,

of y and 2z and we write x =y ® 2z or y = x© z.

Remark.3 The i-th coodinate ak(i) of the dimension vector ak

represents a cardinal number of different paths in the polygon

[al(l) = a (i)]. In the below, we consider a, (i) as the polygon

k k
‘[al(l) - ak(i)] and the dimension vector ay as the path map
[al(l) - aR]. Also, for path map X = (x(1),...,X(m)), we denote by

the same notation x . the path map (x(1),...,x(m),0,...,0).

Under such the identification, we define the direct sum of path
maps Let x = (x(1),...,x(h)), ¥y = (y(1>»,...,y(m)) and 2z =
(z(1),...,2z(n)) be path maps. If h = max{h,m,n) and x(i) = y(i) +
z(i) for every polygons ({x(i),y(i), z(i)}, we say X is the direct

sum of vy and 2z, and we write x =y + z.

Remark.4 [If we use the method of path model in [4]1, a polygon
corresponds a matrix algebra and a path map corresponds a

multi-matrix algebra.
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Example

6 1

(al(l) - as) are &s follows in the case of either A S 1/4 or n £ 6:

(1) The polygon a.(1) = (a, (1) = a6(1)) and the path map ag =

a,. (1) a6

/\ A A
[VANRRAN A
A N/ AA
(VA VA
/ VA

(2) Let xaE7, yeE6 and z € EG be polygons, then Xx = y + 2

are as follows:

AN N\ N

YA VA \A

A A AYAl

\AA ) \A/ © \AA

JAVAY/ N AN/

VAV \/ \/
) |



S

(3> Direct sum of path maps.

A \ A
VA \ A
AN : Voo s VA
AN A\ AAA
JAYAYA

Now we discuss the inclusion matrix [Mq - Mk]. It is obvious
that the (i, j)-component of [Mq - Mk] means the cardinal number of
(Y o . . .

[aq(x) ak(J)]. Hence the i-th row vector xi of [Mq - Mk] '1s
considerd as the path map [aq(i) nd ak].
Under the identification of vectors and path maps, we define the

polynomials fi(m) of path maps on /A by
£f.¢(0) = a,, {£.(1) = a, and f.(m+1) = f. (m) - f,(m-1).
i i i i i+l i

TThen for all positive integers i and m, fi(2m) (resp. fi(2m+1))

is a polynomial on path maps {ai+2j; ji=0,1,2,...,m) (resp.

{a 1;j=0, 1,2,...,m) with positive integers as coefficients.

i+2j+

Lemma.>5 Let ki be the i-th row vector of the inclusion matrix

[Mq - MkJ, for a triplet {kK,p,q)} in (3.1). Then, the path map xi

.

is as follows for all i (i=1,2,...,dq) y

_10_
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X, = }f (2i-2) if- @ 1is even
1 p

lfp(Zi-l) if q 1is odd,

under the idenyification for vectors that (y(1),...,y(m),0,...,0) =

(y(1),...,y(m)) for y(j) # 0 (j=1,...,m).

Proof. Since the path map X is (aq(l) = a, ), it is clear by

1 k

the shape of graph A that

x1 = ap+1 = fp(l) if q is odd

a = f_ (0) if gq 1is even.
p p

Suppose the statements are true for all j &i. As a path map, we

have

i(i+1) —a ] if gq is even

2
[a21+1(1+1) - ap+21+1

X, = [aq(i+1) i ak] = [a

i+1 p+2i

] if q is odd,

by sliding up the line combining aq(l) and aq(i+1) as possible.

Then the assumptions of the induction means that

[a (i)

2¢i-1) 1) 7 Bpugg-p) = 120720

and

[ (i) - 1 = fp(Zi—l).

) (i-1)+1 ap+2(i-1)+1

Since

1 = [a,. . (i)

2i-1 a0l

[a,. (i) ] + [a

-y
2i ap+2i
we have

L (i+l) -
i

2 ah+2i

1 - [a,, (i) ]

2i 7 A4
]

(i) = a

1= layi

p+2i
) =

[a i(i+1) = a

pP+2i

o= e,y 2 apm6i-n

2

Lay (j-1y+1¢1 An+14+2(i-1)
=t i1 - £ 2i-2) = £ 21).

On the other hand,

...11..
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[a21+1(1) - ap+2i+1] + '[82i+1(i+1) - ap+21+11=[32i(1+1) - ap+2i+1]'
Hence
(a5 (DI 0543708, (0028, 1T 7 B ion+1 07 2 Bpua i1y 41!
=‘fp+1(21) - fP(Zl—l) = fp(21+1).
Thus in+1 = fp(21) if @ 1is even and xi+1=fp(2(1+1)-1) if: q 1is
odd.
4. Bratteli diagram for (Nk)

Let (Nk) be the sequence in (2.3). Let Nk(+) = (eist;jél)"
and Nk(—) = {ejeNk;jé—l)". Then Nk is generated by the commuting
pair Nk(+) and Nk(-). For a triplet (k,p,q} in (3.1), Nk(+) is
isomorphic to Mq and Nk(—) is isomorphic to Mp. Two dimension

vectors and weight vectors of a finite dimensional von Neumann algebra
are respectively conjugate by an inner automorphism. We may take a

dimension vector bk of Nk and the weight vector uk for the

restriction of the trace tr of M to Nk as

(4.1) b/x\

(ap(l)aq,ap(2)aq,...,ap(dp)aq)

and

t t t t
-(4.2) u (wp(l) wq,tp(2) wq,...,tp(dp) wq),

where',ty denotes the transposed vector of the vector vy.

Since we obtained the inclusion matrices for (Mk) in 3,

(4.3) [Nk - Nk+1] = Ip : (Mp - Mp+1] if kK is odd
(M - M
p p

+1] Iq 1£ kK is even,‘

..12..
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where Ik denotes the dk by dk identity matrizx. It is easy to
check that [Nk - Nk+1] satisfies the property»(e) for bk and uk.
The Blatteri diagram‘for (Nk) comes from the diagram for - (Mk)

following after the above informatfon.

In the case of A= (1/4)secz(n/n+2) for some n (n=1,2,...), the
diagram for Nl = N2 N3 “ e N2n has the same form as in the case
< ‘ i
of A =1/4, the diagram for Noypnsdi-2 Nypagj-1 (Yesp. Ny ,i 9
Nop+1) 'is similar to one for N2n—2 N2n—1 (resp. N2n-1 N2n) and
the diagram for N2n+4i N2n+4i+1 (resp. N2n+4i+1 N2n+4i+2) has
the reverse form of order changed one for N2n-1 szn (resp. N2n-2
NZn)'
Example. In the case of n=4, the diagram is as follows;
//1\\:x<///{\\ ...... N3
\ ///X K////X e eee N4
\\ />(/j:;><i/’\\ e e s N5
/\/\ /\/\
/W\ ’
\/\/ \/\ \\/ o
\y\X/ o
/\/\ /\/\ o
36 .o N11

-13-
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5. Inclusion matrix of Nk in Mk.

Let (k,p,q} Dbe artriplet in (3.1). Let xi(j) be the
(i,j)-component of {Mq - Mk] and x{. the i¥th column vector of
[Mq - Mk]. Here we consider x(i,j) and X; as a polygon and a path
map in Ep."By.Lemma 5,'tﬁe polfgon: xi(j) " can be decomposed into
the direct sum of polygons (ap+j(f);‘j = O,i,;.., i = 1,2,...,dp).
Then we define the matrix [ap - Xi] = [h{(j,k)] such that h(j,k) is

the number that ap(j) is contained in x, (k). We call the matrix

[ap g xi] the inclusion matrix of the path map ap in the path map

X..
1

Remark. 6 Let x, y and 2z be path maps on /\ such that [x —»
yl] and [x = z] are defined. Then, by the definition of the direct
sum of path maps and the inclusion matrix for path maps, the matrix

[(x = (y(® 2)] is defined and
X2 (y® 2)] = [x2y]1® [x - z].

By this property and Lemma 5, the inciusion matrix [ap - Xi] 0of the
path map a in the path map Xi is defined from the inclusion

matrices [Mp - Mr] (r 2 p) by the natural method.

Lemma. 7 Let A = (1/4)sec’(n/n+2) and p 2 n-1.

(1) If n is odd and p 1is even, then

m+1
2

‘ ’ m . : m . n m—-1
i,j) = -tM=i-js My4osi+js2Ry-B=2
[a, = fp(m)1(1,3> )1, [L1Si-JSU,1, [51+2Si+jS2051- 1751

_14_
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e

If n 1is odd and p is

- i i =
[ap fp(m)](l,J) 1,

0,

otherwise.

aodd, then
m+1 | m-1 .o . n., .m
-[_E*Jél J§[2], 1+ ]§1+J§2[2] [2]

otherwise.

(2) If n is even and p is odd, then
.. m+1 .. m m+1 e . n m
= - i~ isr= <ordy-r2
fay, > £ (M1, 1) g 1, -rPhsi-jsidl,  1er™siegsergi-
0, otherwise.
If n is eVen and p 1is even, then
m ceepMt1 m - n m+1
i,j) = -[LISi-jiS0 T1+2Si+§S2(5 )~
[ap - fp(m)](l,J) 1, [2]_1 J=2l 5 1, [2]+2_1+J_2[23 [_2 ]
0, otherwvise.
Proof. It is sufficient to prove the statement.for p=n-1 and
_ . . . R | .
p=n, because fp(m) is the polinomial on {ap+j,J-[2], j is
odd(resp. even)} if m 1is odd (resp. even) and [ap s ap+j] = [ap+2
>0 . s - . .
- ap+2+j] for all p=2n-1 and j. Since fp(l) ?p+1’ it is clear

that [ap - fp(l)] satisfies the conditions for all n and pP.

For a given n,

m=1,2,...,k.
m=Kk+1

and by the relation;

- k+1 = -
[ap fp( )] [ap a

assume that the statements hold for

Then we can give a proof of the statements for

p+l

p=n-1, n and

p=n—1 ’

lla

pr1  fpe (01 - Lag = £ (k-1)]

-15~-
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[an+1 - fn+1(k)] = [an_1 - fn_l(k)].

Lemma.8 Let A = (1/4)secz(n/n+2) and X, the
vector of [Mq - Mk]. Assume q 2 n.

(1> If n is odd, then [a > x;1 is a (1+[%]
with the following form:

(1.1) If is an odd number, then

pP=q

fa) = x,1¢j, 1) = { 1, 1-iS1-jSic<j+1Sn+2-i
0, otherwise.
(1.2) If p+tl1 = q 1is even, then
ta, = x,1¢j, 1 = (1, l1-j1<iSj+1Sn+2-1
0, otherwise.
(1.3) If p=q 1is even, then
fay = x;1¢i, 1) = { 1, 11-j1<i<j+1Sn+3-i
0, otherwise.
(1.4 If p+l = q 1is odd, then
{ap - xi](j,l) = 1, -iSl-jCi<¢j+1&n+2-i

otherwise.

|
e

_16_
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i-th column

square matrix
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(2 Let n 1is even.
(2.1 If p =4q 1is odd, then [ap - Xi] is an n/2 by 1+(n/2)

matrix with

[ap *Xi](j,l) =11, 1-iS1-jSi<j+18n+2~1i

9, otherwise.

(2.2) If p+l=q 1is even, then [ap - Xi] is.an n/2 square matrix

with

[ay, = x,1C5,1) ’{1, [1-j1<iSj+1Sn+2-i

g, otherwise.

(2.3) 1f p=gq 1is even, then taP = x,1 is a 1+(n/2) square

matrix with

[a, =x;1(i, 1) {1, I1-§1<i<j+1Sn+3-i
0, otherwise
(2.4 1f p+l = q is odd, then [a = x;1 is a 1+(n/2) by n/2

ﬁatrix with

[a, =x;1(j, 1) = )1, ~iS1-j<i<j+1Sn+2-i
lO, otherwvise.
Proof. Let n be odd. Then dj = dn_1 for all j2n-1. Since
_ rn . n .
dn—l = [51 +1, [Mq = M1 is a 1+[,]1 square matrix. It means that

aj (j2n-1) and each xi are path maps consisting of 1+[§J polygons

in Ep+1. Similarly, if n 1is even, then aj is a path map with
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[£1 (resp. [%]+1) polygons for odd (resp. even) j £ n-1. Hence X,

n
2
is a path map with [gl (resp. [§+1) polygons if K is odd(resp.

even).Therefore by Lemma 5 and Lemma 7, the statements hold.

Lemma. 9 For the weight vector w of the restriction of tr to

k
Mk’ we have
- = i i =
[ap Xi]wk wq(l)wp (i 1,2,...,dq).
Proof. We denote the matrix [[ap had ap+i]’0""’0] by the same
notation [ap - ap+i]’ where 0 1is the row vector with all

components 0. Then by the Bratteli diagram for (Mk)’ we have for

all i (i=0,1,...)

_ 4n(i) Sy a, _ i
[ap - ap+i]wk = A wp for n(i) = [2] [2].
Since xi is given by the polynomials fi on (ap+i; i=0,1,...} by

Lemma 5, we have the statement by Lemma 6, (3.2) and the relation

between the polynomial fj's and Pj's, because

. _ ,b*1l-i ,
wk(l) = A Pk—1—2p+2i(A)’

where Pj is the polynomial defined in [2] by PI(X) = Pz(x)

i
—

and

Pn+1(X) = Pn(x) - xPn_l(x).

Let Gk be the dpdq by dk matrix, the(dq(3—1)+1)—th column
vector of which is the j-th column vector of the matrix [ap - Xi]’
where i = 1,2,...,d , i= 1,2,..., dp. That is,the transposed matrix

Gk of Gk is as follows;

-18-
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; .
G, = tGri1, ,Gr21,,...,Gld ,Gl11,,..., yyes s y oG
K 1 [ ]1 il q]1 ( ]2 G[dq 2 G[llﬁﬁ\ [dqlan’

where G[i]j is the transposed vector of the j-th column vector of

[ap - Xi]'

Lemma. 10 The matrix Gk satisfies the following;
G,w, = u

k%k = 3 Ok¥k T U and Gy M =M

1= N = N 16

k+1
where ak, bk are dimension vectors of Mk’ Nk and Wy

N

weight vectors of Mk’ K

Proof. Since aq[Mq - Mk] = ak, we have, by the relation (4.1),

kak = Zi aq(l)gp[ap - xi].= Ei aq(l)xi = a,
where i runs over {1,5,...,dq}.
Lemma 7 implies that kak = uk, combining the definition of Gk

and (4.2). ,
= : H
If A > 1/4 and k 2 2n, by Lemma 8, we have Gk[Mk - Mk+1]

[Nk = N 1G For another case, we need a similar lemma as Lemma

k+1" "k+1°
8. In the below we does not need such cases. Hence we omit to give a

proof of such cases.

Thus we can get a method of inclusion of Nk in Mk' Hence we

denote Gk by [Nk - Mk].

6. Periodicity of (Nk) C (Mk) in the case of A 5 1/4.
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In this section, we assume that A = (1/4)se02n/(n+2) for sdme n

Lemma. 11 The sequence (Mk) is periodic with period 2 and the

sequence (Nk) is periodic with period 4.

Proof. <Combining the discussions in (2.5) and section 3 with results

in [2] or [6], we have that the sequence (Mk) is periodic with

period 2.

The fact implies that (Nk) is periodic with period 4, by Lemma 1 and

the Bratteli diagram for (Nk).

Lemma. 12 Let xi (resp. yi) be the i-th column vector of [Mq%

=
MKJ (resp. [Mq+2 - Mk+4])' If 9 2 n, then

[a_ = Xi] = [a

- vy, i=1,2,...d_ ).
p Y. 1 (i=1,2 q)

p+2 i

Proof. First we remark that both [Mq s Mk]‘ and [Mq+2 - Mk+4]

are dq by dk matrices, because (Mk) is periodic with period 2

. . _ .k _
and [Mq+2 - Mk+4] = [Mq-ﬂ Mk]CMk'9 Mk+2]' Since p = [2] and q =
k-p, we have p+2 = [5541 and q+2 = (k+4 - (p+2), that is, (k+4,

pP+2, q+2} satisfies (3.1). Hence X, = fp(2i-2) (resp. X, =

fp(2i-1)) if and only if yi = fp+2(21—2) (resp.fp+2(21—1)). By the

definition, fj(2m) (resp.fj(2m+1)) is a linear combination on

{a,,a, v, a, } (resp.(a.+1, aj+3,.., aj+2m+1)) with integer

i’Ti+2’ i+2m Jj
coefficients. Therefqre, by Remark 6, we have [ap - xi] = [ap+2 -

Yi], becaﬁse (Mk) is periodic with period 2.
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Lemma. 13 . The sequence (Nk)<: (Mk) . is periodic.

Proof. We already proved that both (Mk) and (Nk) are periodic

‘with same period 4, Hence it is sufficient to prove that

v

[Nk - Mk] = [N - M ] for K 2n.

k+4 k+4

k
Lemma 12. Thus (NR)C (M) is periodic.

By the form of the matrix - [N, - Mk] = Gk’ it .is- nothing else but

7. Proof of Theorem.
Lemma. 14 If A = (1/4)secz(n/m) for some m (m= 3,4,...), then
[M:N] = (m/4)cose02(n/m).

Proof. The factors M and N are generated by the periodic
sequences _(Nk)<:(Mk) of finite dimensional algebras. Hence, by
K and uk of the
we have that [M:N] =

[6;Theorem 1.5]1, for the weight vectors w

restriction tr to Mk and Nk'
2

2 ,
llukllz/llwkll2 for a large enough k. By (4.2),

Plu 112 = 1w 112 (1w 112

k 2 p' 2 q!lz for a (k,p,q} in (3.1).

Put n = m - 2. Then we have
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. = |1y 2 12 "k Z n-
[M:N] Ilukll2 / Hwkll2 for all k 2 n-1,
Since Ilw 112/ 1lw,  11% = 1/A for all k 2 n-1
k 2 k+1 2 - ’
N 4 2 2 , ,n-1
[M:N] = llwn 1ll2 / sz(n_l)ll2 Ilwn_lll2 / A .
By (3.3),
2 _ 2] 2 . n-1
Plw 1y = Ej ATT P, (M) where j runs over {0,1,...,[75"1}.

-2 ’
On the other hand, by [31]1,

2 ‘ : k-1 k-1
Pk((1/4)sec 8) = sin k6 / 2 cos fsin@ for all k and §6.

Hence

[M:NJ = Z; sin®((n-2§)n/(n+2)) / sin®(n/(n+2))
=2j(2—exp(2(n-2j)/(n+2))ni - exp(2(2j-n)/(n+2))mi} / 4sin2(n/(n+2))
= ((n+2)/4)cosec2(n/(n+2)) = (m/4) cosecz(n/m),
because E?=1 exp((j/k)2ni) = 0, for all integer K.

Remark. 15 (1) 1f m=3 ~or 4, then [M:N] = [P:Q] for the

subfactor Q = {ei;‘i=2,3,...)" of the factor P (ei;i=1,2,...}”.
That is, [M:N} =1 if m =3 and I[M:N] =2 if m= 4.

(2) If m=£ 5, then [M:N] # [P:Q]. If m =5, then [M:NI<4.
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Hence trere is an integer Kk ‘(k 2 3) such that [M:N] = 4cosz(n(k).
H. Choda gets the number Kk, that is Kk = 10. (Here the author thank
to H. Choda for helping her by computing a lot of indices [M:N].)
On the other hand, by tHe proof of‘Lemma 14,

[M:N] = 4cos2(n/3) + 4cos2(n/5).~
This implies the following equation ( the equation is proved by an

ellementary method, which M.Fujii tells us);

cos?(n/3) + cos(n/5) = cos?(n/10).

Lemma. 16 The relative commutant N'A M of N in M is

trivial.

Proof. Since [M:N] 1is finite, N'" M 1is finite dimensional.
Let ¢ be the dimension vector of N'n M. Since (Mk)j)(Nk) is

periodic, by [G:Theorem"1.7],

IICII1 =Ea = min(lIG[i]jll ;k§2n,1=1,2,...,dq,j=1,2,...,dp},

1

where G[i]j is the vector in the section 5. By Lemma 8, there are
many ({i,j}'s such that tG[i]j = (1,0,...,0). It implies «a = 1.

Hence N'~ M is l-dimensional, so that N'AM = Cl.
8. A generalization

Let take and fix a positive integer n. Let

L= 4{,,. e—n—l,e-n, el,ez,eg,...} .
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In the case of n =1, L = N. By a similar proof as Lemma 1, L is
a subfactor of M, for all n. Also, L is a subfactor of N and

[N:L] = 4cosz(n/m). Hence

(M:L1 = (m/4)cosecz(n/m)(4cosz(n/m)}n_1.
Let
= = = = si= - ' i i 3
L1 L2 ¢1, L2i—1 L2i {ei,l 1,2,...,n-1} if i1 =n
and
= L = ) . P>
L21+1 (LZi’ ei} L21+2 (e_i, L21+1} if i 2 n.

- The sequence (Lk) is periodic with period 4 and generates L. By a

similar method as for (Nk)<f (M, ), we get the inclusion matrix [Lk

k
- Mk]. For a triplet (k,p,q} 1in (3.1), we consider the matrizx

a - x.]1 for a large Kk, where x. is the same as in section
p-(n-1) i i

3, that is the i-th column vector of [MqﬂMk]. Then (Nk) C_(Mk) is

[

‘periodic. Let h be the dimensibn vector of L'A M.

If q is even, then x, = a_, hence [ap—(n—l) - xll = [ap—(n—l)

1 p

- a_J.
P

If n = 2,we have N'n\ M 1 for an

Cl, by the form of [ak - a]“1

odd K.

e_l}" is contained .in L'~"M and

Hence we have

If nZ 3, (e_n+2’e_n+3...,

isomorphic to Mn—l‘

L'0 M= (e TP L

n+2,%-n+3 -1
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