Title: Carleson measures on bounded domains in \mathbb{C}^n

Author(s): 亀見 和之

Citation: 数理解析研究所講究録 (1988), 654: 216-224

Issue Date: 1988-04

URL: http://hdl.handle.net/2433/100487

Type: Departmental Bulletin Paper

Textversion: publisher

Kyoto University
Carleson measures on bounded domains in \mathbb{C}^n

東京電機大 鶴見和之 (Kazuyuki Tsurumi)

1.

単位円 $D = \{ |z| < 1 \}$ 内の有界正則函数の interpolation の問題に関する Carleson の結果は, D 内の正の measure μ に対する次の評価式は重要な役割を果している:

$$
\int_{D} |f(z)|^p d\mu \leq C_p \int_{0}^{2\pi} |f(e^{i\theta})|^p d\theta
$$

この評価式は, また, maximal function, H^p 空間, Douglas algebra 等においても重要な役割を果している。

いま, $T := \{ |z| = 1 \}$, $z_0 = r e^{i\theta_0} \in D$ に対して

$$
I(z_0) := \{ e^{i\theta} | \theta - \theta_0 | < 1 - r_0 \}
$$

とおく。 $I \subset T$ に対して

$$
S(I) := \{ z \in D | I(z) \subset I \}
$$

とおく。この時, finite positive measure μ に対する条件:

$$
(2) \quad \mu(S(I)) \leq C |I|^p \quad \text{for all } I \subset T
$$
をみたすとき、\(\mu \) を order \(\beta \) の Carlson measure (\(\beta = 1 \) のとき
常に Carlson measure) という。

（1）と（2）との関係については次の定理が成り立つ。

定理 1. (Carlson) finite measure \(\mu \) on \(D \) に対して、
（1）が成り立つための必要十分条件は \(\mu \) が Carlson measure
であることがある。

また、Carlson measure と BMOとの関係において、
次の定理が成り立つ。

定理 2. (Fefferman and Stein) \(f \in L^1(T) \) が BMOであるための必要十分条件は

\[
d\mu_f := |\nabla \varphi(x)|^2 \log \frac{1}{|x|} \ d\varphi \ dx \quad (u: f \text{の harmonic extension})
\]
が \(D \) の Carlson measure であることがある。

定理 1, 定理 2 の一次領域への拡張、多変数への拡
張は従来はされていないがここでは多変数への拡張を試みる。

2.

\(\mathbb{C}^n \) の多重円板 \(\mathbb{D}^n \) における Carlson measure は次の様
に定義する：

-2-
T^nをD^nのSilov境界とし、connected open set で T^n に対して

$$S(U) := \{ (z_1, z_2, \cdots, z_n) \in D^n \mid I_{z_1} \cdots I_{z_n} \subseteq U \}$$

（I_{x}は1変数におけるもの）とおき、finite positive measure μ on D^n が条件で、

(3) $\mu(S(U)) \leq C |U|^p$ for connected open set $U \subseteq T^n$

もまたとき、μをorder βのCarleman measure ($\beta = 1$のとき、
単に、Carleman measure）という。

この時、定理1の多変数への拡張は次の様になる。

定理3（Chang） finite positive measure μ on D^n に対して、評価式

(4) $\int_{D^n} \cdots \int_{D^n} |u(x)|^p d\mu(x) \leq C_p \int_{T^n} \cdots \int_{T^n} |f(e^{\theta_1}, \cdots, e^{\theta_n})|^p d\theta_1 \cdots d\theta_n$

（uはfのpluriharmonic extension）

が成り立つための必要十分条件は μがCarleman measureであることである。

定理3の証明には Hörmanderの定理の証明法が用いられるが、Hörmanderの定理は強積分論におけるCarlemanの定理を与えるものでもある。
3. \(\Omega \) を \(\mathbb{R}^n \) \((n \geq 2)\) の有界領域で、この境界 \(\partial \Omega \) は \(C^2 \) とある。 \(S^p(\Omega) \) \((1 < p < \infty)\) を \(\Omega \) で定義された非負の調和函数の全体とるう；

\[
\lim_{\varepsilon \to 0} \int_{\partial \Omega} u(y + \varepsilon N(y)) d\omega(y) < \infty
\]

（\(N(y) \) は \(y \) における単位内法線、\(d\omega \) は \(\partial \Omega \) 上の面要素）。

明らかに、\(u \) が調和で、\(|u| \) が \((5) \) をみたせば、\(|u| \in S^p(\Omega) \) である。

この時、次の定理が必要とつ。

定理 4. (Hörmander) \(\mu \) が \(\Omega \) に対

\[
\int_{|x-y|<\varepsilon} \frac{d\mu(x)}{|x-y|}\leq C_1 \delta^{n-1} \quad (y \in \partial \Omega, \delta > 0)
\]

（\(x = (x_1, \ldots, x_n) \) に対して、\(|x| = \sqrt{x_1^2 + x_2^2 + \cdots + x_n^2} \)）

が成り立てば、

\[
\left| \int_{\partial \Omega} u^p d\mu \right| \leq C_2 \left(\frac{-p}{p-1} \right)^p \int_{\partial \Omega} u^p d\omega \quad \text{for } u \in S^p(\Omega)
\]

（ここで、\(\partial \Omega \) に対して、\(\Omega \) で連続で、\(\Omega \) で正の調和函数 \(u \) に対して（7）が成り立つたば、（6）が成り立つ）。

この定理は：1変数の種々の関係においても有用である。
D が C^n の $(C^2$ 級の境界をもつ) 有界且つ強擬凸領域とする。すなわち，D の近傍で強多変数調和は C^2 数の函数 $\Psi(x)$ (complex Hessian $\sum_{j,k} \frac{\partial^2 \Psi}{\partial x_j \partial x_k} \bar{x}_j \bar{x}_k > 0$) が存在して，
\[D = \{ z \in C^n \mid \Psi(z) < 0 \} \quad \text{と} \quad D^* = \{ z \in C^n \mid \Psi(z) = 0 \} \quad \forall \Psi \neq 0 \quad \text{on} \quad \partial D. \]
この時，$z_0 \in \partial D$ における接平面を π_{z_0} とある；
\[\pi_{z_0} = \{ (z, \overline{w}) \mid \overline{w} \sum_{j,k} \frac{\partial^2 \Psi}{\partial x_j \partial x_k} (x_j - x_{j_0}) = 0 \} \]
この π_{z_0} に含まれる複素接平面を $\pi_{z_0}^C$ と表す。この時，
\[K(z_0; r) = \pi_{z_0}^C \text{上の，直径を} z_0, \text{半径を} r \text{とする球} \]
\[A(z_0, t) = \{ z \in C^n \mid d(z, K(z_0, r)) < t \} \]
\[B(z_0, t) = A(z_0, t) \cap D \]
$PS^p(D)$: 条件 (5) をみたす D で定義された非負多変数調和全体。

この時，次の定理が成り立つ。

定理 5 (Nömander) finite positive measure μ on D に対して
\[\int_{A(z_0, t) \cap D} d\mu = C_1 t^n \quad \text{for} \forall z_0 \in \partial D, \quad t > 0 \]
が成り立つ。ならびに
\[\int_D u^p d\mu \leq C_2 \int_{\partial D} u^p d\omega \quad \text{for} \forall u \in PS^p(D) \]
が成り立つ。更に，$f \in D$ で正値で H^1 に入りず次の者が
から立つ

(9)' \[\int_{D} |f|^p \, d\mu \leq C_2 \int_{\partial D} |f|^p \, d\omega \]
（あるいは（9）が成り立つならば（8）が成り立つ）。

ここで、\(\widetilde{\omega} \in D \) に対して、\(\tilde{\omega} \in \partial D \) と \(d(\tilde{\omega}, \widetilde{\omega}) = \inf \{ d(\tilde{\omega}, \omega) \mid \omega \in \partial D \} \) （\(\omega \) を \(d(\tilde{\omega}) \) と表す）をもととし、

\(I(\tilde{\omega}) = \{ \omega \in \partial D \mid d(\omega, \tilde{\omega}) < d(\tilde{\omega}) \} \)
とおく。\(\partial D \) 上の任意の開集合 \(\Omega \) に対して

\(\Omega(\tilde{\omega}) = \{ \tilde{\omega} \in D \mid I(\tilde{\omega}) \subset \Omega \} \)
とおく。この時、条件(8)は次のことに同値である:

(8)' \[\mu(\Omega(\tilde{\omega})) \leq C \, \omega(\tilde{\omega}) \]

((8), (8)' をみたす measure \(\mu \) を Carleson measure という)。

4.

定理6に従って次の定理が成り立つ。

定理6. (Hastings, Chang, Merryfield) \(f \in L^{\infty}(T^n) \) に対し

\[d\mu_f = |\nabla u(\tilde{\omega})|^2 \log |\tilde{\omega}| \cdots \log |\tilde{\omega}| \, d\tilde{\omega} \cdots d\tilde{\omega} \]

（\(u \) は \(f \) の pluriharmonic extension）は polydisk \(\partial D'' \) 上の
Carleson measure である。

$c = 2$

\(G_j := \mathbb{R}^n_+ := \{ t = (t_1, \ldots, t_n) \in \mathbb{R}^n \mid t_j > 0, j = 1, 2, \ldots, n \}$

\(H_j := \mathbb{R}^n \times G_j := \{ (x, t) \in \mathbb{R}^{2n} \mid x \in \mathbb{R}^n, t \in G_j \}$

\(R(x, a) := \{ y \in \mathbb{R}^n \mid |y_j - x_j| \leq a_j, j = 1, \ldots, n \}$

とおき，任意の閉集合 \(I \subset \mathbb{R}^n \) に対して

\(S(I) := \{ (x, t) \in H_j \mid R(x, a) \subset I \}$

とおく。この時，finite positive measure \(\mu \) が条件下

\[\mu(S(I)) \leq C |I|^\beta \quad \text{for \(\beta \)-open set \(I \subset \mathbb{R}^n \) \} \]

をみたすとき，\(\mu \) を order \(\beta \) の Carleson measure on \(\mathcal{H} \) \((\beta = 1 \quad \text{のときは常に Carleson measure}) \) という。

この時定理6は次の様に言い換えることができる。

定理6' (Chang, Merryfield) \(f \in L^\infty(\mathbb{R}^n) \) に対して

\[d\mu_f := |\nabla_1 \cdots \nabla_n u(x, t)|^2 \, dt \, dx \]

(\(u \) は \(f \) の pluri-harmonic extension) は Carleson measure on \(\mathcal{H} \) である

また

\(\Gamma(a)(x) := \{ (y, t) \in \mathcal{H} \mid |y_j - x_j| \leq a_j t_j, j = 1, \ldots, n \}$

- 7 -
上の連続函数\(u \)に対して

\[
N_a(u)(x) := \sup \{ u(y, t) \mid (y, t) \in \Gamma_a(x) \}
\]
とおくと、次の定理の形として得られる：

定理7 (Merryfield) \(u \) を\(n \)-harmonic on \(\mathcal{H} \) とし、
\(f \) を次の様に\(\mathbb{R}^n \) 上の函数とする。なら、ある定数 \(k_f \) に対して
\[
\| f - k_f \|_{L^2} < \infty.
\]
また、\(\text{supp} \, f \supset B \) である \(N_a(u) \) の定数 \(A \) が存在する。この時、もし \(f \in L^2(\mathbb{R}^n) \) かつ
\[
u(t) \in L^2(\mathbb{R}) \quad \text{for} \quad \forall t \in \Theta
\]
ならば、次の式が成り立つ：

\[
\iint_{\mathcal{H}} \left| \nabla \cdots \nabla \nu_a(u(x, t)) \right|^2 |\Phi_a(x, t) \ast f(x)|^2 t \, dt \, dx
\]

\[
\leq C \int_{\mathbb{R}^n} N_a(u)(x) |f(x)|^2 \, dx + C A^2 \| f - k_f \|_{L^2}^2
\]

ただし、\(\Phi_a \) は次の様な函数である： \(\phi \in \mathcal{C}_0^1(\mathbb{R}) \) の函数で、
\(\phi \) は偶函数で、非負で、\([0, 1]\) において減少で、\(\text{supp} \, \phi = [-1, 1] \) と
\[
\int_{-1}^1 \phi(x) \, dx = 1,
\]
この時,

\[
\Phi_a(x, t) := \prod_{j=1}^n \frac{1}{a_j t_j} \phi \left(\frac{x_j}{a_j t_j} \right).
\]
文　献

