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The Boltzmann Equation and Thirteen Moments
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1. Introduction

This is a summary of the author's kecent paper [5].

We consider the initial value problem for the Boltzmann equation:

(11)  Fy + vev,F = Q(F,F)

t

(1.2) F(O,x,v) = Fo(x,v) .

Here F = F(t,x,v) denotes the mass density of gas molecules with velocity
v = (v],vz,v3) € R3 at time t > 0 and position x = (x],xz,x3) € R3,
Yy is the gradient with respect to x and Q(F,F) 1is the term related

to the binary collisions of molecules, which is given explicitly as follows:

(1.3 a6 = 3 [ ale,luvDIEs) Fv)E() -

SZXR3

- F(v)G(vy) - F(v,)G(v)}dwdy, .
In (1.3) we use abbreviations such as F(v) = F(t,x,v); v' and v, are
molecular velocites which produce v and v, after a collision, namely,
v = v ((ve-v)ewlw, vy = vy - ((ve-v)eww  for w e 52; q(8,|ve-v]) (where

6 1is defined by (v,-v).w = |v,-v]cos 8 ) is a function determined by the
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intermolecular poténtia]s and is assumed to be of the éﬁtoff hard type of
Grad- [2].

We study the problem concerning the exfstence of global solutions of
(1.1),(1.2) in a neighborhood of a Maxwéf1ianl :Tﬁé key of the problem is
to get a suitable decay estimate for the linearized Boltzmann equatidn
ardund‘fhe Maxwél]faﬁ ksee [el1,(71). ‘Iﬁ the hrevious works [63,[7]; such a
decay estfmate‘was ogfaiﬁed Ey a method based on the spectral tﬁeory for |
the linearized Boltzmann operator investigated in [1]. Our aim is to shbw”
the same decay estimate by quite a different method. Our method is the
so-ca11ed‘energy method éndkmakeé ugé of the métfix represetation of v-g,
thevsymbo] of’the st¥eamiqg pperétqr v-Vx, which maps the null space of{;
the linearized collision éperator into the subspace associated with the

thirteen moménts.

2. Preliminaries

We consider the problem (5.1),(1.2) in a neighborhood of the normalized
Maxwellian M = M(v) :
(2.1)  M(v) = (2n) Y 2exp(-|v|%/2) .
M is an equilibrium of (1.1) since Q(M,M) = 0. Following Grad [2],[3],

- we introduce the new unknown function f = f(t,k,v) by

1/2

(2.2) F=M+M/"f

The problem (1.1),(1.2) is then transformed into

(2.3) fo + Vv f+LF =1(f,f),

(2.4) f(0,x,v) = fo(x,v) .
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Here fo(x,v) = M(v)']/Z(FO(x,Q)-M(v)) :and

Lf = - auV2q(mmM %)
(2.5) ;
r(f,g) = M /2! 2 M%)

First we sunmarize some known properties of the linearized collision

operator L. (For the details, see [2].) L is décohpoéed in the form
(2.6) Lf = vf - Kf ,

where v = v(v) 1is the function sétisfyihg Vg < v(v) < v2(1+|v|) for
positive‘conétants Vis Voo and K is a tompact selfadjoint operator on
Lz(v). Therefore L is a (uﬁbounded) syhmetric operator on Lz(y). Also,
L is honﬁegativé, namely, (Lf,f) >0 for fe Lz(v) with Lf ¢ L2(v),
where ( , ) 1is the standard inner produ@t of Lz(v). We denote the null

space of L by N(L). It is known that
(2.7) N(L) = Tinear span of {w]M]/z,---,wSMI/Z} R

where

(28) Wy =1, gy mvgs 3123 v = lv?.

(Recall that Vj _is the j-th component of v.) Each -wk is called a sum-
mational invariant. The following five fUnCtions form an orthonormal basis

of N(L).

1/2 1/2

1/2
2. = . .4 = V.
(2.9) ey =M e vJM

\]'H s j=192339 95 =

j/% (Jv|Z-3)m

From the properties of L stated above we deduce that for f e L2(v) with

Lf e L2(v),

(2.10) (Lf,f) = 8, (1 -Pg)flg -
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where 8 is a positive constant, [-IZ denotes the norm of 'Lz(v), and

PO is the orthogonal projection from Lz(v) onto N(L) :

Pof =

O~

(f,e, de, .
We remark that (2.10) holds true also for f ¢ Lf(v), where L%(v) is the
space of functions f « Lz(v) such that (1+]v]|)f € Lz(v).

Next we introduce the following thirteen functions.

- _ . 2 . _
d)'l "v] > ¢J+] - V.j ’ 3‘1,2’3, ¢J+4 - VJ- ’ J 132)3’

(2.71) dg=vqvy s g = vava s byg = Vv,
= lul2 .
¢j+10 = |v| Vj s -1,2,3.

Notice that each summational invariant in (2.8) is a linear combination of
the above functions: ¢k = ¢k’ k=1,-++,4, and ws = ¢5-+¢6-+¢7. We denote

by W the subspace of Lz(v) spanned by the thirteen functions ¢kM]/2,

k=1,:-+,13, namely,

(2.12) W = Tinear span of'{¢]M1/2,...,¢]3M]/2} .

W is the subspace associated with the thirteen moments, since the quanti-

ties [ ¢ F dv = (M]/2

+-f,¢kM]/2) are called moments of the distribution
function F. We shall introduce an orthonormal basis of W. Since N(L)
< W and the five functions €1s"°"seg given by (2.9) form an orthonormal
basis of N(L), we choose additional eight functions RN such that

"{e],~--,e]3} becomes an orthonormal basis of W. They are given as

follows:
3 ~
T jz]ckjej+4 , k=2,3,
= 1/2 _ 1/2 _ 1/2
(2.13) eg = Vv M s Bg = VyvM T 24 LU
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0 a2 ey W2 s 2
. - - .M = 2 .
€410 /TG(IVI 5)v; , 3=1,2,3
Here
~ 1 2 1/2 .
(2.14) e.,., = — (v -1)M ,  j=1,2,3,

and the coefficients Cpj are chosen such that the three vectors cy =

(1//3,17/3,17/3), C, = (c21,c22,c23) and Cy = (c3],c32,c33) form an

3

orthonormal basis of R°. This choice of ij i< based on the following

observation: The three functions in (2.14) form an orthonormal system of

2

L°(v) and = (65+E6+’e”7)//3‘.

3

%5
Now we consider v+£ (§ ¢ R”), the symbol of the streaming operator
v+V , on the null space N(L). For each £ ¢ R3, veE s fegarded as a
Tinear operator from N(L) into W, and therefore can be represented by

the 13x5 matrix with the entries ((v-g)ek,ez), 1<k<13, 1<2<5,

Hence we introduce for £ ¢ R3,

(2~]5) V(E) = (((V'E)ek’el))lsk,2513 ’

which is a real symmetric matrix. Consider the-decomposition

(2.16) V(E) = ‘ s
where v”(g), V12(6), Uy () and Vy,(€) are 5x5, 5x8, 8x5 and
)T = Wy (E)

= V22(g), where the superscript T denotes transpose. By

8 x8 matrices, respectively. We have Vﬁ(&)T = V]](E), V12(£
and V22(€) |
straightfoward calculation, using (2.9) and (2.13), we have the following

expressions:



0! L )
L5 &2 8
e S
1) LS
| |

(2.17) V”(E) = ]Gy -0, *|§a]52
! |
&3 3
e - — — -
I
O ah 3% g 0
O I
(o] a8 by Aty O
| i
) |
O vaghy At Ayt 0
—_ = + ______________
|
0 ¢ £2 g] 0 | 0
' |
0 0 £ £ i 0
(2.18) ) = . ’ e
}
01 &y 0 g Lo
e
|
0 ! ! a4£]
' l
0 : 0 : 3452
|
\ 0 ! : a4£3)

where & = (£,,£,,€5), a, - /2/3,'akj = /25 k=2,3, §=1,2,3, and

3, = /375 .

3. Construction of a compensating function

We introduce the notion of a compensating function for the Boltzmann
equation (2.3). Let B(Lz(v)) be the Banach space of bounded linear

operators on Lz(v), with the operator norm.

Definition 3.1. Let S(w) be a bounded linear operator on Lz(v)

with a parameter w ¢ 52, i.e., S(w) e E(LZ(V)) for each w € Sz. S(w)

is called a compensating function for the Boltzmann equation (2.3), if the

183
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following conditions are satisfied:

(i) S(+) € C™(s% B(LY(v))) and S(-w) = -S(w) for each w e S°.
(i) 1S(w) 1is a selfadjoint operator on L2(v) for each w e SZ.

(ifi) There exists a positive constant & such that for any w e’S2 and

f e L§(v), the following inequality holds.
Re (S(w) (v-w)f,f) + (LF,F) 2 ]F]5 .

In order to show the existence of a compensating function for the

Boltzmann equation, we prepare the following

Lemma 3.1. = There exist matrices R‘]J i=1,2,3, which satisfy the
following properties: Each RV is a 13x13 real skew-symnmetric matrix

with constant entries. Moreover, there exist positive constants Cy and

)T 13

C] such that for any w e 52 and W = (W],-;o,w]B e U7,

(3.1) Re'<‘RKQ)V(w)w,w > 2 c]JwII2 - Cllwnl2 s

where R(w) =) ijj

(2.15) with & replaced by w, Wy = (w],---,w5

for w = (w],wz,wB), V(w)  is the matrixz defined by
T _ T
) N WH - (WG,O-.,W]B) 5 and

<, > dénofes’the standard innef%produét of C]B.r

Proof. We define RJ, j=1,2,3, by
O‘R]](g) Vlz(g)

where o 1is a positive constant which will be determined 1ater,vv]2(g)‘

and VZ](E) ~are the matrices in (2.16), and



4 : .
015 g &0
e - - -
- ] 0
'i] I |
~ _ | i
) |
-E3 , 0
et Rl e e T - - -
0 ; 0 0 o ! 0

By the definition, each Rj is'a 13x13 real skew-symmetric matrix with .
constant entries. We shall show (3.1). Put U(E) = R(E)V(E) and let

0E) = (U (8 oo
From (2.16) and (3.2) we have

be the decomposition of the same type as in (2.16).

U1 (6) = oy (E)V () + Vi, () (8).

By a simple calculation, using (2.7) and (3,3), we know that for w e 52

- \T 5
and Wy = (W]»"';W5) « c,

5
" 2 | 2
(3.4) R < RyylwlVyqlwlwpwy > = cplwl™ - G5 0 IwI™

where Cy and Cz, are positive constants. On the other hand, it follows

from (2.18) that rankV21(w) =4 forany we S2 and hence
. o e 2 D2
(3.5) < ij(w)VZI(w)wI,wI > = IVZ](w)wII > C3’k£2lwk| .

where C3 is a positive constant. We multiply (3.4) by o« > 0 and then
add the resulting inequality to (3.5). Choosing o such that qu = c3/2,

we obtain

. N : 2 .
(3.6) Re < U”(w)wl,wI > ; c|wI|

with ¢ = mih{acz, c3/2}. The desired estimate (3.1) is an easy consequence

of (3.6). Therefore the proof of Lemma 3.1 is complete.

185
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We denote the components of the matrix R(w) in Lemma 3.1 by rkl(w)’
k,2=1,-++,13, and define the operator S(w) with a parameter w e 52 by
13 _

(3.7) S(w)f = . §=18rk2(w)(f,el)ek . fe L_(V)i,

where B ‘is a positive constant. We shall shoﬁ that the above S(w) 1is a

compensating function for the Boltzmann equation.

Proposition 3.2.  The operator S(w) defined by (3.7) is a compen-
sating function for the Boltzmann equation, provided that B > 0 . is
sufficiently small. Moreover, for each ® € 52J S(w)  maps :Lz(v) into

the subspace W defined by (2.12).

Proof. Since {e],---,e]B} is an orthonormal basis of - W, the last
statement of the proposition is obvidus ffom the definition.(3.7). We shall
check conditions (i), (ii) and (ﬁf) of Définition‘3.1. Condition (i) is an

- easy consequence of R(w) = J ijj‘ Let f, ge Lz(v). We have from (3.7),
13

(3.8) (W) = %_]srkztm>(f;e2>(g,ek) .

13

let w and u be the veétors in €3 whose k-th components are (f,ek) '

and (g,ek), réspectfvely.' The equé]fty (3.8) then gives (S(w)f,g) =

B < R(w)w,u >, where - <, > 1is the standard inner product of C13. This
relation shows’that iS(w) s a>se1fadjoint operator on Lz(v), since
‘R(w) 1is real skew—symmétric;i thélcondition (i) is verified. Fina11y;

we check condition (iii). Let f'e"Li(Q). From (3.8) we have

13
(3.9) (Sl (vo)f,f) = T Br,(w)((v-o)f.e,)(f.e,) .
k, =1 |
We denote the orthogonal projection from Lz(v) onto W by P, namely,
g . o . . o, o
Pf = ) (f,e e .
k=r Kk



We substitute the decomposition f = Pf + (I -P)f dinto the right hand side

of (3.9) to obtain

(3.10) (S{w)(vew)f,f) = B < R{w)V(w)w,w > +
13 : :
+ k,§=18rk£(w)((l -P)f,(v'm)ei)(f,ek) ,

where V(w) is the matrix defined by (2.15), and w 1is the vector in C]3

whose k-th companent is (f,ek). The second term on the right hand side of
(3.10) is bounded by B8C|(I —Po)flzlflz, where C s a constant independ-
ent of B and P0 is the orthogonal projection from L2(v) onto N(L).
On the other hand, by virtue of Lemma 3.1, the real part of the first term
on the right side of (3.10) is bounded from below by 8c,|P,f|5 -
BC]](I-PO)f|§, where ¢ and C] are the positive constants in (3.1) and

hence do not depend on B. Therefore we obtain
2 2
(3.11) Re (S(w)(vew)f,f) z’B(c] -e)[Pyfl5 - BC|(1-Py)fl5

for any € > 0, where C€ is a constant depending on € but not on B. We
add (2.10) to (3.11) and choose € and B such that ¢ = c]/2 and BCe

= 6]/2. Then we get the inedua]ity

(3.12)  Re (S(w) (vew)f,F) + (LF,£) 2 5,|F|2

with 8y = min{sc]/Z, 6]/2}. Thus condition (iii) has been checked. This
completes the proof of Proposition 3.2.

4. Decay estimate for the linearized equation

We consider the initial value problem for the linearized Boltzmann

equation:

10

187
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(4.1) fot v frlf=g,

(4.2)  f(0,x,v) = fo(x,v) ,

3x R3. Our aim is to

where g is a given function of (t,x,v) ¢ [0,=) xR
show a decay estimate of solutions of (4.1),(4.2) by an energy method simi-
Jar to the oné emp1oyéd in [4] (see aiso<[8]) for the discrete Boltzmann
equation. Our method is based on the existence of a compensating function
for the Boltzmann equation.

Let us introduce function spaces. Hg(x) denotes the usual Sobolev
spacevon Ri of order 1. We denote by n* the space of Lz(v)—functions
with values in H*(x), with the norm H-le. \H% is the space of L%(v)-
functions with values in Hgfx); Lp’2 denotes the space of Lz(v)afunctions
with values in LP(x). The norm of Lp,2 is.denoted by ’I[-}b’z.

Our result is then stated as follows.

Theorem 4.1. Let 220 and p, q € [1,2]. Suppdsevthat fO € H

n LP2, Moreover we assume that ¢ e Lw([O,w);NQ n Lq’z) and
(Pog)(t,x,v) = 0 for (t,x,v) é [0,=) XI23X Rg,\where Py is the orthogo-
nal projection from Lz(v) oﬁfa N(L). Let f be a solution of thelprob—
lem (4.1),(4.2) satisfying f e L7([0,0);H}) and f e L°([0,@);H*™).

Then we have
(4.3) RO < e 2V, + IR )7
t
“2v! 2
: cjo(m-ﬂ Vgl + Kale)Tg p) e

for te [0,%), where v = (3/2)(1/p-1/2), v' = (3/2)(1/q-1/2) and C is

a constant.

The decay estimate (4.3) with g = 0 has been obtained in [6],[7] by

1



a method based on the spectral theory for the Tinearized Boltzmann operator.

In drder to prove Theorem 4.1, we consider»(4.1),(4.2)_in the Fourier

transform:
(4.9)  Forilellva)f +Lf=g,  w=g/lEl e st
(.5)  F(0,6,v) = Fy(E.v)

where f = f(t,£,v) denotes the Fourier transform of f = f(t,x,v). Let
S(w) be the compensating function for the Boltzmann equation constructed
in Prdposition 3.2 and let p be a positive constant. Put

~ A

(4.6) - E[FI(t,E) = |F(t.0)]3 - T

We shall show that for a suitably chosen u > 0, E[?] is a Ljapunov func-
tion of (4.4), which is regarded as an ofdihary differential equatioﬁ in
2(

L“(v) with a parameter £ e R3.  More precisely we have

Lemma 4.2. For a suitably chosen u > 0, the function E[f] defined

by (4.6) satisfies the following inequalities.
13,2 P 12
(4.7) 7Ifl5 < Elf] < 2|f];
9 rri ¢ ql2
(4.8) ¢ E[F] + sp(£)E[F] < Clgl; ,
where § and C are positive constants, and 9(5) = |§|2/(]+|E|2).

Theorem 4.1 can be proved by using Lemma 4.2. In fact, applying
Gronwa}]is inequality to (4.8) and using (4.7), we obtain for (t,£) e
[0 ,oo)—- X R3 ’

. A ~ kA t : : R )
(4.9) 176,013 < ce I E ()2 + CJOQ‘5O(E)(t-T)Ig(f,g)lng ’

where & 1is the constant in (4.8) and C s some constant. The desired

12

£l
5 (1S()f(t,£),F(t,E)) »  w=g/]E].

189
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estimate (4.3) is then obtained from (4.9) by the ‘standard techn1que ‘and

so we omit the argumehts. See, for example, [6] or [8].

Proof of Lemma 4.2. We first note that (4.7) holds true for suffi-
ciently small u > 0; say, U € (O,u]]. vToAshoW (4.8), Qe!dse the argﬁﬁeﬁf
analogous to that employed in [4],[8]. We take the inner product (of;Lz(v))
of (4.4) and f.oIts real part is

(4.10) (—7[f|2 o+ (LF, h - Re (9,F)

We apply -1]&|S(w), w = &/|&], to (4.4) and then take the inner product
with %. Since iS(w) 1is a selfadjoint oberator, the real part of the
resulting equality is |
(6.01) -1l W03, + [e]%Re (Stw) (v-w)F, )

= |g] R {(iS(w)LF,F) = (iS(w)g,f)})

We calculate (4.70) X(1+|g|2) +(4.17) xy with a positive constant u to

obtain

(a.12)  (SO+EDERD, + 0+-p) [g]A(LF) +

+ ulE]2Re (S() (vew)f, F) + (LF,F))

/\

= (1+]£1%) Re (g, F) + ule| Re ((iS()LE,F) - (iS(w)g, )} ,

where E[%] is the function definéd by (4.6). We assume that u e (0,17.
Then the Secontherm’on the left hand Sideﬁof (4.12) is bounded from below
by (1-u) 1+1£| Lf f > (1-u)6](1+|gl2)](1 -Po)glg, where we used (2.10).
On the other hand, by virtue of (3.12), the third term on the left side is
bounded from below by udzlglzl%lg.b Therefore we have the following lower

bound for the left side of (4.12).

13°
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(4.13) (5 O+[ElPELFY + (-n)sy (41815 1(1-PQ)FIE + us, le 17712

Next we estimate the right side of (4.12). Since PO§ = 0 by the assump-
tion, the first term on the right side of (4. 12) is maJor1zed by

1+]g[2 T flnglg Aiee,[}rom (3. 8), we see that the second term on
the r1ght side is est1mated by UC[EIIfI (](1 f|2 ]g| , where ‘C_/ﬁs
a constant independent of y. Therefore, the f1ght side of (4{j2)-is

bounded by
(4.18) (e +uc )1+ 11 P)FI + well 71715 + ¢ (141171913

for any € > 0, where C€ is a constant depending on € but not on 1y e
(0,1]. We choose € and Wy such that ¢ = mih{G]/G, 62/2} and My =
min{1/6, 6]/6C€}. Then we have for yu e (0,u2],

d 1t . 2
(4.15)  SFELF] + & [(1-Po)F|5 + ué,o(E Ifl2 clal3

where C is a constant Now we put yu = m1n{u], “2} For this choice of
u, the inequality (4.15) comb1ned with (4 7) gives (4.8) with & = u62/2

This completes the proof of Lemma 4.2.

5. Global solutions of the nonlinear equation

With the aid of the decay estimate (4.3) we can show the existence of
global solutions to the problem (2.3),(2.4) in the same way as in [6],[7].

Of course the result obtained is the same as that in [6],[7],

Theorem 5.1. Let & > 3/2, B> 5/2 and p € [1,2]. Ve asewne that
fo e By lP? 1r I olly, g+ [fg)y , is suitably small, then the
problem (2.3),(2.4) has a unique global solution f oin 0 ([0,); S)
C ([0,); é }) Moreover, the solution satisfies

14
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510 A, g« 0 Rl g + el
for t e [0,o), where vy = (3/2)(1/p-1/2) and C 4is a constant.

Here we have employed the fo]}qwing'n@tations: Bz is the space of

ﬂ;(v)éfunctions with values ih“Hz(x), where '[Z(v) denotes the space of
functions f = f(v) such that (1+|VI)Bf e L(v) and. (]+|y|)8f(v) +0

uniformly as |v| > ». The norm of B is denoted by

8 ”'”2,6'
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