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Some Results and Problems on the Diophantine Bquations
Sun Qi

(Institute of Math., Sichuan University, Chengdu)

Xy

s : Xp- 3
1. On Diophsntine equations x, =

Xa
X" .-.Xk =2

Erdds asked for integer solutions of the equation

xFy¥= 27 (1)

[q v
with x 213 y>1. In 1940, Ko Chao ~ proved that when (x,y)=1,
- equation (1) has no solutions in positive integers x>1, y>1,

z>1 and when (x,y)®!, equation (1) has infinitely many solu-

tions (2" D
: 2(2 -
22"*'(2“—n-1)+2n (2= 1)
X = ‘
nH Mg m 20 +2
y = 2 (’2 ) (2“"')
n
NH N o N 2(2"=1)+]

P

nd»1, with 4xy=z., Other solutions have not beean found yet.
Recently, Erdds pointed out that it is possible that these
should be all the solutions of the equation (1).
In 1984, Ué%%%%géfq proved that there can only be a
finite number of solutions for any fixed value of Q=xy/z< 1.
Anderson conjectured that the equation w¥xXyY=2z? has no
solution with 1<w<x{y.

(3]
In 1964, Ko Chao and Sun Qi = proved the equation

B o, . |
'ﬂxéf_z y x>, k22, i=1,...,k,
=1

has infinitely many solutions
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L 2.6
of which the first one is x,=3 12‘*, ,=3142°,

Xy 31)25
z=31l‘25 for k=5, 1t gives a bounter-example tovA,nderson's'
Conjecture.

. For foy are there any soclutions of equafionv(’!)?. This
N Xz

still remains unproved. For the equation x, X, x’; soz¥ we asked

fhat are: there any solution with 1<xKX;¢X;35 Zf’xl,)czxg?‘

2. Some exponential equations

Jesmanowicz conaectured that the diophantlne equation
%
o +
has no integer solution except x--y_z.-2, wherea b c sa‘tisfy

t4]—Ce]
a4b=¢*. Ko Chao made a lot of investigations about

it in 1958=-1965. Lu Wendu’anm, Chen J'ingrun[s] and Sun Qi &)
also have studied this conjecture. For example, Lu proved
that 1f Q= 4" -1, b=in, c=ln® +1, then Jesmanowic&'s conaec-—
ture is true. |

For. the Diophantine equation |

Cyi=c? | (2)
whereQ., b, c are different primes. 1In 1958-1976 Nagell,k
@599 (B

Makowski,. Hadano Uchiyama/\studled thlq equation ” They gave

/\ .
all the solution (x,y,z) for max(a,b,c)$17. In 1984, Sun Qi
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"In 1985, for max(a,b c)—23, has been solved by Yang Xiaozuo.

e o o _
and Zhou .X:I.aatomingc Jgave all the nonnegative integral solu~

tions of equation (2) for max(a,b,c)=19. ) We proved also that
the equation (2) has no solutions in non-negative integers
x>, ¥, 2, if that a=2, b=p, c=q, where p=5 (mod ’8») orp=1

(mod 8) and p—u1+16v", 2}v', and q=3 (mod 4), q=2 (mod p). :
’ ru

ot {12)
In 1987, for 29<max(a,b, c)<100/\has been solved by Cao Zhenfu

Selfr;dge. asks for whatQ and b
a_ b\r?’-nb, o « | ‘ | ()

is true for all n?
Sun Qi and Zhang Mingzhi“ﬂ proved that for 0fp<aif

and only if (@, b):': (1 o), (2,1), (3, 1), (4,2), (5,3), (5,%),

(6,2), (7,3), (8,4), (8 2), (9,3), (14 2), (15, 3) (16, 4),

(3) is ture for all n.

3. ‘Some diophantine equations which arise in the combina‘to-
rial theory end the theory of finite groups

Hall asked for the integer solution of the Diophantine
equation . L X
P Yy 2 =q° | * ()
which arises in the combinatorial theory, where p, g are prime’
numbers. This includes that 5+ 2=3 » but we know no other

case j.n which both r>1 and s> . Sun Qi and Zhou Xiaoming (¥l

studied the case p+2=q in (4). cao Zlfwnzlf'\.lwJ proved .that when -

P+2=q, then the equation (l+) has no solutlon for r>1, s>1.

o)

Cresc:enzo investigated the equatlon (5) below, which

arise in. the theory of finite groups.

e 3 ..



pm—an=:i1, P, q primes, md>1, ny1. - (5)
Crescenzo proved that with the exception of the relation
(259jL—2(13§;=-1, every solution of (5) has exponents m=n=2,
However, it should be noted that Crescenzo's theorem is
wrong. Because the equation (5) has another solution p=3,
q=11, m=5, n=2. |
For diophantine equation
3&124#==1, my1, n¥, q 1s an. 0odd prime, 2+m, (6)
we conjectured that equation (6) hés no solution except q=11,
m=5, n=2.
For equation (6), the proof of foliowlng results are
easy. | |
1) Ifk2)n, then the conjecture is true.

2) If the equation (6) has solution, then q:‘-:1f(mod 12)

3) If the equat;on (6) has solutlon then (%) (Tg)~(?57)

=1, where (—) denotes legendre symbol

Recently, Sun QL  studies further equations (7) and (8)
below, which include (4) and (6) réSpect1Vely.
For diophantine equation |
o"-kt?= 2, k0, 2k, (7)
and diophantine equation
a,-lb =1, 10, . (8)
we proved the following results. _ ;
1) If the equation (7) has positive 1nteg<=r e,)lution Q,
lml_,

bl’ m, n, with 2+m,n,, m,>1, n,»1, then k 1 1.a zb z jka,b,

is the fundamental solution of the Fell's equatlon.x -ka.b,yﬁ:1,

Y



2) If the equation (8) has positive J.ntpfrer solut;.on Q,,
) Mz"’l g1
b,, m,, n,, with z%mznz, mz>1, n >1 then a, +)Qb *+24,% é‘“‘%.,

JRa.b, . is the fundamental solution of the Pell's
equation X -lQ;b}y =1, the

From sbove results, we proved thatAequanon (7) has 1o
positive integer solution Q, bl . m, » Ny Z%m n,, O, >’i, n >1,‘
if that Q,= kb, t%2 or b, =ka, '+ 2, etc. For the equation (8),
we provéd similar results also. If q=pt1+_2, where Ps Q de-
note odd prime nQﬂibers, thén equation qm-_-_-prfg- 2 ha's no integer
solution m n with m>1, ny1, men..

We proved also the following .result.

If gq=6s8*41, then the equation (6) has no solution. .

4, Some Cubic equations and Quartic eduatiéns
From. the well known identity

(x+1§+ (x—’lf -2x3:: 6x,
Mordell sugges'ted that perhaps most of the numbers can be
expressed as x3+ y3+ '223 with :integers Xy Vs 2. In 1936, Ko
Chao gavé the decompositions into four cyubevs in this form
for n€100 except the numbers 76, 99.

3—fy%- 223=76 and x4+ y.3+ 223

..99, we asked that a¥e there any :Lntegeral volu‘tion X, y, z?

For the diophantine equations x

This still remains unproved.

A interesting equation is

pyl=n - | | | (9)



When n—;-.j,’, there are solutions given ‘t;y (x,¥,2)=(1,1,1),
(4,4,-5), (@;—5,&),‘ (-5,4,4). 1In 1981{, Sc‘ar0wsky and Boyarsky
proved that the eciuationv (9) has no new solutions were-kfound

" for }m]&SOOOO, where x+ytz=73m, meZ. "In 1985, Cassels
proved that any integral solution of the equation (9) has

: t L
x=y=2 (mod 9). Recently, Sun Qi[ tﬂproved tnat 1T n—.;9o.3,
where o. is not divisible by primes of the form 6k+‘1, then

any integral solution of the equation x3+ y3+z:9 a3 satisfies

| 9 3-25-, where (x,y,z)=d. If n=3a? ’ 34—4, theh émy integral

43
A 3 3. 3 3 e X_Y_2Z
solution of the equation X"+y +z =34 satisfies Esa-;a (mod

9.
Ljunggren proved that if D>2 be a square-free integer

" which is not .divisible by primes of the form 6n+1; then equa-

tions }
S .,x3i1=Dy" e 7 (10)
at most one solution in positive integers x; y. In 1981,
Ko Chao and Sun Qi[?oj‘;lﬂ‘ -proved that the only solution in
integers of the equations (10) is x= 1, y=0. In 1975-1981,
Ko Chao and sun ot ®ktudied the equation

. | x'-Dy*=1, D>1, M(D)%O0. (11)
@ proved that 1) If D=3 (mod 8), §=xzy,JD is the funda-
mental solution of the equation »* -Dy*=1 and if xZ0 (mod 2),
then the equation (11) has no solutions in positive integers
X, Yo 2) If D=2p, p 1s an odd prime number, then theA'equa-

tion (11) has no positive integral solutions except p=3,

x=7, y=20. 3) If D is not divisible by primes of the form

.. 6 ..



12

in41, then the 9quatlon (11) has no positive integral solu-
(27)- (9]

tions. In 1979 and 1981, Ko Chao and bun Qi alsc

studied the equations x —Dy-*1, xqi-h Dy and x 4‘8 Dy .
For- equation 6y_.x(x+1)(2x+4) Mordell asked if there was

L)
an elementary proof. In 1985, Ma Degang  have answered the

Mordell's question. -*%Eéf/(gf’" S
In 1942, Ljunggren showgdthat the only solutions of

xﬁ:Zy*—1,in positive lntegers are (1,1) and (239,13) but his

proof is difficult. Mordell askc if it is poss1ble to flnd a

" simple or elementary proof, Thlq still remains ﬁy;OV(d

- In 1967, Bumby proved that the diophantine equd.t,*-on
oyt= gx‘*-1 o (12)

only integer solutions x=#1,% 3. The proof depends upon an

application of the.ldw(aﬁédratic,reciprociﬁi)in the quadratic
fields af{=2).
In 1979, Bremner proved that the diophantine equation

3x4-4y‘*-2x’+12y"—9='0- ‘ o o (13)

- only positive integer solutions x=1, y=1, and x=3, y=3.

:The proof depends upon. an application of the Skolen's p-édic

method.

- We asks if it is possible to find an elementary proof

for the equation (12) or the equation (13).

5. The equation o “en -1u+-—————— =1. Znam problem.

Xy X¢™ '...Xs
 S~problem.

For the equation

(2

=1, O<x,<...<xS, (14)



(1)

in 1964, Ko Chao and Sun Qi <g:é\ve all solutions for =5
and s=6. ’

Let _(2(s) b,eb the number of positlve integral solutions
of the equation (14). 1In 1978, Sun Qitjl] 'pmv\ed/‘ that when
s?,li,‘ then ()(s) <I2(s+1). | -

In 1978, Jandk and shula gave eighteen solutions of the
system of congruences | | |

XyoooXin) X ...xn+1-=40 (mod xi),k x>, i=1,...,n, :n> 1,
(15)

for n=7. Let H(n) be the number of solutions of the system

vl

of congruences (15). In 1983, SunAQit’m proved that if n2 &,
then H(n)Z H(n—H). As a corollary'one thaihs: Ifn»7, then
H(n)) n#l1. ‘ | , .
In 1972‘ Znam asked whether for every pos.Lt:Lve integer
n71 'l:her'e exist integers x;>1 (i=1, ...,n) such that X; is
a proper divisor of the numbers X, ...x,,_. xu—n ...xn+1 for
every i. In 1983, Sun Qi‘ ol proved that let Z(n) be the
number of solutions of the Znam problem with 1£ x‘<... < Xy
we have Z(n))ﬂ(n)-ﬂ(n—’l))O when nz5. Hence the problem
of Znam is-completely solved. It is difflcult to prove
Z(n+1)> Z(n), when n2> 5. |
“In 19‘85,' Sun Qi and Cao Zhenfu'®™ studied the equation

; 1 _ - ;
‘S-C: m—;.’_1, O(X‘ ...<Xs. (16)

Let A(s) be the number of solutions of the equation (16).

@jproved that 1f t39, then A(t41)2.0) (£)+.(2(t-1)+6.

For s=6, we gave that there are 17 solutionsvof equation

Mos

‘.
n

(16) in all. I conjecture that if n3 3, then A(n#1)> A(n).
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In 1984, Sun Qi and Cao Zhenfu proved that {J(s+1)>

ﬂ(s)\'B, when s»10. From this result, we also have' Z(s)23
and H(s)Z 3s-9, when s>1o a | |

In 1986, Sun Qi and Cao Zhenfut?] proved tbe following
theorems. v _ , ' |

1) If 522, then Z(s)::H(s)-H(‘s-‘l).

2) If 5210, thent2(s¥1)2Q(s)¥5.

3) If s211, then Z(s)Z 5.
For Z(s), we conaectur-e that if s 24, then

Z(s+‘l)> Z(s). |

In 1984, Sun Qi posed such a problem that, for each

integer n>1, if there are n intpgers x> 1 (1 =1,.0.,n) such

divisor ,
that each x is a propeerf lnteger x, ...x Koy * oo X" -1. We

U S 2
call the problem as g-problem for simplicity. For each inte~
ger n>1j we use the symbol X(n) to express the numbel:‘ of
solutions to s‘-problem for the case of n 1ntegerq. Récently,
Li—Shuguang“n proved that ifnz l+ then X(n)>0 end ifn=2,
3,”‘ then X(n)"-: 0, Thus, the 4—pror)lem lS solved. Is this

ture that X(n+1)> X(n) for n2 LW

m

6. The equation > Z =0 (mod 1). Diophantine equation
: ~ =t ‘

over Finite fields.

Let 4,, ... ’ d,, be flxed posxtive integers. It is well-

know that tlre number I(d. Yoo ,d,,) of solutions of the equaticn
"‘+ +""=0( 1-1) o ’
T mod y Y. integers,
1€y, <d; (1=1,...,n) (17)

.. 9 ..



play an important role in the study of diagonal equations

over finite fields._

(39)Jyo
In 1948 and in 1949, Hua and Vandiver, ]Fur*ado,

Weil at about the same time proved the following results, If

N denote the number of solutions of the equation

E a; X .— 0, where @a,q'1

(i..—..’l,...,n) (18)

over finite field F , then
. . . : n-x ‘
[ n-d"'€ 1(a,, ... ,d0)(a-1)a 2 (19)

Hence the vaslue of I(d‘,...,d ) heavily affects the estimate
of the number N of solutions of thp 9quatlon (18)

For the case d,=d, -..u_d it is proved thot I(d,...,d)

::Qa—((d~1) + (-1)'). For the more general case d,,d2 -

td
4th, in 1986, Sun Qi, Wan Daging, ‘Ma Degang ) prroved that

i(d‘,...,d,‘) Tf(d -1)= W(d -1) ...+(-1’)‘" (d;-1')(d,-1)+'

(~1) (d'-1)‘ A complicated formula for I(d,,...,d,) was

obtained indépendently by Lide and Niederreiter, Stanly, and

~1 . H ‘ - .
ustQ']with different methods. The formula can be stated as
follows

) 'AC‘-—,-J“" 7
1Ay =1 % 3 )™ ST Lemld .t
Y 140 miAe, - ‘-r)
=\ b,("-(tr\h .

Form (19), it is intefesting to determine when I(d|,...,dﬂ)::

-0, for if 1(d ,.,.,d4 )=0, then (18) has exactly qnd"sol£~,

tions. Some partial results have been obtalned by Joly. 1In

1985, Sun Qi and Wan Daqlngtqa]prOVed following theorem: Let

n>2, then (17) has no solutions if and only if one of the
.10 ..
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following conditions holds. 1) For some d; ’(dd ,‘d\';(fyjh, )=1
or 2) If d;. ...,,.d,;k('l £4,{... <i_ ¢ n) 1s the set of all

h\
even integers among {d, ysne ,d"} , then 2«}1{, -2-1, ceey -—f are

pairwise prime, and d;. 1s prime to any odd‘ number in {d, 5e0es

J
d,n} (3=15...,k) if k<n.
Recently, Sun Qi Ll have proved the following theorems.
Theorem 1. Suppose GF(p) is a finite fleld, where p is

an odd prime number, {u,v,G}CGF(p), uv %0, if
p>{P (2‘"(?‘9 ’—*1)2 +Jp-(/P- 3)(9—%;@;{-%-- 1,
then there sre two primitive ;fdots ol aﬁdﬁ in GF(p)Asilch that
udivf=0, wherejxis Mobius funojtiori‘, ¢pis Buler's totient
' flinction, w(p;-1) denotes the number of diétinct prime factors
of p-1. o | | | | |
' Theorem 2. | If py '260,/ then there are two ;-ri;ni‘tive roo"cs_m
o and § such that ud+v@=6. | |
Theorém 3. If p>3, and‘
o b - ),
then there al»r"ev‘two primitive roots o and@ such that 0‘—(}: 1.
Vegh asks whether, for all primes p>61, every‘ integer
can be expressed as the difference of two primitive roots of
From theorem ?_{’,Nwe easily deduce the following corollary.
Corollér_y. Iif p> 26? ‘then every integer can be expres-
sed as the_:diff(‘arence of two' primitive roots of p.
We can extend theorems 1-3 to GE(p'") (n >1) without dif-
ficulty, For example, we have the following theorenm.
Theorem 4. If p“)ZB‘: then there are two primitive roots

e 11 .,



ol and(i in GF(pm) such that uot+4 v@:&, where {u,v;&}c GF(‘p’;‘),
uv@%0,
In order to-prove our theorems we need .the following.

lemmas.

Lemma 1. Let x and A be characters of GF(p), and set.

Tuw (1:28)= =1 X(1)A(m), then
' Jultyw=o

Limegqelp

) \__(ﬁy if X-f\‘-'k-'x«a.
\Ju.\f("’“’e) *l 1, if XA= Xe,

where X, denotes the trivial character of GF(p).

Lema 2, 1f§>1, 951, ¥|p-1,7|p-1, (@, =b,=1,
15&&5—, 1~éb$~/l, then X“‘T’-% ' Xb‘?"’/nl' gre not equal to
X,» and X“W’%’ x”"""’/%: X, if-%—‘{-‘% = 0 (mod 1), Xa”"‘)/;‘ .
Xb(:p-;)/’z:\:X, ) ‘11‘% +.%:}{_:_ ’1v(mvo‘d_1‘1).

Lemma 3. Let n'(-:QGF.'(p), n:le O, tﬁen .

— A{Iﬁ)é& 20¢ @ nddn O, if n is not a primitiye r:oot,_

N Z _—_____ZJQ o H ‘v . ., . ] B ..

=) _p-1 ; , 3 ,

hl’]z-) ?(k)(ft:):\ ﬁﬁf’:ﬂ’ if n 1is a primitive root,
t

Lemma: 4.

Ry R S

A natural problem 1s that, is the result abovs true to

primitive roots modulo p" (1% 2, the p is an odd prime)? The

problem is solved in {45J . Sun Qi and Li Shuguang have 'prov‘éd

the following theorem.
Theorem , Let p be an odd prime and integer 12 2. VWhen

60 -
p> 2, there exist at least (p—2)p" 2 pairs of primitive roots

.12 ..
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of and B modulo pL ~such that

ad +bB=c (mod pl').
[4b)

Recently, Sun Qi, A have proved the following theorem.
(Hmzf@ |
Theorem Let p“be an odd prime and h &GF(p), h=#C.
1f m23, then there is a primitive root § in ar(p") such that
g+ +--s +67 =l

except m=3, p=11.

For m=3, p=11, the problem above still remains unproved.
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