Nonstandard Arithmetic of Iterated Polynomials

Masahiro Yasumoto (Nagoya university)

Let $*Q$ be an enlargement of the rational number field Q, where by an enlargement, we mean an elementary extension which satisfies ω_1-saturation property. Let $t \in *Q - Q$ be a nonstandard rational number. Then t is transcendental over Q. In this paper, we are concerned with algebraic extensions of a rational function field $Q(t)$ in $*Q$. Structures of such extensions are closely related to diophantine problems.

Let us begin with some definitions about such extensions. We denote by Ω_t the relative algebraic closure of $Q(t)$ in $*Q$.

$$\Omega_t = \overline{Q(t)} \cap *Q$$

For each $d \in N$, we define $Y(t, d)$ to be the number of algebraic extensions of $Q(t)$ of degree d in $*Q$.

$$Y(t, d) = \# \{F \subset *Q \mid [F : Q(t)] = d \}.$$

It is well known [2] that there is a nonstandard integer t such that $Y(t, d) = 0$ for all $d > 1$, in other words, $\Omega_t = Q(t)$. This fact is equivalent to the following Hilbert's irreducibility theorem.

Theorem. For any irreducible polynomial $f(X, Y) \in Q[X, Y]$, there are infinitely many integers n such that $f(X, n)$ is also irreducible.

In his paper [4], P. Roquette proved...
Theorem. If \(t \in ^*\mathbb{Q} - \mathbb{Q} \) is composed of standard primes only, i.e.

\[
t = p_1^{\alpha_1} p_2^{\alpha_2} \ldots p_n^{\alpha_n}
\]

where \(p_1, \ldots, p_n \) are standard primes, \(n \in \mathbb{N} \) and \(\alpha_1, \ldots, \alpha_n \in ^*\mathbb{Z} \), then

\[
\Omega_t = \bigcup_{d \in \mathbb{N}} \mathbb{Q}(p_1^{\lceil \alpha_1/d \rceil} \ldots p_n^{\lceil \alpha_n/d \rceil})
\]

where \(\lceil x \rceil \) denotes the largest integer not more than \(x \).

This theorem can be applied to prove the following theorem [5] in standard number theory.

Theorem. Let \(f(X, T_1, \ldots, T_m) \) be a polynomial over \(\mathbb{Q} \). Assume there exist \(c_1, \ldots, c_m \in \mathbb{Q} \) other than 0 and \(\pm 1 \) such that for any \(m \) integers \(n_1, \ldots, n_m \), there exists an \(r \in \mathbb{Q} \) with

\[
f(r, c_1^{n_1}, \ldots, c_m^{n_m}) = 0.
\]

Then there exist a rational function \(g(T_1, \ldots, T_m) \) over \(\mathbb{Q} \) and \(m \) integers \(k_1, \ldots, k_m \) not more than the \(X \)-degree of \(f(X, T_1, \ldots, T_m) \) such that

\[
f(g(T_1, \ldots, T_m), T_1^{k_1}, \ldots, T_m^{k_m}) = 0.
\]

In case of \(m = 1 \), Prof. Fried pointed out that the theorem can be proved without nonstandard method but in case of \(m \geq 2 \), no proof of the theorem without nonstandard method is known.

Next we consider another type of nonstandard integers. Let \(\varphi(X) \in \mathbb{Z}[X] \), \(a \in \mathbb{Z} \) and \(\alpha \in ^*\mathbb{N} - \mathbb{N} \). Let

\[
t = \varphi^\alpha(a) \in ^*\mathbb{Z}
\]

t may be standard. We have to exclude such trivial cases. \(t \) is standard if and only if \(\varphi^m(a) = \varphi^n(a) \) for some \(m \neq n \). Since \(\varphi(X) \) is a polynomial,
there are only finitely many integers a satisfying the above condition. So in the following, we always assume that a is an integer which does not satisfy the condition.

Let $\varphi(X) = cX + d$ be a linear polynomial where c is a rational number other than 0 and ±1. Then

$$\varphi^\alpha(a) = \left(a - \frac{d}{c - 1}\right)c^\alpha - \frac{d}{c - 1}$$

Hence

$$Q(\varphi^\alpha(a)) = Q(c^\alpha)$$

Therefore by the theorem of Roquette,

$$\Omega_{\varphi^\alpha(a)} = \bigcup_{d \in \mathbb{N}} Q(c^\alpha/d)$$

Next we consider a polynomial $\varphi(X) \in \mathbb{Z}[X]$ of degree at least 2. Then it is easily shown that $Q(\varphi^\alpha(a))$ has a tower of algebraic extensions,

$$Q(\varphi^\alpha(a)) \subset Q(\varphi^\alpha-1(a)) \subset Q(\varphi^\alpha-2(a)) \subset \ldots$$

$$\subset Q(\varphi^{\alpha-i}(a)) \subset \ldots \subset \Omega_{\varphi^\alpha(a)}.$$

So the problem is whether

$$\Omega_{\varphi^\alpha(a)} = \bigcup_{i \in \mathbb{N}} Q(\varphi^{\alpha-i}(a)). \quad (1)$$

But unfortunately there is a counter example of the equation (1). For example, let $\varphi(X) = X^2$, then $\varphi^\alpha(2) = 2^{2^\alpha}$. Hence

$$\bigcup_{i \in \mathbb{N}} Q(\varphi^{\alpha-i}(2)) = \bigcup_{i \in \mathbb{N}} Q(2^{2^{\alpha-i}})$$
On the other hand, by the theorem of Roquette,

$$\Omega_{2^{2^\alpha}} = \bigcup_{d \in \mathbb{N}} Q(2^{[2^\alpha]/d})$$

Since $2^{[2^\alpha/3]}$ is algebraic over $Q(2^{2^\alpha})$ of degree 3 but $Q(2^{2^\alpha-1})$ is algebraic over $Q(2^{2^\alpha})$ of degree 2, then $2^{[2^\alpha/3]}$ is not an element of $Q(2^{2^\alpha-1})$ Therefore the equation does not hold for $\varphi(X) = X^2$. Our aim is to give a condition for a polynomial $\varphi(X)$ to satisfy the equation (1). First let us consider a polynomial $\varphi(X)$ of degree at least 2 which does not satisfy the following condition.

(I) There exist polynomials $\psi(X), \Phi(X)$ and $\Psi(X)$ over K such that $\text{g.c.d.} (\deg(\varphi), \deg(\psi(X))) = 1$, $\deg(\psi) \geq 2$ and $\varphi(\Phi(X)) = \psi(\Psi(X))$.

Theorem 1. Let $\varphi(X) = cX^d + h(X) \in \mathbb{Z}[X]$ be a polynomial of degree at least 3 which does not satisfy the condition (I) where $c \neq 0$ and $\deg(h) \leq d - 3$. Let a be an integer such that $\varphi^m(a) \neq \varphi^n(a)$ for every $m \neq n$. Then for every $\alpha \in \mathbb{N} - N$,

$$\Omega_{\varphi^\alpha(a)} = \bigcup_{i \in \mathbb{N}} Q(\varphi^{\alpha-i}(a)).$$

For proof of Theorem 1, refer to [8]. This theorem can be applied to prove the following theorem in standard number theory.

Theorem 2. Let $\varphi(X)$ and a be as in Theorem 1 and let $f(X,T)$ be a polynomial over \mathbb{Q}. If for any $n \in \mathbb{N}$ there exists an $r \in \mathbb{Q}$ such that

$$f(r, \varphi^n(X)) = 0$$

then there exist a rational function $g(X)$ over \mathbb{Q} and $k \in \mathbb{N}$ such that

$$f(g(T), \varphi^k(T)) = 0.$$
Proof: By assumption of the theorem, there exist $\alpha \in {}^*N - N$ and $x \in {}^*Q$ such that

$$f(x, \varphi^\alpha(a)) = 0$$

By Theorem 1, for some $k \in N$

$$x \in Q(\varphi^{\alpha-k}(a))$$

Let $g(T)$ be a rational function over Q with

$$x = g(\varphi^{\alpha-k}(a)).$$

Then

$$f(g(\varphi^{\alpha-k}(a)), \varphi^k(\varphi^{\alpha-k}(a))) = 0.$$

Since $\varphi^{\alpha-k}(a) \in {}^*Z - Z$, $\varphi^{\alpha-k}(a)$ is transcendental over Q, therefore

$$f(g(T), \varphi^k(T)) = 0$$

as contended.

This is a new theorem proved by nonstandard method. It is not known wether Theorem 2 can be generalized for polynomials of many variables.

References

