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Nonstandard Arithmetic of Iterated Polynomials

Masahiro Yasumoto (Nagoya university)

Let $*Q$ be an enlargement of the rational number field $Q$ , where
by an enlargement, we mean an elementary extension which satisfies $\omega_{1}-$

saturation property. Let $t\in*Q-Q$ be a nonstandard rational number.
Then $t$ is transcendental over $Q$ . In this paper, we are concerned with
algebraic extensions of a rational function field $Q(t)in*Q$ Structures of
such extensions are closely related to diophantine problems.

Let us begin with some deflnitions about such extensions. We denote
by $\Omega_{t}$ the relative algebraic closure of $Q(t)$ in $Q$ .

$\Omega_{t}=\overline{Q(t)}$寡索 $Q$

For each $d\in N$ , we define $Y(t, d)$ to be the number of algebraic extensions
of $Q(t)$ of degree $d$ in $Q$ .

$Y(t, d)=\#$ { $F\subset$
索 $Q|[F$ : $Q(t)].=d$}.

It is well known [2] that there is a nonstandard integer $t$ such that $Y(t, d)=$

$0$ for all $d>1$ , in other words, $\Omega_{t}=Q(t)$ . This fact is equivalent to the
following Hilbert’s irreducibility theorem.

Theorem. For any irreducible polynomial $f(X, Y)\in Q[X, Y]$ , there are
infinitely many integers $n$ such that $f(X, n)$ is also irreducible.

In his paper [4], P.Roquette proved
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Theorem. $tft\in*Q-Q$ is composed of standard primes only, $i.e$.

. $\cdot$ $t=p_{1}^{\alpha_{1}}p_{2^{2}}^{\alpha}\ldots p_{n}^{\alpha_{n}}$

$wherep_{1},$ $\ldots$ , $p_{n}$ are standard primes, $n\in N$ and $\alpha_{1},$ $\ldots\alpha_{n}\in*z$ , then

$\Omega_{t}=\bigcup_{d\in N}Q(p_{1}^{[\alpha_{1}/d]}\ldots p_{n}^{[\alpha_{n}/d]})$

where $[x]$ denotes the largest integer not more than $x$ .
This theorem can be applied to prove the following theorem [5] in

standard number theory.

Theorem. Let $f(X,T_{1}, \ldots,T_{m})$ be a polynomial over Q. Assume the$re$

exist $c_{1},$ $\ldots$ , $c_{m}\in Q$ other than $0$ and $\pm 1$ such that for any $m$ integers
$n_{1},$ $\ldots,$ $n_{m}$ , there exists an $r\in Q$ with

$f(r, \epsilon_{1}^{n_{1}}, \ldots, \iota_{m}^{n_{m}})=0$.

Then there exiat a rational function $g(T_{1}, \ldots,T_{m})$ over $Q$ and $m$ intege$rs$

$k_{1},$
$\ldots,$

$k_{m}$ not $moe$ than the X-degree of $f(X,T_{1}, \ldots,T_{m})$ such that

$f(g(T_{1}, \ldots,T_{m}),T_{1}^{k_{1}}, \ldots,T_{m^{m}}^{k})=0$ .

In case of $m=1$ , Prof. Fried pointed out that the theorem can be
proved without nonstandard method but in case of $m\geq 2$ , no proof of the
theorem without nonstandard method is known.

Next we consider another type of nonstandard integers. Let $\varphi(X)\in$

$Z[X],$ $a\in Z$ and $\alpha\in*N-N$ . Let

$t=\varphi^{\alpha}(a\}\in^{r}Z$

$t$ may be standard. We have to exclude such trivial cases. $t$ is standard if
and only if $\varphi^{m}(a)=\varphi^{n}(a)$ for some $m\neq n$ . Since $\varphi(X)$ is a polynomial,
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there are oniy finitely many integers $a$ satisfying the above condition. So
in the following, we always assume that $a$ is an integer which does not
satisfy the condition.

Let $\varphi(X)=cX+d$ be a linear polynomial where $c$ is a rational
number other than $0and\pm 1$ . Then

$\varphi^{\alpha}(a)=(a-\frac{d}{\epsilon-1})c^{\alpha}-\frac{d}{c-1}$

Hence
$Q(\varphi^{\alpha}(a))=Q(c^{\alpha})$

Therefore by the theorem of Roquette,

$\Omega_{p^{\alpha}(n)}=\bigcup_{\not\in N}Q(c^{[a/d]})$

Next we consider a polynomial $\varphi(X)\in Z[X]$ of degree at least 2.
Then it is easily shown that $Q(\varphi^{\alpha}(a))$ has a tower of algebraic extensions,

$Q(\varphi^{\alpha}(a))\subset Q(\varphi^{\alpha-1}(a))\subset Q(\varphi^{\alpha-2}(a))\subset\ldots$

$\subset Q(\varphi^{\alpha-:}(a))\subset\cdots\subset\Omega_{\varphi^{a}(a)}$ .
So the problem is wether

$\Omega_{\varphi^{a}(a)}=\cup Q(\varphi^{a-i}(a))$ . (1)
ic$N$

But unfortunately there is a counter example of the equation (1). For
example, let $\varphi(X)=X^{2}$ , then $\varphi^{a}(2)=2^{2^{\alpha}}$ . Hence

$\bigcup_{i\in N}Q(\varphi^{\alpha-:}(2))=\bigcup_{i\in N}Q(2^{2^{\alpha-:}})$
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On the other hand, by the theorem of Roquette,

Since $2^{[2^{\alpha}/3]}$ is algebraic over $Q(2^{2^{\alpha}})$ of degree 3 but $Q(2^{2^{a-:}})$ is algebraic
over $Q(2^{2^{\alpha}})$ of degree $2^{i}$ , then $2^{[2^{a}/3]}$ is not an element of $Q(2^{2^{\alpha-i}})$ There-
fore the equation does not hold for $\varphi(X)=X^{2}$ . Our aim is to give a
condition for a polynomial $\varphi(X)$ to satisfy the equation (1). First let us
consider a polynomial $\varphi(X)$ of degree at least 2 which does not satisfy the
following condition.

(I) There exist polynomials $\psi(X),$ $\Phi(X)$ and $\Psi(X)$ over $K$ such that
g.c. $d.(\deg(\varphi), \deg(\psi(X))=1,$ $\deg(\psi)\geq 2$ and $\varphi(\Phi(X))=\psi(\Psi(X))$ .
Ritt[2] and Fried[l] gave a characterization of polynomials satisfying the
condition (I). Now we can state our main theorem.

Theorem 1. Let $\varphi(X)=cX^{d}+h(X)\in Z[X]$ be a polynomial of degree at
$least’\sim 3$ which does not satisfy the condition (If $uJherec\neq 0$ and $deg(h)\leq$

$d-3$. Let $a$ be an integer $such\cdot that\varphi^{m}1a$ ) $\neq\varphi^{n}(a)$ for every $m\neq n$ . Then
for every $\alpha\in*N-N$ ,

$\Omega_{\varphi^{a}(a)}=\bigcup_{i_{\wedge}\in N}Q(\varphi^{\alpha-i}(a))$
.

For proof of Theorem 1, refer to [8]. This theorem can be applied to
prove the following theorem in standard number theory.

Theorem 2. Let $\varphi(X)$ and $a$ be as in Theo$rem1$ $and let $f(X,T)$ be a
polynomial over Q. If for any $n\in N$ there $ex;_{S}ts$ an $r\in Q$ such that

$f(r, \varphi^{n}(X))=0$

then there exiat a rational function $g(X)$ over $Q$ and $k\in N$ such that

$f(g(T),\grave{\varphi}^{k}(T))=0$.
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Proof: By assumption of ihe theorem, there exist $\alpha\in^{-*}N-N$ and $x\in\vee Q$

such that
$f(x, \varphi^{\alpha}(a))=0$

By Theorem 1, for some $k\in N$

$x\in Q(\varphi^{\alpha-k}(a))$

Let $g(T)$ be a rational function over $Q$ with

$x=g(\varphi^{\alpha-k}(a))$ .

Then
$f(g(\varphi^{\alpha-k}(a)), \varphi^{k}(\varphi^{\alpha-k}(a)))=0$ .

Since $\varphi^{\alpha-k}(a)\in*z-Z,$ $\varphi^{\alpha-k}(a)$ is transcendental over $Q$ , therefore

$f(g(T), \varphi^{k}(T))=0$

as contended. $\theta$

This is a new theorem proved by nonstandard method. It is not
known wether Theorem 2 can be generalized for polynomials of many
variables.
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