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Introduction.

The purpose of this note is to give the definition of real
principal symbols for microfunction sclutions of a regular holonomi«
system and study their fundamental properties. Arithmetic of reasl
principal symbols helps explicit calculation of regular holonomic
microfunctions especially when we have to determine all the
hyperfunction solutions of a regular helonomic system supported in
iow-dimensional subvarieties. There are many applications of real

principal symbols. " The detailed theory and applications will be



,181
given in the future paper that the author is pfeparing,

Hyperfﬁnctions wére originéliy intrbduQQG as‘beuhdayy values of
Iholomorphic fuanions by M.Safu in terés af‘lacailcahomolagy. It is
often difficulf to expréss a Cnncréteihyparfﬁnctidn using a set @f
boundary vaiues of holomorphic func%iéns excépt for some cases 0f one
variable function. We-have a}réady Known the method to d=ai with a
hyperfunction using its plane wave expansicn in order to overcome
such difficult?. However, while this method is éowe{fufﬂwhen we

3

treat the hyperfunctions in a small microlocal area, it mav be

3

helpiess when we analyze them in a‘giomai domain. On the other
hand, the hyperfunctions that Qe want to caicuéa{e concretely are
often sclutions of systems of linear differential eguations called
regular holonomic sysiems (see §3}, for example, group-invariant
hyperfunctions appearing in the harmonic aﬁalysis on homogeneous
spaces. See [Muro2ij. .

We shall give a hew method to calculatlte nyperfunctitions by
restricting our attention to hyperfunction solutions of regular
holonomic systems. This meihod is compuling "real principatl
symbois" of the hypérfuﬁctions iséie&d of dealing wifh the
hyperfunctions themselvés. The rea}.principa} symbols are defined

based on the fact that microfunction sojutions of reguliar holonomic

)

e

&
;

systems are obtained by multiplying microdiffereniial operalors of
logarithmic order, which is defined in 81, to a dejta function. - In
this note we shall give the definition of microfuncticn soiutions sf

regular holeonomic systems, which ave called regular hojonomic

L

microfunctions, and state lheir properties in §4%.

The real principal symbol was originally introduced bLv

- 2
&
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[Kashiwarall for microfunction solutions of simple ho}onomié systems. -
Our definition of the real §rincipa1 symbols of regular hoionamic
hicrbfunctioné is a natural generalization bf Kashiwara's defiﬁition.
Many properties of réal prinéipal symbols of simple microfunctidns
éré valid for those of regular holonomic microfunctioﬂs. The éuthar
thinks that real principal symbols aré more‘easily manipﬁlated ihan
the plane wave expansion. Moreovef; a regular holonomic
hyperfunction is completely determined by the real principal éymbolé
on "generic" points of itsbsupport as a microfunction. This follows

immediately from a generai theorem stated in 82.

Notations. Z: the set of integers. ZZO: the set of

non-negative integers. %: the set of real numbers. ) C: the set of

complex numbers.

§1,_ Microdifferential @peratorslof logarithmic order.

We shall in this section give the‘definition of a
micradifferentiai operator of logarithmic order and state some
fundamental properties of it without detailed explanation. All the
properties are paraliel to those of microdiffereﬁtial dperatdrs of |
fractional order defined in [Sato-Kashiwara-Kimura-Oshimal.

Let X be a complex manifold of dimension n and let T*X be its

cotangent bundie. For an arbitrary fixed point (z

% . ,
O,EO)ET X, we take
T o 3 PR 3 s £ . . » g * Y L
a jocal coordinate Lzl,...,zn,gl,...,gn) sf T X near (20,§G;, Let X
be a complex number and ilet m be a non-negative integer. we would
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4

ike to define > sheaf of microdiffereniial operaicors of
like to define the f of microdifferentic ) ator

fractional order x and logarithmic order m, which is denoied by

éx(l,m). A lmcai section of éX{A,m) near {zﬂ,iqg is given by a
formal infinite sum of holomorphic functions defined near izo,§ﬁ>: it
. Y ’7
is presented as
. : : - . ) . © N . .
(1. P(z,D )=y P _.(z,D ),

z i=C " ax-j

where PA_j(z,E) is a holomorphic function defined in a conic
seighborhood § of (ZO,§O) gatisfying the folliowing two conditions:
2_ m+l

-(X=jn po_.(2,8) =0,

i@é}

i1) For any compact set K in @ and £>0, there 2xists a

constant C., such that suplP. . (z,0l<(=j>r-¢.” 9 for
- K K X=j K
i>0.
We denote by &, m) . the set of local sections of &,(x,m) at
X (20,§O) A
(20,§0>L‘ It has naturally a siructure of C-module. We can define
the produét of two local sections in the following way. Let
Cy - YEL ] . i o f i
P(z,DZ)GéxxA,m)(zo’go) and Q(&,Dz,tfxxg, )(Zﬂ,§q) We define the
r ‘ 1= P(z £ (arp,me) ,
product R(z,DZ) P(?,DZ>Q ,Dz)€5xa i, m+8 (2 .¢) by
0’70
(1.3) R(z,D_) 'ﬁ“’ R (z,D )} with
- {7 ) ‘
3> R(z,D, 2=0 ‘1+u~£‘&’1z" with
) : A S' ’ |_j {_a_._._-a : 5 - _a. ,,,,, (04 \
RA+M_£»2,§J. 20 5+k+ ol a:f‘&g) ‘PA~j(Z’§))((Sz) Qu_k(zsg,).
This product is non-commutative. It satisfies ihe associative law :
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(PQ)S=P(QS) where P,Q and S are microdifferentiai operatofs of

logarithmic order, and the distributive law : P(Q+S)=PQ+PS where-
P,Q,and S are microdifferential operators Ofvlogarithmic order and

the fractional orders of @ and S8 are the same.

The above definition of &,.(x,m) ‘ depénds on the choice of

local coordinate systems. However, we may define the sheaf éx(l,m)
free from the coordinate by putting the transition law from the old

coordinate to the new coordinate in the following way. Let

‘z~:=(z;,.

(2”,§~):=(2{,...,z;;gI,...,ég) be the corresponding local coordinate

.,z;) be a new local coordinate system and let

Then the microdifferential

[
-
[e3)
N

operator P(z,D?)=Z ® P (

. .{z,D_Y written in the old coordinate (z,8)
i=0 " x-] z .

is transformed to the one written in new coordinate EQ:O PI—Q(Z~’D2~)

with

A
o o o
- kY ~ _a____ 1 NN e s s ~ Q__ V_~ @___ .
> Ve e ET, (57 2T ke, () AYT2 R NN SR
Here, the indices of 2 in (1.4) run over
~ - ’-47 ly:3 . .. ”7’,' n ‘V,
{1.5) JELEO ’V€£20f (dl, ,dv)E(LZO Y.
=0ty +* v 4o, With Iall,~~~,!av|22,
L=j-v+lot, [+ -+ la [>0.
and we put <g~ (Q—)Bz~>‘=2 n §”‘(§”‘)82~ for BeZ_ "
oz TT4j=1"j 9z j =0 °
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Thus we define the set éX(A,m) ¢ of local sections of

(ZO"O)

microdifferential operators of fractional order A and iogarithmic

order m independently from the choice of local coordinate systems at
; . T oo .

(zo,§0). The sheaf 5X(A;m) on T X is obtained as the sheaf whose

stalk at (z which is also defined

k. . .
O,go?ET X is éx(l,m,

(20,§@)
intrinsically. We call éx(x,m) the sheaf of microdiffereniial
operators of fractional order 1 and of logarithmic order m. The

product of twe global sections of éxil,m) is computed from the

formula (1.3). When §0=0, the stalk éx(l,m){ZO’O) coincides with
the sheaf of differential operators of order X with holomorphic
coefficients if X is a non-negative integer.
Cornciluding this section, we shall define the principal symbol of
a section of éX(A,m), which is a section of the éheaf of hoiomﬁrphiq‘
T X

The "highest" order term PA(Z’DZ) is called the principal part of

functions @..x Let P(z,D )=2,TAP‘ .{z,D_) be a section of & (x,m).
. . 2 1=0"A-3 2 . X :

P(Z,Dz) and the symbol function Pl(z}g) 35 called the principal
symbol of P(Z,DZ). We dénote by g(P)¥{z,%) the principai symbol Qf
P(z,Dz). They afe ffee from the choice of local coordinate systems.
When P(Z,DZ) is a section of éx(x,m) and Q(Z,DZ) 18 a section of |
éx(u,ﬁ), the principal symbol of ihe product PQE&X(1+u,m+£) is
c(PYo(Q).

Let M be a real analytic.manifuid whose complexification is X.
Then éx(k,m)]T*M is a subsheaf of the sheaf 0of micro-lacal operéiars
on T*M and naturally acts on the sheaf of microfunctions on T*M. in

§3 we will state that any microfunction sclution of a reguiar

holonemic system is obtained by multiplying a microdifferential



186

operators to a delta-function if it is defined near a "generic"”
point} i.e., a point which is regular and in regular position. {For
definition, see §3.) Moreover we will see that for a fixed
holonecmic system, microfunctioﬁ solutions are completely determined
by the principal symbols of microdifferential operators acting tﬁ the
delta-functions. This is an important fact when we will deal with a

solution of a regular holonomic system.

82. Holonomic systems and their hyperfunction solutions.

We put &,:= U §,(x,0), which is the sheaf of ordinary

XE€EL X
microdifferential operators on T X. Let n be the projection map
from TX to X.  The direct image mL(E6y) is isomorphic to the sheaf

@X of differential operators on X with holomorphic coefficients.

Let M be a holonomic system on X. That is, M is a left
"coherent @X-moduie whose characteristic variety

ch(m):=supp(5X® v n—1<ﬁ)) is a l.agrangian subvariety. For the

-1 .
n (9X;

details about holonomic systems see [Kashiwara2l and

" [Kashiwara-Kawail. We denote by UiEIAiE the irreducible component
decomposition of ch(®). We put X.:=m(A. ). We denote by X. the
1 1 B 1 reg
set of non-singular points . of Xi' Then we have Ai=TX X, Here
i reg

T:X means the conormal bundle of A in X and stands for the

closure. We say that (z,g)eAi is in regular position with respect

La

. 6] S . .
to A;C if zEXi reg” We denote by Aif the set c¢f points in Ai€ in

regular position with respect to Aim. We say that pechM) is a

- 7 -
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‘regular point in ch(M) if it is a non-singular point of ch(M). We

denote by Ch(m)reg the set of regular points of ch{). The sets

ch (M) and UiEIAiP are open dense subset in ch{(®) and so is

0A0

’ O
Y : d ~h (TR A 1
Ch(m)regn(UiGIAiQ" The camplemgnt of the set gh\ﬁ,regn(UiEEhig) in

ch(ﬁ) is an analytice sﬁbset of codimension larger than one.

Let M bé a real form of X. We would like to study a
hyperfunction saiution on M of M by resolving it to the microfunction
on T*M. The reason why we have considered the set

O. . . . . . . .
Ch(%)regn<UiEIAif) is for two hyperfunctioen solutions which coincide

o, . ; . . .
on the set ch(M) Nndd. . A.) as microfunctions actually coincide as
reg i€l 14
hyperfunctions on M. We shall explain about it more precisely. Let

%M be the sheaf of hyperfunctions on M and let €, be the sheaf of

. . % Ry . '
microfunctions on T M (2TMX). The speciral map Sp:$M — n*(@ )

M
gives an isomoerphism between them. Here, W stands {for the

. . * . ]
projection map T M — M. The sheaf ﬁM is naturally a @X%M—module.

A hyperfunction solution of W is defined to be a section of

%om@ (%,%M) in our situation (see [Kashiwara3l). Let Fl and Fz be
X : ) . - ;

two sections of Homy, (M,B,) and let u be a section of N. Then F, {(w)
& i . ES .

and Fz(u) are sections of hyperfunctions whose singular spectra are

contained in-ch(%)Q:=ch<m>mT*M.

Theorem 2.1 ([Muroill)

Let A€ be an analytic subset in chB®) of complexr codimension
, * ,
targer than one. Letl Ap:=24,nT M aund let F,,F, be two seclions of

Hom, M,B.,0.  I1f 8p(F, (u))=sp(F, (W) on ch(Min~an for euery seclion
@X M 1 A , ® R

u of M, then Flng.
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We may set A€=ch(%)-(ch(ﬁ)

. ;o\ 3 3 12 | - ‘ »
regn(UiEIAj{C’) in this theorem. The,,i

a ﬂyberfunction solution'of a holoncmic system‘is completely
determined by the data On.Ch(m)regn(UiGIAig)nT*M’ In the next
section we shall suppase»that M is a "regular™ holonomic system and _;
define the real principal symbol of a microfunction soluiinn ofiﬁ.
Two locally-defined microfunction solutions-with the same real
principal svmbol coincide with each other. However, note that we
can define the feal principal symbol of a microfunction solution only
at regular points in regular position. =~ Theorem 2.1 guarantees that
it is sufficient to compute the real principal symbols on regular
points of ¢ch(M) in order to determine the hyperfuﬁction sdlution.

This theorem will be practically used for the probf of Theorem 3.5

and Corollary 3.6.

83. Regular ho]onomickmicrofunctions ahd_their real principal

symbols.

We have proved that the data of microfunctiion solutions at
regular points determine the corresponding hyperfunction solﬁtion if
it exists (Theorem 2.1). However, it is not easy to express a
microfunction in a form to easily manipulate. We shall in this
section introduce real principal symbols of regular holonomic
microfunctions and state their fundamental praperties. Real -

principal symbols are helpful to express microfunctions explicitly.

We begin with the review of the definition of regular holonomic

- g -
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‘system following to [Kashiwara2] and [Kashiwara-Kawail. ke set

+&,D +er o+ ED
27X "x “xVx

[? ‘,_ 7 ( - i £ | . o+ o ," ~7
£z mﬁ“gxfax‘xle ) +£Xx2+ +£XA .
1 2+1 - “a

X,

with a complex number A and an integer m. Then £ n is a holonomic

] . . - A T . ]
é,~-module defined near p=(0,dx,>ET X. This is a holonomic system
: 1754 v

X
: * oy . m o

supported in A:={(x,£)€T X; Xi;'-'=XQ=O,£Q ,=ccc=E =0}, Let % be a

holonomic 2y-module on X. We say that B is regular holonomic al a

point pe€ch{M) if ch(M) is non-singular near p and ﬁ§:=(£ aMm> is

isomorphic to a direct sum $j£l n through a quantized contact

(oM |
transformation. In particular, we call ® a regular holonomic svstem
if M is regular holonomic at any point p in Ch<ﬁ}reg.

"Let M be a regular holonomic system on X. Let UEEIA1€=Ch{%) be
an irreducible component decomposition of ch(W). Let M be a real
form of X. The real locus A1R5=AiEOT*M is nol always real
Lagrangian subvariety in T*M. Henceforth, we suppose that

{(3.1) each real locus Ai? is a real Lagrangian subvariety in T M

or a variety of dimension zero.

. o) . . sy - C s -
We let Ai@ be the set of points in regular position wilh respect tio

O O wm ;2( } 7 Y e * £
Aif and let AiQ::AiFni M. The real locus ch(BINT M (resp.
N i Le
s
ch (M NT M) is denoted by chi{f), (resp. ch (M o b
eh( reg Y eh(Brg ( . ha regR

G

Now we g0 to the definition aof the real principal symboil of a
. . . . ' e )
microfunction solution of R. We denote by M the &, -wmodul

. s
Fas
o U N «
5X® -1 TR on T M. Let h:{xn’yq} be a point anud ‘et ¥ be a
no (2 c ’ Lo
X
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local section of #z‘.’mn(g (Wg,@) defined near p. Such a local section F
X

is interpreted as a microfunction solution of mé from our view pointﬁ
For a local section u of mg, F(u) is a section of microfunctiaon
defined near p. We can define the real principal symbol of F(u) if @

p is contained in ch(_‘TR)reg R-

First we suppose that p is contained in the set
C . . . .
. ™ ’
Ch(%)reg Rn(UielAiR)’ i.e., p is a regular point in chM) in regular |
position. From the condition (3.1), p is contained in a smooth real:

Lagrangian subvariety 1\iTLR in T*M. In fact, if Aig is of dimension

% .
zero, it is contained in the zero section T“M. Thus it is not

contained in ch{ Since pEAjg is in regular poasition with -

reg R-
respect to A.F, A, is given as the conormal bundle of m_(A. ). In |
iC C % 1C

\

the real form T*M, the real locus Ai% is given by the real conormal
by

bundle T* M near p. The subvariety K(A.Q) is a non-singular
n*(AiR) iR

subvariety near XOEM, it is written as

s O— » e » LY. IR =.=000— -
(3.1) n(AiR)-{(xl, ,xn)GM, X =X, = Q-O},

by using a suitable local coordinate (X ~~-,xn) near X Then

1’ 0°

O_ oy mesemy = e e.=f =
AiR—{(X,E)eT M,xl— ~XQ—O,€£+1- £h 0} and (il, ,iQ,xQ+1, ’Xn)

forms a local coordinate system on Aig near p.

Proposition 3.1, Let F(u) be a microfunction defined near p in
P (%é,@) and v a section of Wg. Take a
X

local coordinate (X0 x ) defined in (3.1)7 . Then F(u) is

Ai§ with F a section of Hon

written as
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(3.2) F(W=(®P, (x"",D_-))8(x,) " 8(x,),

re X =(x,, """ Yy, x T=(x c++,x ), D _-=(D ce+«,D 3y and D _--
?Jh@ { 1° ’XQ, N A g+1° ‘, n’’ % 1S Xz’ s XQ 1:{ ‘

 ,c+,D_ ) each Pk(x'”,DA!> is a micrcdifferential operator of
Xp+1 Xn X 1 . ,

togarithmic order depending only on x 7 and DX/; S{ty is the

=(D

delta-function of one variable t.

We denote by @k the formal finite sum of microdifferential

operators P. of logarithmic order. This expression {(3.2) is

’ k
uniguely determined.

Remark. A sum 6f severél microdifferential operatars
ZkPk(X,DX) is only formall? defined unless their aifferences of the
fractional orders are integers. However, the microfunction
ZkPk(x/',DXf)é(X/) is wéil defined. Here, we have used the s&hbnl P

instead of Z since we want lo stress that the sum is a formal one.

Now, we may define the real prinéipal symbol of F(u) as a

S 1/2 -1/2 . (@] )
c (| g
section of |QA1R1~ ®|QMI at each point AiRnCh‘&‘regf Here
|8 | and {Q,,| are the sheaves of volume elemenis on A.. and M,

respectively.

Definition 3.2. (A real principal symbol at regular position)
Let F(u) be a microfunction given in (3.2). The real principal

symbol of F(u), which is denoted by I (F(u)) or simply by ¢(F(u)),
' : : ' iR

is defined by



192

(3.3) 0, (F(u)=e, a(Pk)(x”;g’>J!dx Ade 1//Tax].
iR ’ .

Here G(Pk)'s are principal symbols of P, defined in §1 and

k

1A~--Ad§Q and dX:=dX1A"'Aan. The real

(F(un)) is a vector-valued real analytic section

P

dx 2=dXQ+1A"'Aan, d¢ :=d¢

principal symbol GA

iR
-1/2
‘R M
1
Remark. In particular, if M is a simple holonomic system, then
M is a regular holonomic system. In such case the definition of the

real principal symbol has already been given in [Kashiwara2l, which

coincides with the definition (3.2).

The real principal symbol in definition 3.2 is only defined on
Aig. We want to extend the real principal symbol o(F(u)) defined on

i§ to AiQ‘ Such extended section may not always be continuous but

A
is uniquely determinéd. It becomes a real analytic section by
multiplying a locally constant section on Aig of "Maslov's index"
bundle. We suppose that AiR is a»réal Lagrangian‘subvariety in T*M.
We let AikzzAiRnCh(m)reg and NR be the subset of AiR consisting of

points in regular position with respect to Aif' Then, from the

definition of a real principal symb01,=0A (F(u)) is well defined and
iR .

real analytic vector-valued section of iQA !l/2®lQMl
i T 1

-1/2 -
on AiR"NR;

The section OAF (F{(u)) can not always be extended to NR real
iR .

analytically because of a possible gap between theée sections on the
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'diffefent connectéd‘gampnneﬁtsf We héve to introduce the "ﬁasidv's
index” bundle to repair thé gap. |
‘We shall éxpiéih the Maslov's index. Let p be a point in T M.
we set V:iTP(T*M)’,i.e., the tangent space of T#M at p. There 'is
the skew symmetric bilinear form E nalurally introduced from the
symplectic structure on T*M,,, Namely, letting o be the fundamental

& .
1-form on T M, E is defined to be E(vi,vo):=<dm,v AV, with pl,voev.

1
We say that a vector subspace X in V is a Lagrangian piane in V if
every vector in A is orthogonal to X . and if the dimension of X is n.

We denctfe by LGrass(V) the totélity’of all Lagrangian planes in V.

This is called Lagrangian Grassmannian, which has the natural

structure of smooth real analytic variety. For threekelements
T o 0:’ g ~ N 3
Al,kg,xgﬁLGrass(Y), we set t(ll,lz,kg}. sgn{Q) where @ is the
i ® ®) D i ]
quadratlc‘formron X1 32®x3611 Az 13 defined by

Q(Xl,Xg,XB):=E(X1,X0)+E(X2,X3)+E(X3,X1}, and sgn means the signature

of the quadratic form @, i.e., {the number of positive eigenvalues of

QY-{the number of negative eigenvaluves of G}. We call Tt thus
defined the Masiov’'s index of X ,X,,q.
Let LGrass(T$M) be the set U ok LGrass (T (T*M)). Then
peET M P

* . . S . ' :
LGrass(T M) is a fiber bundle whose base space is T*M with the fiber

m
.

ok o . . ) P .
LGrass(Tp\f M)) at p. Then the resiriction LGrass(T M)EA» is a
‘ i
fiber bundle on the non-singular lLagrangian subvariety A:é. The two
: . ' R
sections of LGrass(T M)iA -
iR
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with pGAié are continuous sections. Let u be another continuous

section of LGrass(T*M)iA - satisfying p(p)Ni,(p)=(0) and
‘ iR '

u(p)nAA {p)={0} for each pEAi&. Then we have the following theorepn
‘1 - o
u(p)ﬁAA (p)={0} {for each pEAi§. Then we have the following theoren
iR :
Theorem 3.3. Let Ai@ be a Lagrangian subvariely in ch{)

defined above and let NQ be a subset of Aié consisting of all points

in regular position with respect to Ai@’ Then

1

o n—
(FCu))rxexp (/-1T(x,,, X T DI I

4 M?TAR AirNg
can be extended to the whole A;§ and it is a real analytic section on

14

(3.4) GA.

iR

AiR'
This is a fundamental property of the real principal symbol and
has already been pointed out by Kashiwara in the case of simple

microfunctions.

Definition 3.4. (real principal éymbols at poinis in
non-regular position) We define the value of GA ~-(F{u)) on :R to
iR

be the one such that (3.4) is real analytic.

Thus F(u) has been defined as a section on Aié on the whole Aié’
which may nct be continuous at the points in NR' Such extension
does not depend on the choice of u.

Lastly we shall give two theorems.
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Theorem 3.5..  Let Fi and F2 be two local sections of

%omg (Mg,@w) defined near a point p in chi®y . 1f their real
X { reg

principal symbols G(Fl(u)) and o (F, (u) coincide with each other for

any section u of ﬁg, then'Fl and F2 are the same section.

Corollary 3.6. Let Fl and’F2 be two sections of ffom9 (m,%m>.
4 X H
Let p be a point in ch(ElR)reg and let u be a loecal section of %5 near
P. 1f the real principal symbols c(sp(Fl(u)>) and o(sp(Fz(u))

coincide with each other at every point pech(ﬂﬂ)re and for any

g
gection u of ﬁé, then F1 and F; coincide with each other.

These two theorems follows directly from Theorem 2.1.

References

[Kashiwarall Kashiwara,M., Microlocal calculus of simple
microfunctions, in "Complex Analyéis and Algebraic Geometry” (Iwanami
and Princeton UPj, ed. by Baily,w‘ and Shiota,T.,(1977),369—374.
[Kashiwara2] Kashiwara,M., Micro-local analysis, in Proceedings of
International Congress of Mathematics, 1978, ed. by Olli Lehto,
Vol.l, (1980), 139-150.

[Kashiwaradl Kashiwara,M., Systems of microdifferential equations
(Progress in Math. Vol.34), Bostan, Birkhauser, (1984).

[Kashiwara-Kawail Kashiwara,M. and Kawai,T., On holonomic systems of



196

microdifferential equations III, Publ. RIMS, Kyoto Univ.,17,(1981),
813-979. | |

[Muroll Muro,M., On Uniqﬁeness of hyperfunction solutions of a
holonomic systems, to appear in Ark. Maf.,26 (1988).

[Muro2l Muro,M.; Singular invariant tempered distributions on régular

prehomogeneous vector spaces, to appear in J. of Funet. Anatl. , 16,

(1988)
[Sato-Kashiwara-Kimura-Oshimal Micro-local analysis of

prehomogeneocus vector spaces, nvent. Math.,62,(1980),117-179.

Department of Math.
Kochi University

Kochi 780 JAPAN



