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On Gevrev Singularities of solutions of equations with non svamplectic

characteristics

Tsutomn SAKURAT (7&', R A )
443 K18

(Saitama Univ. Urawa 338)

In this neote we shall construct parametrices for a specific class
of differential operators with non symplectic characteristics and
clarifyv the structure of Gevreyv singularities of scolutions of the

corresponding equations using constructed parametrices.

0. Notation and preliminaries

N

If X 1is an open set of ¥ and uv 2 1, the Gevrev class of

order v: which we denote bv gY(x), is the set of all u e 070X

such that for everv compact set K c X there is a constant ¢

K

et + Ly,

P z € K,

!agu(m)g < C

for all milti—indices o € NN;

We use the following definition of the Gevrey wave front set given

by Hormander [14].

Definition 0.1. If X c R and y € 2°(X) we denote by WE (u)
the complement in T*(X)\O of the set of (z,£) such that there
exist a neighborhood Yy c X of . a conic neighborhood v « QN\O

€ & (X) which is equal to y in

of £ and a bounded sequence U,

U and satisfies
|ak(g)| < c-"”(}("\/;gn", Kk=1.2,-

for some constant ¢ when £ € v, where ﬂk denotes the Fourier
transform of uk'

WFI(U) is also denoted by WFA(u) since this is one of the

with -
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definition of theAanalytic wave front set known to be equivalent to'
the otherﬁ; see e.g. Bony [31]. .

If n denotes the canonical projection of 7*(X)\0 on X then
u € Gv(X\n(WFU(u))) and for a differential operator p with

analytic coefficients, we have

WFV(Pu) c WFv(u) c Char p vy WFV(Pu),

where Char p denotesathe characteristic set of p. We say that p
is gY microhypoellipticlat (z,£) if there is a conic neighborhood

Vo T*(X)\0 of (z,£) such that

WFV(Pu) nv-= WFv(u) nv.

1. Statement of the results

et ¥ be the submanifold in T*(&N)\O of codimension 2d+d’

given by

£, ,.=0},

"d+d

T = (e, 0)er*(RVN0s 5= =g =0, £ =-

where 0 < d < d+d” < N§. With this 3 we set

‘N = = d d :d" = - "=
Rm R xR Rthy,ny" (¢+n N, d'+d"=n)

and denote by £ = (z,p) = (t.n"wn") the dual variables of z = (t,y)

=ty y") € R%xRi:ng:. (In this coordinate 3 = {(t,y.t.n " .n");:

t=t=n"=0, p”=0}.)

For a fixed integer h > 1 we shall consider a differential
operator of order n with polvnomial coefficients of the form:

Y8
< aaﬁyt Dy

|8
[+187 |+(1+R) 18" |—m

(1.1) Pzp(t,D 1D)= E Dai
t' "y Lo+ t
fv1=le
where (o,8,v) = (a,B8°,B",y) € Ndxwd’xwd“xwd' and (thDy) =
(—iat,-iay). Note that the symbol p(t,t,n) has the following

quasi-homogeneity:



(1.2) p(t/xP . 2P aPn a0y = 2P ol coatany . ae0

with p = 1/(1+h).

Po denote the principal svmbol given by

(1.3) _ PQ(t,t,n) = s a tynﬁta_
+

For a point (z,€) = (0,y;0,0,07) € T (|p”| = O) we suppose:
{H-1) There exists a constant s > O such that
log(tson s} = el xl+n  1+1t1M™, (.t e 3hadard
-We also consider the following conditioﬁ due to Gru¥in.

(H=2) For all pn- € R% , Ker p(t.D,n"2a") n y(Rf) = {0}.

Here p(t.Dt,n’,ﬁ“) is considered as an operator acting on Q(Rg)

with a parameter p° € Rd.

Remark. If h =1, (H2) is known to be equivalent to % micro—

hypoellipticity with loss of p/2 derivatives: see e.g. Boutet de
Monvel-Grigis—Helffer [{4], see also Grufin [101,{111,112] and the

other authors [8]1,{15],[281].

Theorem I. Let P be an operator of the form (1.1) satifying (H-1),

(H=2) for (z,8) € . If v = 1+h then P is GY micro-

hypoelliptic at (z,€).
The condition v » 1+h is the best in the sence that

Theorem II. Let P be an operator of the form:

1.4 = p(t.D,,D..) + q(D .Y
(1.4) P=p (t:D,D,) + qlD,.)
_ - ‘ B o L 8"
= > a_ . tT00. 0%+ 3 b,.D".
fo|+18" |<m A A N

(vi1=lal+(1+R) 16" |-m
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sastisfying (H-1) for (0,8) € . Then one can find a neighborhood
U of the origin in RN and a solution u € C{U) of Pu=0 in U

such that for every v < l+h

(1.5) (0,8) € w’vw) c WF,(u) c {(z,)8); zeU, A>0).

If 1 < v < 14k we can get a result on propagation of
singularities of solutions for these operators.
Let A be the involutive submanifold of T*(RN)\O containing

given by
- i AN P
A= {(t9};rv’? (3] )GT—(;{ )\O; n —O)-

Then in the canonical way A defines a bicharacteristic foliation in
T as well as in A; that is, each leaf ro is an integral
submanifold of dimention ¢’ of the vector fields generated by

{8 ,-on, . (Note that = T + for all
Syl . ayd'> (Note tha Tp(ro) TO(E) n p(Z) or all p €

ro-)

Theorem II1. Let Fo be the bicharactaristic leaf passing through
(z,¢) € £ defined as above and W be an open set containing (z,£)
such that FO Nn W is connected. Suppose that P is an operator of

the form (1.1) satisfying (H-1) for (i.é) and that 1 < v < 1+h.

C1f we 2 RY) and WF(PW) ATy W= them either TN W

N WFv(u) =8¢ or TgNW c WFv(u).

Remark, If HR =1 and yp =1 this is a spacial case of Theorem 2
in Grigis—Schapira—-Sijéstrand [9]. See also Sjostrand [29],[30] and

Hasegawa [13] in this connexion.

Example. Let
(1.6) P= 208 + 2.9, +hZex

where o = (el,~~~.ed) € Cd. If
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(1.7) : | SL“:) 1(0,'11{ib>' < }-: (Gé Rdy §611:§G}i+"'+10‘1)’
- «f
{0 ;Ree}_O
fc"l:l,
.- 1+h . YU s R ox g o N )
then P 1is & microhypoelliptic at every point in 7*{27)\0.
In fact, noticing that hxh—la =[5 .xha ] we get by Theoreun
: J % . Vi T,
) N J N
1' of Rothschild-Stein [25]
-1 2 4y 2 .
{(1.8) ~ » Haw ull® + '3 Hmisy ull™ < cltPu,ud i
=1 % =1 I 7y

if (1.7) is fulfilled. This implies (H-2) while (H-1) is evident.

2. A study of the Gruginioperator

We shall construct a right parametrix K for a self—-adjoint.
operator @ = (P*P)k with  Zikm 2 &+1. {Note that the quasi-
homogeneity (1.1), (1.2) and the conditions (H-1), (H-2) are
preserved for @ Qith the order pn vreplaced by ¥ = 2km.) Then
clearly g*(p*p)p* is a left parametrix of .P and the micro-
hypoellipticity of p follows immediatély from that of Q.

In the construction of the parametrix we follow closely Metivier
[21] and Okaji [22]. In this section we shall derive the esiimates

for the inverse of ﬁ = ?yQ?;l.

" 2.1. Grudin operator. Let ¢ = q(t,D .Dy) be an operator of the

t
form (1,1) satisfying (H-1), (H-2) for (z,£) € T. We may assume

(z,£) = (0,e,) = (0;0,...,0,1) without loss of generality;

N , ~ .
henceforth we let £ = (0,7) = (0,0,7) = (0,---,0,1) ¢ RN.

By the fourier transform in v, we consider the equation:
(2.1) ’ q(t.Dnlvlt.n) = uli,n)
in a conic neighborhbdd USXVS 6f '(O;ﬁ) € Rdx(Rn\O) given b?

u. = (terR% jty<ly,
(2.2) &
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Ty °
= - » , o O - » s 18 T .
Ve = a=n",n")eR™NOs (n"|<en_» In"=n"n_I<en,}

q(t,Dt,n) is essentially the same operator that was studied by

- Gru¥in [12]; so we call it Grudin operator.

Now we shall start with the following lemma due to Grufin (: Lemma

3.4 in [12]).

Lemma 2.1. Let Q = q(t;Dt-Dy) be an operator of order M of the
form (1.1) satisfying (H-1) and (H-2) for £ = (0,0,35"). Then there
ecist a conic neighbbrhood' V" of n" aund a constant C such that

for all n = (h‘.n”) € Rd Xy

(2.3) S [P e re M D D812 ar
|8 1<HM

< C f!q(t,Dt,n)v(t)12 dt

for v € Q(Rg), where p = 1/(1+h).
Let us introduce new variables

I = p "-4.__.'_ - p = 0 ‘0
t tnnv n n /nnv n n fnnv ‘nns )
and set
v(t.n,n,) = o(E/n ,n nan"/n, ).

Then in view of (1.2) we have

o - - = — = —onm
(2.4) q(t,Dz.n)v(t,n.nn) n, q(t,Dt,n)v(t.n).‘

d

and the conic neighborhood Uexve blows up into R
. : 7

xy , where V_ =
xV8 ere V8

R%fx{ﬁ"ekd": In"—n"l<g}.
e
By multiplyving n;p(ﬂ—d), (2.3) becones
(2.5) 5 f;(1+(5';+;ilhlﬁ"Q)M_*BiD%B(i,nﬁ)IZ i

{8 1<H

. 2
<C I1q(t.Dz,n)v(t,nn)| dE.



Moreover, we have

Proposition 2.2, ‘Let

Ve o= (n=(h e xe?

4t

£2

s 1 Im p-<e(l+|Re "), |n"—n"{<g}.

(s}

If & is chosen sufficiently small then for all n € V. we have

i

(2.5) with another constant C and there erists a left inverse K(n)

of Q(Z,DE-E) depending holomorphically on n € V. .
2.2 Commutator estimates. We consider the operators

T=8 and(T_‘J:iz (,}-:lizv"'od)o

, . )
J j J
For a sequence [ = (jl,---,jk) e~{:l.~--,:d}k we denote bv ?i the
operator
r.=71v.7. -7,
H Jl Jz ‘?k'

and <> = |1 1 + (L/RYT_| = #j, >0y + (1/hy#lj, <0},

We define the space

228y vi, <> < ko Tou e L9(rRE))

BX(7) = tuel ;

for k € N/h equipped with the norm:

lul, - = DMax <1+16'1>Jur!uui2

R <ry+isk “(r%
- - ‘ . ' 2
depending on pn € V;. Note that - }u{o n is the usual | norm
independent of 53 hence denoted by tu]o. We also define B_k(ﬁ)

the dual space of BX(7).

If 1 1is an operator acting from Q{Rd) into 9’(?d) we set

" {ad T ) y = T i = L - LT i o= &), xd)
{ac J(L fJL] _TJ LJ (J d

-and because the ad Tj’s commite, we denote tor a malti—-index g =
_ L ) wdond
(a+,a_) = (al'-'~’ad,a_1»~ .a_d} € NN\

(ad % = n (ad 7y 7.

.
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If the operator [ from AQ(Rd) into y‘(Rd) can be extended as
a bounded operator in Lz(Rd) we denote by “L“O the norm of thié
extension, otherwise we agree with izl = 4w,

At last, we introduce the norm:

ML, - = Max  (l+ia-DIYT,LT 0
Kol rs4cd>+ick 177J70

for k € N/h. then ”L"k 7 < +o only means that [ 1is bounded from

B P(n) to B_p+k(ﬁ) for all p = 0,1/h,2/h,+ k.

Now let @ = Q(p) = q(i,Dz,ﬁ). Then we can write

(2.6) | am = 3 by 't

‘ <>¥igisy

and (2.5) by:

(2.7) luly 7 < ColQuly  for € V.

We obtain as in Okaiji [22]

Lemma 2.3. [f Q 1is a self-adjoint operator satisfying (2.7) then
there erists a constant €y such that

ad

(2.8) Ll 7 < cyUIaLly + LQlly)  for 7 e V.

Let p be an integer, For real R > 1, zg(ﬁg) denotes the
space of operators | for which there is a constant ¢ such that

for all o =(o,,0_) € NN? and 5 e Vg
o ' foef
ftad 1) (L)”>a<+p,ﬁ < Claf R ;

where > >g< = (1/h)|a+; + Ja_}. Then zg(Vg) becomes a Banach space

in an obvious way.

Lemma 2.4, Let Q be as in Lemma 2.3. Then there are constants Ro

and 02 depending only on Cl and Max Ib] Bl such that if R >

. = . = . 0,5C, o s Mol
Ry and both QL and LQ are in KR(VS) then L is in ﬂR(Vs),

moreover



(2.9) el Mt < Ggfﬁéiu 0 —¢. T el 0 -0 ).
R( 8) ik(vg) , %R(VS)

Proof is parallel to that of Métivier t21] Proposition 2.3 or
Oka ji [22}>Lemmé 7.2 and canl be found in {27]. The foliowing

proposition is just a consequence of this lemma.

Proposition 2.5. Let Q be a seLfvadjointvoperator satisfying (2.7)

such that KQ = QK = Id. Then, if

and let X be the inverse of 5
R is large enough, K is in g( E

2.3. Kernel of the inverse. For an operator K from (&% to

y’(Rd), we denote by ¥(t,s) 1its distribution kernel.

lemma 2.6. [f K is in 9”(?5) with M 2 d+l  then K({.,s8) is in
L (Q de), moreover there erist constants C and R such that for

all o = (a+.a_) € N xN
' 5y S (E. z Rlo y1-e P,
(2.10)  [[(f=3) (24+8-) K(i,.sM | - < ClIKll , _.~ (o (e !)
: t s LZ M =C
zR(ve)

where p = 1/{1+n),

Proof. Note that if g and K* are bounded from [ (Qd) into

d+l(5)

B then X 1is a Hilbert-Schmidf operator with the continuous

kernel such that

< Cclikll

Hf(t ) |l ..
, 2(? xR%) dfl.n
To prove (2.10) we Consider
v o a+-1+h o
(2:11) ((t—s) (85+05) '] K(E.8)
‘ B_ 8”8 B" o_ ha+ o
= 3(+¥t s St 8' -3 (ai+a§) K(t.s),
ghloi+lel teorns of the coefficients 1

where the sum consists of

or -1 with the multi-indeces B, 8", B’

- 4+ B; such that g +g” =

hot_. B +B) =

-G —
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Now » '
g B B 87 = .« hot

. P + Py Y + - -
(2.12) t s 8 a; (¢ s) (82+§§) K(t,s)

“is the distribution kernel of

B B i o, B_ 8

T_ 1, (ad T_) (ad 1) (K)7_T1,%;

which is bounded from 12(R%) into 8Y(7) together with its adjoint.
Since ¥ > d+1 we know (2.12) is a continuous function with 'L2
norm bounded by

CIKN , _o RIO=TFRI% oo, 1)

fR(Vg)

Adding up these estimates we have

%y 1+h

o_
(2.13) I{(T=8) (Bp+az) ") "UKt(E,5) 2

(R xQd)

< CIKll 4 _¢ R o1 +ata, 10

fR(Vg)

provided that R > (2R)h. Also we have

< CUKNy

(2.14) IKCE.S)
L2 (8% s

R
Then a simple interpolation argument yieids (2.10) in view of the

Stirling formula. o

2.4. Symbol of the inierse. We write the operator K of kernel

K{(ft,8) with a symbol k = o(K) in the way that
(2.15) k(5.5 = (207 | et TS T (8, azg.
That is, k is the distribution on R°¢ given by
(2.16) k(z5,27) = I ei(u’z—>K(z+,z++-u)duf

Here and below we use the notation 2 = (z+,z_) =
>
(Z].y"'azd:z__lv"'sz_d) € IR d‘

Since (2.15), (2.16) have a sence as the partial Fourier transform

- 10 -~
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‘dxr{ yooand

the mapping o is clearly an isomorphism between L (
' t b

L {de) Also by the definition of ¢ we have
of (ad Tj)(K)) =8, ol K).

Hence Lemma 2.6 is restated as follows:

Lemmav2.7. Let k = k{n) = ol(K(7)): the symbol of K(n) € fg(V“)

with M 2 d+l., Then there erist constants C. R such that for all o

=(a+,a_) € Ndxwd and n € V

m 5

e - ' —- — - 5
(2.17) 1%k () | < Tkl , _o RN, ) TPl
A M7 L

where p = 1/(1+p).

Now suppose that K(pn) € Zg(Gg) (M > d+1) depends holomorphically

on p. Then we have

Proposition 2.8. Let K(n) be as above and let klz.n) = oiK{ﬁ))(g).

Then there 2zists a constant € such that for {z.n) € dexgi,

d’ o’

with O < g’ < ¢ and for atl {(x.8) = (a+,a_}6},8“) € Ndxﬁdxﬂ xN

(2.18) 10%k(z,m) |
n

o 18I L L) 1B (o )1 P tyParctepn- T,

<C (8_8,
where p = 1/(1+h).
Proof. Recall that
V= e ameed ey Tn 7 i<g(leiRe 57D, [T I<e)

Then we use the Cauchy inequality to obtain

S ikl e (—E—T)IB¥5!$1+§6'l)"}ﬁ'l.

8
3" kIl R :
. a M MeoCy ere
£ (V=) LR(VS)

n ‘R Ve

Applying Lamma 2.7 to afk(ﬁ) we get {(2.18) by mesans of the Sobolev
n
lemma. o

- 11 -
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L) = (E,D.0) = (P*P)k(t.Dz,n) (2km = d+1) for 7 eV

3. Parametrix; proof of Theorem I

In Section 2 we have showed that there is the inverse ‘E(ﬁ) of

such that

m &

t
- q(f,Dz,ﬁ)E(i,§,ﬁ)d§ = 5({—s)ds
with the kernel
R(E.5.) = (2007 [ BTN I
where k satisfies (2.18) in R%xR?x(?G.nR?’) for 0 < g” < g.

t T n

Now we return to the original variables:

t = f/ng, T = Enz, ne = E’ng. n” =n"n_, {n >0)
and set
Rtt,s.n) = (2n) @ I ei<t_s'1>?(t.t.n)dt.'
where
(3.1) R(t.c,n) = n;Zbkm';(z’%.ﬁ)
= n;ZDk"‘ k( tng,;/n;,n'/nz»n”/nn).

Then in view of (2.4)
q(tth!n)k(toson)dS = 6( t’S)dS
- . n . <
pd . ” R (; . et . .
for n € Ve = {(n".n")eR™O0s |n"I<en . In"—n"n l<en }
Let us introduce a cut off function given by Metivier:

lLemma 3.1. For given two cones V1 cc V2 c RN\O and O < p <1

there ezist g € C(RY) and ¢ such that

gle) =0  for £ &V, or [E] <1
(3.2)

- 12 -



gle)y =1 for & evy and 1&] 22

. ‘_ L '
(3.3) | 18%(2)] < c’“‘*l(iui\g?a’
@ £

for all «a, & such that J|o| < (&}, (Lemma 3.1 in [21].)

With p = 1/(1+h) and £ € Vy cc V, = {i=(r,n)eRden; lti<g”,
nevs,}, we take g(g) = g(r,£) as above and set kq(t,t'ﬁ) =

R(t,t.ndglt.n). Then

Proposition 3.2. There erists a constant CO such that

o o
T at

_ + L lal+B i+l 1— ley
(3.4)  1abo kgttoeenr < P e PPl 7P

X('_C_Y_:_;)P‘O(_I( 18" 1 +Xg(g)(_!_6‘_|_)p)%ﬂ”(;Bnl)pis”{_

k3 €1 11

S

1£1%+1n" |

For loa_l+|B] < |&}, where & = {t,n) = (T.n">n") € RN, (o, 8) =

(o, 0_,8",8") € Ndxmdxwd’xmd”, " = 1/(1+h) and Xg is the

characteristic function of the support of vn,g.

Now let ‘xg = kg{t:DysD) = op(kg){ that is, K is the operatgf
defined by the kernel:

. - L <t—g,T>+i<y—u,
(3.5) Ky(toyosow) = (207 [ g9 @R (4o dedn.
Then we have

_’3‘6 . : = * = B =0
( ) 7 QKg | KgQ vg(Dt Ly) plg)

and the follcwing
Proposition 3.3.

(3.7) WF (K ) < (Ctoyrtowston—ti—m) e (RFVIN0: gz, (z.n)eV,).

31
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(3.8) WF]-‘I"}?(KQ) c {(t.y»t;y;‘c,ny"t,—n)GT"(RZN)\O; (Tsﬂ)egz).

Proof. By Lemma 3.3 and Remark 3.4 in Métivier [21] we obtain (3.7)‘

Hence to prove (3.8) it suffices to show that K is in- cl+h’ for

y' # 0. Using the vector field (1/;y’32)<y',ﬂn,> tor integrating
by parts we can prove this as in Case 2 in the proof of Lemma 3.3 in

[21]. o

For any set v we write diag(y) = {(p,b)GVxV}. We have
therefore proved the following theorem; from which Theorem I follows

imnediately.

Theorem 3.4. Let P be an operator of the form (1.1) satisfying
(H-1), (H=2) for (z,8) € £ and let Q = (P*P)k with Z2km = d+1.
Then there are a conic neighborhood V c RN\O of é and an operator

k: &Ry —— 27 (RY) such that for every u e & (’RY)

(3.9) WF Qe = ) n (RYxy) = g,
(3.10) ' WFA(K*QU‘— u) n tRNxV) = ¢
and that

(3.11) , WF{, ,(K) diag(f*(é”)\o),

where WFi+h(K) = {(z,E32,8); (m,f:i,—E)EWFl+h(K)}.

4. Proof of Theorem II

Let £ = (0,0,p") with p* = 0. We consider the operator

p'(t,D,,n"); which is precisely the same one that was studied by

t
Grufin [10].

From the result of Gru¥in [10] we can take ¢ € ¢ and O % vy €

N)

(R such that

(4.1) C ptDnu(t) = —eala),

- 14 -
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- d

where n° € R is fixed with {p°{ = 1. Then

uk(é,y) = expl iaPe<y R o+in<y a0 (AP Y, o = 1/(1+hR)

is a solution of py =0 for every i 2 0. Hence
3 : teo - P
uty) = [ w et a
0 ' .
is a ¢° solution in y = {(t,y',y”)eRN: | Teel jy j<it.

By Lemma 3.7 in Okaiji [22], » satisfies the estimate

0%l < ol )P,

(4.2) WE () € (1,950,007 er=(2¥)\05 x > 0)

in the same way as (3.7).

On the other hand, since p 1is analvtic, siv(O) + 0 for some o

d. Therefore,

€ N

pte
jO in” |

const., [((k+1)}/p + ja]).

ZkXplai+k

) P
(4.3) 4<n“,Dy">ka§u(o,0)1 18%0(0) & M dn

H

This combined with (4.2) implies (03;0,0.,p") € WFv(u) for every

v < 1+, and proot is now complete. p

5. Second microlocalization in Gevrey class

Following Sijostrand [29] we introduce the_Fourier~Bros~Iagolnitzer

transform (F.B.I. tr.):

, |
[ M= 2 pa, (5oe 9 M)

(5.1) T flza)) S

associated to y: T*(QN)\O 3 (£.,&) —> g-if € @g-

WAREN3 is defined on ngRI, holomorphic with respect to 2 and

2
bounded by kCQA{Imzl 42(A+iy;)k “for some ¢, k vreal.

In terms of the F.B.I. tr. we can characterize the Gevrey wave
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tfront set as follows; For f € 9‘(&”). (r.8) ¢ WFU(f) if and only if
there are constants (¢, ¢ > 0 such that

AlImZ!2—C)\l/v -

_(5.2) [T f(z,A)] < Ce for |z-(z-ié)| < e¢.

Let A be the involutive submanifold of T*(RN):

A= ((z.e)er~(RYy; g ==

1 %d,=0} (1<d <NY,

and To be the bicharacteristic leaf pathing through (z,£) € A. y
Then A and ro can be identified with g(A) = {zeCN; Tmy =0} and

k(rgy) = {zeﬁN; Imz =0, gz"=g"-if"} respectively, where z = (27,2") €
o ol

We set wA(z) = {Imz“lzfz; which is the pluri-subharmonic function

canonically associated to A. va § 1is a neighborhood of 2 € x(A).

Vs LOC(Q)

we denote by HA the space of holomorphic functions u(z,A)

in § with a parameter ) > 0 such that for all K cc ¢ and g >

0' there exists CK e with the estimate:

A¢A+8Ai/v

tor z e K. A 2 1.

8]

(9.3) utz, x| < Ck'ee

For 2z € A we also use the notation: y € HX 5 if there is a
) »
neighborhood g of 2z such that gy € HX(mé).

v, loc

If u € HA

(Q) we denoie‘by SX(u) the subset in @ defined

by :

{(5.4) z & SX(u) it and only if there exist a neighborhood CH
of 2 and constants ¢, ¢ > O such that

A¢A—eA1/v

fulz, A} < Ce for gz € @ A1,

By applying the maximum principle to 2z’ r—>
A_l/v(loglu(Z.A)!—AtImz”}z/z) it can be seen easily the following

two lemmas.

Lemma 5.1. [let T be a bicharacteristic leaf in A and' o be a

connected open set in ) containing (i.é). ff u € HX,Z for atl

- 16 -~
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2 € klow) and x(z,8) = 2-if ¢ SX(&) then xlaw) N S?(u? = .

Lemma 5.2. Let (3.8) € A. F e ¢ (R, IF (3.8) ¢ WE (F)  and

1) Vo, hen 3 i & Viroio
-T f e HA,w-iﬁ then «—if ¢ SA(S Fr.

Let us introduce the F.B.I. tr. of second kind along - A following

Lebeau [19]:

2 . 2
fe—x(w“—x") /2 ~xulw -z )</2

(5.5) T2 fluwpeA) = Faorde (ree-a¥yy.

Then T32>f(u.g,k) is a holomorphic function with respect to. » € ¢

with the bound:

A 2

IT&zﬁf(u.u'A)l < 692

!2

| T |
(aklwD X,

+ %gllmw’

Tt was shown in [20] and [2] that the relation between 7iFf

and T(2YfF is

A

.

o’
’ ‘ 5 Py 2
5 €2 = A 2 f hplu =z )Y /2,
(5.6) T flususd) (ZK(l—u ) d% ]

rfle s w” A ) dx .

R

where p = 4 /{1-y ) with an inversion formila:
(5.7) TCL iz, \)

.. g 4 . .

= {132 —ARiﬁ’!/Q(._ﬁ<i*,v’>} 2 ._. RET . Rd&’
2(55&) f e 1 3 TA flz L}i,',z ,u.A)E:TgvTu
Rd AlE"|
CE

where y = £ |/(R+|E"|).

Now we define second wave front sets adapted to the Gevrev class.

{(See also Esser [7].)

Definition 5.3, If 1 < v < 40 and f ¢ 9’(RN}, the second wave
Ffront set along A of f;'denoted by WFAQS(f), is the subset in

TA(T*(RN)\O) defined by the following condition:

(5.8) (£.0,8"567) ¢ WFL D)



if and only if thér* exist ¢, e >0, 0 < Bo < 1 and a decreasing

function o()) with ki$wo(x) 0. such that

_ _ .%[Imm"!2+%n|IMM’l2~cku
(5.9) lT;\Z"f(m,u,)\)l < Ce
. for
(5.10) 0 < u < g A > 0OV, o=k =id ") |+ —(X —iE") | < .

Using (5.6) and (5.7) we can show the following:

v 3 5
1 A,(L’—iﬁ
: I Lok (23¢ = . x (N
if and only if L, (z,8) n WFA,v(f) ¢, where nA.TA(T {R7)I\O) > A

Lemma 5.4. Let (X,£) €e A and f € 9 (RYY. Then T1U'f e d

is the canonical projection.

At last, we introduce the space of partially holomorphic Gevrey
functions Gvdm, as follows: f(z) € Cvﬂm,(Q) if and only if for

every comapct set K cc § there is a constant ¢ such that

lel+ 1, (g 1)V for z e K.

- s 3N '
(5.11) !am.em"f(a)! < C
We have

Lemma 5.5. [f f € 9’(RN)nCvd$,(Q) and 1 £ v < v then T'!'f €

HX’Z for every z € et Harnn) .

6. Proof of Theorem 111

As in Section 2 we suppose that g = 0, £ = (0,0,p7) = (0,.--,0,1)
€ RN\O and set @ = (P*P)k with 2km =2 d+1. Here we also introduce
the pseudo—differential oprator:

' L 2L01+R) , 21
(6.1) Op(r) = Op(n2km/(1+h) =In"l My,
where | 1is a positive integer to be determined. Then Op(r) bhas
the same quasi—homogeneity in its symbol aS"Q ‘has.

Consider the operator @ + Op(r). Then it satisfies (H-2) since

Q¢ 1is non negative self-—adjoint operator at &. We also note that

- 18 -



though not being polynomial, r is holomorphic with the uniform bound

2"”’l‘j(}'{”’”) in a small guasi~homogeneous neighborhood of & of

otlgl

the form:

rd

= {(n",nmrec® ¢ ; ilmn'|<g(;ﬂn;1/(i+h)

+{Ren 1), Qn”/nn—ﬁ“i<e>-

Ve

Now all the results in Section 2 are remain valid for ¢ + Oofp)

and we get a symbol kg(t.t.n) satisfving (3.4) such that
(6.2) » Op(kg)*(Q+0P(r)) = Oplg).

Here g 1is an arbitrary cut off function satisfying (3.3) for p =

1/(1+p) with 1its support in

_ R . e
(6.3) VSO = {(t,n)er*(;{ )\O» ft!-g()nnr In i-Sof?n’ in :/7? n i\go}‘

If (z,£) = (0;0,0,p") € ¥ then the bicharacteristic leaf is Mo

= {(O,y',O;0,0,ﬁ”); v’ eRd‘}‘ For any compact set F ¢ H(Fonw)
there exist a neighborhood U cc OR = {meRN: lzl<R} of F and a

conic neighborhood v of £ such that

(6.4) ‘ WF(Pu) n Ux(V\O) = ¢,

where U, Vv denote the closures of y, Vv respectively.
After replacing u by ¢y with a suitable ¢ € CS(OR) we can
suppose Yy € g‘(OR) with no influence on (6.4).

We fix a conic neighborhood v, of £ with Vy, cc vav, . If we
0

" choose another conic neighborhood vy of ¢ sufficiently small then
the cut off function g in Lemma 3.1 can be taken in the form: g(g)

= g‘(n’,nn)g"(t,n”) so that ‘supp vn,g c {{t,n"sn"): In’i>»81E1}) for

some  5 > 0. |

As in Proposition 3.3 one can see the following:
Proposition 6.1. If -k, satisfies (3.4) with xg(i) =0 for
ln"] < 8lgl (& > 0), then

(6.5) Kot e ¢ chaldiag).

s

=19 -
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where Ké denotes the distribution kernel of Op(kg).

Now we let g be taken as above and write for u € £’(OR)

(6.6) Op(g)u OP(k)*Qu + Op(k )*Op(r)u

I}

Op(kg) Qu + Op(r)Op(kg) U.

We shall apply the theory of second microlocalization along the

involutive submanifold:
A= {(tyston e THRYINO; p7=0).
Hereatter, we also denote the cordinate in T*(RN) by
- =y, " = (t,y") and & =p°, & = (zT,n")

and use the notation in Section 5 without mentioning it.

First we study Op(r)Op(kg)*u, where
21(1+h) , 21

. /"n

2km/‘1+h)e—?n'!

r(g) = .,

was given in (6.1). Now we choose | so that (1+p)—(1/21) > v.
Then
n'n n

where g = (1/v) — (21/(21(144)-1)) > 0. We can see easily the

following:

Lemma 6.2. [f r = O(eac‘""), e >0 for In"t| 2 ngen;/v, Np 0

then for every Uu € 9’(RN)

2 ~1 =
(6.8) Wina(Op(r)u) n o, (Ty) = ¢.

Since Op(kg)(y) c ¢: equivalently Op(kg)*(y’),c g, (6.8) holds

for Op(r)Op(kg)*u. Therefore we have

i3(Op ) v
(6.9) ¢ ’(OT(T)O¥(kg)*U) € HA,z for gll z € x(Iy)

- 20 —



in view of Lemma 5.4.

Next we study Op(kg)*@u_ Let g be another cut off function

given by Lemma 3.1 with two cones Vl’ Vz such that
Vz_cc Vl cc ?2 =V .

Noticing that WF (Qu) c WF (Pu), we then get by (6.4)

(6.10) W (OP()Qu) c WF (PuIn(RYT) c n—l(OR\U),

(6.11) WF (Op(1-3)Qu) < wF (Pun(RYx(R"\P 1) < 0, x(8N\7,).

Hence we can write

(6.12) Qu = x, Op(g)Qu + x, (l=x_. )Op(g)Qu + x,. Op(l-g)Qu
F 0 F 0O
€ ; R £ R

(j ?)1 + 1)2 + 1)3) N

where denotes the characteristic function of each set g ‘and

Xp

FS = {(m’.x")GRN: (", 0YeF, |z"|<g}
with g > 0 so0o small that FS c i.

In the following we assume further that

(6.13) F is convex with an analytic boundary in H(FO),

By (6.10) we see that
i , -1
WFv(vl) c {(w,g);(x’.g’)eTgF(n(ro)),ix“§<e,g"=0} un ({z:ilz"2e}).
Hence by (3.7)
(6.14) Op(k ) *vy € c”(Igt<r8>),

where Int(FS)» denotes the interior of F_.

<

Since supp(vz) c ER\FS’ it follows by Proposition 6.1

144

(6.15) ’ Op(kg)*vz € G dx,(Int(FS)).

Thus by Lemma 5.5,

39
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(6.16)  TCU(Op(k)*uy) € Hy . forall z e x(x (Int(F )nA)).
In view of (6.11),
WF (v3) c 0x(RM\T7;) u rgOR(RN),
Again by (3.7) thignyields

z X v
(6.17) Op(kg) vy € G (Int(FS))-

Consequently, by (6.9) and (6.14)—(6.17), we have

(6.18) Op(g)u = ul + u2‘
where
— : X v A
Uy = Op(kg) (vl + 03) € G (Int(FS))
and
Uy = Op(kg§*v2 + Op(r)Op(kg)*u
with

T‘}>(u2) € HX z‘ for all z € x(n-l(lnt(FS))nrO)Q

Now we apply Lemma 5.1, 5.2 and obtain

(6.19)  If (z,E) € n_l(Int(Fg)) nry and (z.8) ¢ WF (uy)

then 1 '(Int(F ) n Ty 0 WF (up) = .
Because g = 1 in the neighborhood v, of £,
; -1 = (. ~1

WF (uy) n o (Int(Fa?) n Ty = W (u) nn (Int(FS)) nry-

Therefore (6.19) implies Theorem III for W = n-l(Int(Fe));
Since any compact set in ro N W can be covered by a finite

number of such W's we have actually proved Theorem III. o

7. Remarks

The problem to determine the Gevrey class in which certain c”

hypoelliptic operators still remain hypoelliptic, has its origin in a

_..22..._



celebrated examle given by Baouendi-Goulaouic [1]:

P, = ai + 37 + t9%;
Z

i

which has a solution y 4of Pju =0 in a neighborhood of the origin
only belongihg to 62.

Deridj—Zuily [5] and Durand [G] have studied Gevreaey hprf
ellipticity for second order operators and proved, for example,
Gl+h+0 and Gl+h hypoellipticity of the operator (1.6) in Section 1
respectively.

However, as was shown by Parenti-Rodino [24], hypoeilipticity does
not always imply microlocal one. In this respect, Iwasaki (17}
proved among others 02 microhypoellipticity for doublekcharacteristic
operators, Our Theorem I is an extention of this in some sence,
though the operators are much restricted.

Recently, KajitanifWakabayashi also studied Gevrey micro-
hyvpoellipticity in [18] but for more general classes of operators and
obtainedkthe results including our Theorem I as a spacial case.

However our poof by constructing parametrices reviels how the
quasi-homogeneity of operstors relate to‘the lowest order of Gevrey
class in which the operaters remain hypoelliptic and gives a more
precise information on the singularities of solutions (: Proposition
6.1 and Theorem 11T1).

At last, we remark the following: Since Op(kg) act on the space

- of ultra—distribqtiﬂns (Gl+h)‘ preserving local Gl+h

1+h},

4 regulalities

Theorem I and III are valid for u e (g Without any change.
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