On Gevrey Singularities of solutions of equations with non symplectic characteristics

In this note we shall construct parametrices for a specific class of differential operators with non symplectic characteristics and clarify the structure of Gevrey singularities of solutions of the corresponding equations using constructed parametrices.

0. Notation and preliminaries

If X is an open set of \mathbb{R}^N and $v \ge 1$, the Gevrey class of order v; which we denote by $G^V(X)$, is the set of all $u \in C^\infty(X)$ such that for every compact set $K \subset X$ there is a constant C_K with

$$|\partial_x^\alpha u(x)| \leq C_K^{|\alpha|+1}(\alpha!)^{\nu}, \quad x \in K.$$

for all multi-indices $\alpha \in \mathbb{N}^N$.

We use the following definition of the Gevrey wave front set given by Hormander [14].

Definition 0.1. If $X \subset \mathbb{R}^N$ and $u \in \mathcal{Q}'(X)$ we denote by $WF_{\mathcal{V}}(u)$ the complement in $T^*(X) \setminus 0$ of the set of $(\mathring{x}, \mathring{\xi})$ such that there exist a neighborhood $U \subset X$ of \mathring{x} , a conic neighborhood $V \subset \mathbb{R}^N \setminus 0$ of $\mathring{\xi}$ and a bounded sequence $u_k \in \mathcal{E}'(X)$ which is equal to u in U and satisfies

$$|\hat{u}_k(\xi)| \le c^{k+1} (k^{\nu}/|\xi|)^k, \quad k = 1, 2, \cdots$$

for some constant c when $\xi \in V$, where \hat{u}_k denotes the Fourier transform of u_k .

 ${\it WF}_1(u)$ is also denoted by ${\it WF}_A(u)$ since this is one of the

definition of the analytic wave front set known to be equivalent to the others; see e.g. Bony [3].

If π denotes the canonical projection of $T^*(X)\setminus 0$ on X then $u\in G^{\mathcal{V}}(X\setminus \pi(WF_{\mathcal{V}}(u)))$ and for a differential operator P with analytic coefficients, we have

$$WF_{v}(Pu) \subset WF_{v}(u) \subset Char P \cup WF_{v}(Pu)$$
,

where Char P denotes the characteristic set of P. We say that P is G^{V} microhypoelliptic at $(\mathring{x},\mathring{\xi})$ if there is a conic neighborhood $V \subset T^{*}(X) \setminus 0$ of $(\mathring{x},\mathring{\xi})$ such that

$$WF_{v}(Pu) \cap V = WF_{v}(u) \cap V.$$

1. Statement of the results

Let Σ be the submanifold in $T^*(\mathbb{R}^N) \setminus 0$ of codimension 2d+d given by

$$\Sigma = \{(x, \xi) \in T^*(\mathbb{R}^N) \setminus 0: x_1 = \dots = x_d = 0, \xi_1 = \dots = \xi_{d+d} = 0\},$$

where 0 < d < d+d' < N. With this Σ we set

$$\mathbb{R}_{x}^{N} = \mathbb{R}_{t}^{d} \times \mathbb{R}_{y}^{n} = \mathbb{R}_{t}^{d} \times \mathbb{R}_{y}^{d} \times \mathbb{R}_{y}^{d}$$
 (d+n=N, d'+d''=n)

and denote by $\xi = (\tau, \eta) = (\tau, \eta', \eta'')$ the dual variables of x = (t, y) $= (t, y', y'') \in \mathbb{R}^d_t \times \mathbb{R}^d_y \times \mathbb{R}^{d''}_y.$ (In this coordinate $\Sigma = \{(t, y, \tau, \eta', \eta''); t = \tau = \eta' = 0, \eta'' \neq 0\}.$)

For a fixed integer $h \ge 1$ we shall consider a differential operator of order m with polynomial coefficients of the form:

$$(1.1) \qquad P = p(t, D_t, D_y) = \sum_{\substack{|\alpha|+|\beta| \le m \\ |\gamma|=|\alpha|+|\beta'|+(1+h)|\beta''|-m}} a_{\alpha\beta\gamma} t^{\gamma} D_y^{\beta} D_t^{\alpha},$$

where $(\alpha, \beta, \gamma) = (\alpha, \beta', \beta'', \gamma) \in \mathbb{N}^d \times \mathbb{N}^{d'} \times \mathbb{N}^{d''} \times \mathbb{N}^{d}$ and $(D_t, D_y) = (-i\partial_t, -i\partial_y)$. Note that the symbol $p(t, \tau, \eta)$ has the following quasi-homogeneity:

(1.2)
$$p(t/\lambda^{\rho}, \lambda^{\rho}\tau, \lambda^{\rho}\eta^{*}, \lambda\eta^{*}) = \lambda^{\rho m} p(t, \tau, \eta^{*}, \eta^{*}), \quad \lambda > 0$$

with $\rho = 1/(1+h)$.

Let p_0 denote the principal symbol given by

(1.3)
$$\rho_{O}(t,\tau,\eta) = \sum_{\substack{|\alpha|+|\beta|=m\\|\gamma|=h|\beta''|}} a_{\alpha\beta\gamma} t^{\gamma} \eta^{\beta} \tau^{\alpha}.$$

For a point $(\mathring{x}, \mathring{\xi}) = (0, \mathring{y}; 0, 0, \mathring{\eta}") \in \Sigma \ (|\mathring{\eta}"| \neq 0)$ we suppose:

(H-1) There exists a constant c > 0 such that

$$|p_{0}(t,\tau,\eta',\mathring{\eta}'')| \geq e(|\tau|+|\eta'|+|t|^{h})^{m}, \quad (t,\tau,\eta') \in \mathbb{R}^{d} \times \mathbb{R}^{d} \times \mathbb{R}^{d}.$$

We also consider the following condition due to Grusin.

(H-2) For all
$$\eta' \in \mathbb{R}^{d'}$$
, Ker $p(t, D_t, \eta', \mathring{\eta}'') \cap g(\mathbb{R}^d_t) = \{0\}$.

Here $p(t, D_t, \eta', \mathring{\eta}'')$ is considered as an operator acting on $g(\mathbb{R}^d_t)$ with a parameter $\eta' \in \mathbb{R}^d$.

Remark. If h = 1, (H-2) is known to be equivalent to C^{∞} microhypoellipticity with loss of m/2 derivatives; see e.g. Boutet de Monvel-Grigis-Helffer [4], see also Grušin [10],[11],[12] and the other authors [8],[15],[28].

Theorem I. Let P be an operator of the form (1.1) satisfying (H-1), (H-2) for $(\mathring{x},\mathring{\xi}) \in \Sigma$. If $v \ge 1+h$ then P is G^{v} microhypoelliptic at $(\mathring{x},\mathring{\xi})$.

The condition $v \ge 1+h$ is the best in the sence that

Theorem II. Let P be an operator of the form:

(1.4)
$$P = p'(t, D_t, D_{y''}) + q(D_{y'})$$

$$= \sum_{\substack{|\alpha|+|\beta''| \le m \\ |\gamma|=|\alpha|+(1+h)|\beta''|-m}} a_{\alpha\beta''\gamma} t^{\gamma} D_{y''}^{\beta''} D_{t}^{\alpha} + \sum_{|\beta''|=m} b_{\beta} D_{y'}^{\beta'}$$

sastisfying (H-1) for $(0, \mathring{\xi}) \in \Sigma$. Then one can find a neighborhood U of the origin in \mathbb{R}^N and a solution $u \in C^{\infty}(U)$ of Pu = 0 in U such that for every v < 1+h

$$(1.5) \qquad (0,\hat{\xi}) \in WF_{\mathcal{V}}(u) \subset WF_{A}(u) \subset \{(x,\lambda\hat{\xi}); x \in U, \lambda > 0\}.$$

If $1 \le v < 1+h$ we can get a result on propagation of singularities of solutions for these operators.

Let Λ be the involutive submanifold of $T^*(\mathbb{R}^N) \setminus 0$ containing Σ given by

$$\Lambda = \{(t,y;\tau,\eta',\eta'') \in T^*(\mathbb{R}^N) \setminus 0; \eta'=0\}.$$

Then in the canonical way Λ defines a bicharacteristic foliation in Σ as well as in Λ ; that is, each leaf Γ_0 is an integral submanifold of dimention d' of the vector fields generated by $\{\partial_{y_1}, \dots, \partial_{y_{d'}}\}$. (Note that $T_{\rho}(\Gamma_0) = T_{\rho}(\Sigma) \cap T_{\rho}(\Sigma)^{\perp}$ for all $\rho \in \Gamma_0$.)

Theorem III. Let Γ_O be the bicharacteristic leaf passing through $(\mathring{x},\mathring{\xi})\in\Sigma$ defined as above and W be an open set containing $(\mathring{x},\mathring{\xi})$ such that $\Gamma_O\cap W$ is connected. Suppose that P is an operator of the form (1.1) satisfying (H-1) for $(\mathring{x},\mathring{\xi})$ and that $1\leq v<1+h$. If $u\in \mathscr{D}'(\mathbb{R}^N)$ and $\mathrm{WF}_v(Pu)\cap\Gamma_O\cap \mathrm{W}=\phi$ then either $\Gamma_O\cap \mathrm{W}\cap \mathrm{WF}_v(u)=\phi$ or $\Gamma_O\cap \mathrm{W}\subset \mathrm{WF}_v(u)$.

Remark. If h = 1 and v = 1 this is a spacial case of Theorem 2 in Grigis-Schapira-Sjöstrand [9]. See also Sjöstrand [29],[30] and Hasegawa [13] in this connexion.

Example. Let

(1.6)
$$P = \sum_{j=1}^{N-1} \vartheta_{x_j}^2 + \sum_{j=1}^d x_j^{2h} \vartheta_{x_N}^2 + h \sum_{j=1}^d e_j x_j^{h-1} \vartheta_{x_N}^N,$$

where $c = (c_1, \dots, c_d) \in \mathbb{C}^d$. If

(1.7)
$$\sup_{\substack{\langle \sigma, \text{Re} c \rangle = 0 \\ |\sigma|_1 = 1}} |\langle \sigma, \text{Im} c \rangle| < 1 \quad (\sigma \in \mathbb{R}^d, |\sigma|_1 = |\sigma_1| + \dots + |\sigma_d|),$$

then P is G^{1+h} microhypoelliptic at every point in $T^*(\mathbb{R}^N) \setminus 0$.

In fact, noticing that $hx_j^{h-1}\partial_{x_N}=[\partial_{x_j},x_j^h\partial_{x_N}]$ we get by Theorem 1' of Rothschild-Stein [25]

(1.8)
$$\sum_{j=1}^{N-1} \|\partial_{x_j} u\|^2 + \sum_{j=1}^d \|x_j^h \partial_{x_N} u\|^2 \le C |(Pu, u)|$$

if (1.7) is fulfilled. This implies (H-2) while (H-1) is evident.

2. A study of the Grusin operator

We shall construct a right parametrix K for a self-adjoint operator $Q = (P^*P)^k$ with $2km \ge d+1$. (Note that the quasi-homogeneity (1.1), (1.2) and the conditions (H-1), (H-2) are preserved for Q with the order m replaced by M = 2km.) Then clearly $K^*(P^*P)P^*$ is a left parametrix of P and the microhypoellipticity of P follows immediately from that of Q.

In the construction of the parametrix we follow closely Métivier [21] and \overline{O} kaji [22]. In this section we shall derive the estimates for the inverse of $\widehat{Q} = \mathcal{F}_y Q \mathcal{F}_y^{-1}$.

2.1. Grušin operator. Let $Q=q(t,D_t,D_y)$ be an operator of the form (1,1) satisfying (H-1), (H-2) for $(\mathring{x},\mathring{\xi})\in\Sigma$. We may assume $(\mathring{x},\mathring{\xi})=(0,e_N)=(0;0,\cdots,0,1)$ without loss of generality; henceforth we let $\mathring{\xi}=(0,\mathring{\eta})=(0,0,\mathring{\eta}^*)=(0,\cdots,0,1)\in\mathbb{R}^N$.

By the fourier transform in y, we consider the equation:

(2.1)
$$q(t,D_t,\eta)v(t,\eta) = u(t,\eta)$$

in a conic neighborhood $U_{\varepsilon} \times V_{\varepsilon}$ of $(0; \mathring{\eta}) \in \mathbb{R}^d \times (\mathbb{R}^n \setminus 0)$ given by

$$(2.2) U_{\varepsilon} = \{ t \in \mathbb{R}^d : |t| < 1 \},$$

$$V_{\varepsilon} = \{ \eta = (\eta^{\prime}, \eta^{n}) \in \mathbb{R}^{n} \setminus 0; |\eta^{\prime}| < \varepsilon \eta_{n}, |\eta^{n} - \mathring{\eta}^{n} \eta_{n}| < \varepsilon \eta_{n} \}.$$

 $q(t,D_t,\eta)$ is essentially the same operator that was studied by Grušin [12]; so we call it Gru operator.

Now we shall start with the following lemma due to Grušin (: Lemma 3.4 in [12]).

Lemma 2.1. Let $Q = q(t, D_t, D_y)$ be an operator of order M of the form (1.1) satisfying (H-1) and (H-2) for $\mathring{\xi} = (0, 0, \mathring{\eta}")$. Then there exist a conic neighborhood V" of $\mathring{\eta}"$ and a constant C such that for all $\eta = (\eta', \eta") \in \mathbb{R}^{d'} \times V"$

(2.3)
$$\sum_{|\beta| \le M} \int |(|\eta''|^{\rho} + |\eta''| + |t|^{h} |\eta''|)^{M-|\beta|} D_{t}^{\beta} v(t)|^{2} dt$$

$$\leq C \int |q(t, D_{t}, \eta) v(t)|^{2} dt$$

for $v \in \mathcal{G}(\mathbb{R}^d_t)$, where $\rho = 1/(1+h)$.

Let us introduce new variables

$$\overline{t} = t\eta_n^{\rho}, \ \overline{\eta}^{\prime} = \eta^{\prime}/\eta_n^{\rho}, \ \overline{\eta}^{\prime\prime} = \eta^{\prime\prime}/\eta_n, \ (\eta_n > 0)$$

and set

$$\overline{v}(\bar{t},\bar{n},n_n) = v(\bar{t}/n_n,\bar{n},n_n,\bar{n}''/n_n) \,.$$

Then in view of (1.2) we have

(2.4)
$$q(\bar{t}, D_{\bar{t}}, \bar{\eta}) \bar{v}(\bar{t}, \bar{\eta}, \eta_n) = \eta_n^{-\rho m} q(t, D_t, \eta) v(t, \eta),$$

and the conic neighborhood $U_{\varepsilon} \times V_{\varepsilon}$ blows up into $\mathbb{R}^{d} \times \overline{V}_{\varepsilon}$, where $\overline{V}_{\varepsilon} = \mathbb{R}^{d'} \times \{\overline{\eta}^{"} \in \mathbb{R}^{d"}; |\overline{\eta}^{"} - \mathring{\eta}^{"}| < \varepsilon\}$.

By multiplying $\eta_n^{-\rho(M-d)}$, (2.3) becomes

(2.5)
$$\sum_{|\beta| \le M} \int |(1+|\bar{\eta}'|+|\bar{t}|^{h}|\bar{\eta}''|)^{M-|\beta|} D_{\bar{t}}^{\beta} \bar{v}(\bar{t},\eta_{n})|^{2} d\bar{t}$$

$$\leq C \int |q(\bar{t},D_{\bar{t}},\bar{\eta})\bar{v}(\bar{t},\eta_{n})|^{2} d\bar{t}.$$

Moreover, we have

Proposition 2.2. Let

$$\overline{V}_{\mathbf{g}}^{\mathbb{C}} = (\overline{\eta}^{-1}, \overline{\eta}^{n}) \in \mathbb{C}^{d} \times \mathbb{C}^{d}, \quad |\operatorname{Im}[\overline{\eta}^{-1}] < \varepsilon(1 + |\operatorname{Re}[\overline{\eta}^{-1}]), \quad |\overline{\eta}^{n} - \widehat{\eta}^{n}| < \varepsilon).$$

If ϵ is chosen sufficiently small then for all $\bar{n} \in \overline{V}^{\mathbb{C}}_{\epsilon}$ we have (2.5) with another constant C and there exists a left inverse $\overline{K}(\bar{n})$ of $q(\bar{t},D_{\bar{t}},\bar{n})$ depending holomorphically on $\bar{n} \in \overline{V}^{\mathbb{C}}_{\epsilon}$.

2.2 Commutator estimates. We consider the operators

$$T_j = \partial_{\overline{t}_j}$$
 and $T_{-j} = i\overline{t}_j$ $(j = 1, 2, \dots, d)$.

For a sequence $I = (j_1, \dots, j_k) \in \{\pm 1, \dots, \pm d\}^k$ we denote by T_I the operator

$$T_I = T_{j_1} T_{j_2} \cdots T_{j_k}$$

and $\langle I \rangle = |I_{+}| + (1/h)|I_{-}| = \#\{j_{j}>0\} + (1/h)\#\{j_{j}<0\}.$

We define the space

$$\boldsymbol{B}^{k}(\bar{\eta}) = \{u \in L^{2}(\mathbb{R}^{d}) : \forall I, \langle I \rangle \leq k, T_{I}u \in L^{2}(\mathbb{R}^{d})\}$$

for $k \in \mathbb{N}/h$ equipped with the norm:

$$\|u\|_{k,\bar{n}} = \max_{\{I\}+j\leq k} (1+|\bar{n}'|)^{j} \|T_{I}u\|_{L^{2}(\mathbb{R}^{d})}$$

depending on $\bar{\eta} \in \bar{V}_{\varepsilon}^{\mathbb{C}}$. Note that $|u|_{0,\bar{\eta}}$ is the usual L^2 norm independent of $\bar{\eta}$; hence denoted by $|u|_{0}$. We also define $B^{-k}(\bar{\eta})$ the dual space of $B^{k}(\bar{\eta})$.

If L is an operator acting from $g(\mathbb{R}^d)$ into $g'(\mathbb{R}^d)$ we set

$$(ad \ T_j)(L) = [T_j, L] = T_j L - LT_j \quad (j = \pm 1, \dots, \pm d)$$

and because the ad T_j 's commute, we denote for a multi-index $\alpha = (\alpha_1, \dots, \alpha_d; \alpha_{-1}, \dots, \alpha_{-d}) \in \mathbb{N}^d \times \mathbb{N}^d$

$$(ad T)^{\alpha} = \prod_{j} (ad T_{j})^{\alpha_{j}}.$$

If the operator L from $g(\mathbb{R}^d)$ into $g'(\mathbb{R}^d)$ can be extended as a bounded operator in $L^2(\mathbb{R}^d)$ we denote by $\|L\|_0$ the norm of this extension, otherwise we agree with $\|L\|_0 = +\infty$.

At last, we introduce the norm:

$$\|L\|_{k,\bar{\eta}} = \max_{\langle I \rangle + \langle J \rangle + j \le k} (1 + |\bar{\eta}|)^{j} \|T_{I}LT_{J}\|_{0}$$

for $k \in \mathbb{N}/h$, then $\|L\|_{k,\bar{\eta}} < +\infty$ only means that L is bounded from $B^{-p}(\bar{\eta})$ to $B^{-p+k}(\bar{\eta})$ for all $p = 0, 1/h, 2/h, \cdots, k$.

Now let $\overline{Q} = \overline{Q}(\overline{\eta}) = q(\overline{t}, D_{\overline{t}}, \overline{\eta})$. Then we can write

(2.6)
$$\overline{Q}(\overline{\eta}) = \sum_{\langle I \rangle + |\beta| \le M} b_{I,\beta} \overline{\eta}^{\beta} T_{I}$$

and (2.5) by:

$$|u|_{M,\bar{n}} \le C_0 |\overline{Q}u|_0 \quad \text{for } \bar{n} \in \overline{V}_{\varepsilon}^{\mathbb{C}}$$

We obtain as in Okaji [22]

Lemma 2.3. If \overline{Q} is a self-adjoint operator satisfying (2.7) then there exists a constant C_1 such that

$$\|L\|_{M,\bar{n}} \le C_1 (\|\bar{Q}L\|_{0} + \|L\bar{Q}\|_{0}) \quad for \quad \bar{n} \in \bar{V}_{\varepsilon}^{\mathbb{C}}.$$

Let p be an integer. For real R>1, $\mathscr{L}^p_R(\overline{v}^{\mathbb{C}}_{\mathbf{E}})$ denotes the space of operators L for which there is a constant C such that for all $\alpha=(\alpha_+,\alpha_-)\in \mathbb{N}^d\times\mathbb{N}^d$ and $\bar{\eta}\in \overline{V}^{\mathbb{C}}_{\mathbf{E}}$

$$\|(\operatorname{ad}\ T)^{\alpha}(L)\|_{\geq_{\alpha} <+p,\frac{\pi}{n}} \leq C|\alpha|!R^{|\alpha|},$$

where $\Rightarrow_{\alpha} < = (1/h)|\alpha_{+}| + |\alpha_{-}|$. Then $\mathscr{L}_{R}^{p}(\overline{V}_{\epsilon}^{\mathbb{C}})$ becomes a Banach space in an obvious way.

Lemma 2.4. Let \overline{Q} be as in Lemma 2.3. Then there are constants R_0 and C_2 depending only on C_1 and $\operatorname{Max} \|b_{I,\,\beta}\|$ such that if $R > R_0$ and both $\overline{Q}L$ and $L\overline{Q}$ are in $\mathcal{L}_R^0(\overline{V}_{\epsilon}^{\mathbb{C}})$ then L is in $\mathcal{L}_R^M(\overline{V}_{\epsilon}^{\mathbb{C}})$, moreover

Proof is parallel to that of Métivier [21] Proposition 2.3 or Okaji [22] Lemma 7.2 and can't be found in [27]. The following proposition is just a consequence of this lemma.

Proposition 2.5. Let \overline{Q} be a self-adjoint operator satisfying (2.7) and let \overline{K} be the inverse of \overline{Q} such that $\overline{K}\overline{Q} = \overline{Q}\overline{K} = Id$. Then, if K is large enough, \overline{K} is in $\mathcal{L}_R^M(\overline{V}_{\mathbb{S}}^{\mathbb{C}})$.

2.3. Kernel of the inverse. For an operator K from $g(\mathbb{R}^d)$ to $g'(\mathbb{R}^d)$, we denote by $K(\bar{t},\bar{s})$ its distribution kernel.

Lemma 2.6. If K is in $\mathcal{L}_R^M(\overline{V}_{\epsilon}^{\mathbb{C}})$ with $M \geq d+1$ then $K(\bar{t},\bar{s})$ is in $L^2(\mathbb{R}^d \times \mathbb{R}^d)$, moreover there exist constants \overline{C} and \overline{R} such that for all $\alpha = (\alpha_+, \alpha_-) \in \mathbb{N}^d \times \mathbb{N}^d$

$$(2.10) \qquad \|(\overline{t}-\overline{s})^{\alpha_{-}}(\partial_{\overline{t}}+\partial_{\overline{s}})^{\alpha_{+}}K(\overline{t},\overline{s})\|_{L^{2}} \leq \overline{C}\|K\|_{\mathcal{L}^{M}_{R}(\overline{V}_{\varepsilon}^{\mathbb{C}})}\overline{R}^{|\alpha|}(\alpha_{+}!)^{1-\rho}(\alpha_{-}!)^{\rho},$$

where $\rho = 1/(1+h)$.

Proof. Note that if K and K^* are bounded from $L^2(\mathbb{R}^d)$ into $B^{d+1}(\bar{\eta})$ then K is a Hilbert-Schmidt operator with the continuous kernel such that

$$\|K(\bar{t},\bar{s})\|_{L^2(\mathbb{R}^d\times\mathbb{R}^d)} \leq C\|K\|_{d+1,\bar{\eta}}.$$

To prove (2.10) we consider

$$(2.11) \qquad \left((\bar{t} - \bar{s})^{\alpha} - (\partial_{\bar{t}} + \partial_{\bar{s}})^{\alpha} + \right)^{1+h} K(\bar{t}, \bar{s})$$

$$= \sum_{(\pm)} \bar{t}^{\beta} - \frac{\beta}{\bar{s}} - \frac{\beta}{\bar{t}} + \frac{\beta}{\bar{s}} + (\bar{t} - \bar{s})^{\alpha} - (\partial_{\bar{t}} + \partial_{\bar{s}})^{h\alpha} + K(\bar{t}, \bar{s}),$$

where the sum consists of $2^{h|\alpha_-|+|\alpha_+|}$ terms of the coefficients 1 or -1 with the multi-indeces β'_- , β'_- , β'_+ , β''_+ such that $\beta'_-+\beta''_-=h\alpha_-$, $\beta'_++\beta''_+=\alpha_+$.

Now

(2.12)
$$\bar{t}^{\beta'-\bar{\beta}''-\bar{\beta}''+\bar{\beta}''+\bar{\beta}''+\bar{t}-\bar{s}})^{\alpha_{-}}(\bar{\partial}_{\bar{t}}+\bar{\partial}_{\bar{s}})^{h\alpha_{+}}K(\bar{t},\bar{s})$$

is the distribution kernel of

$$T_{-}^{\beta'_{-}\beta''_{-}}$$
 (ad T_{-}) α_{-} (ad T_{+}) $\alpha_{+}^{\alpha_{+}}$ (K) $T_{-}^{\beta'_{-}\beta''_{+}}$;

which is bounded from $L^2(\mathbb{R}^d)$ into $B^M(\bar{\eta})$ together with its adjoint. Since $M \ge d+1$ we know (2.12) is a continuous function with L^2 norm bounded by

$$C\|K\|_{\mathcal{L}^{M}_{R}(\overline{V}^{\mathbb{C}}_{\varepsilon})}^{R}\|_{\alpha_{-}|+h|\alpha_{+}|(|\alpha_{-}|+h|\alpha_{+}|)!}$$

Adding up these estimates we have

$$(2.13) \qquad \|\{(\bar{t}-\bar{s})^{\alpha_{-}}(\partial_{\bar{t}}+\partial_{\bar{s}})^{\alpha_{+}}\}^{1+h}K(\bar{t},\bar{s})\|_{L^{2}(\mathbb{R}^{d}\times\mathbb{R}^{d})}$$

$$\leq C\|K\|_{\mathcal{L}^{M}_{R}(\overline{V}_{s}^{\mathbb{C}})}^{\overline{R}^{|\alpha|}}(|\alpha_{-}|+h|\alpha_{+}|)!$$

provided that $\overline{R} \ge (2R)^h$. Also we have

Then a simple interpolation argument yields (2.10) in view of the Stirling formula. \Box

2.4. Symbol of the inverse. We write the operator K of kernel $K(\bar{t},\bar{s})$ with a symbol $k=\sigma(K)$ in the way that

(2.15)
$$K(\bar{t},\bar{s}) = (2\pi)^{-d} \int e^{i\langle \bar{t}-\bar{s},\bar{\tau}\rangle} k(\bar{t},\bar{\tau}) d\bar{\tau}.$$

That is, k is the distribution on \mathbb{R}^{2d} given by

(2.16)
$$k(z^{+},z^{-}) = \int e^{i\langle u,z^{-}\rangle} K(z^{+},z^{+}+u) du.$$

Here and below we use the notation $z = (z^+, z^-) = (z_1, \dots, z_d; z_{-1}, \dots, z_{-d}) \in \mathbb{R}^{2d}$.

Since (2.15), (2.16) have a sence as the partial Fourier transform

the mapping σ is clearly an isomorphism between $L^2(\mathbb{R}^d_{\mathbf{z}}\mathbb{R}^d)$ and $L^2(\mathbb{R}^{2d}_{\mathbf{z}})$. Also by the definition of σ we have

$$\sigma((\text{ad }T_j)(K)) = \partial_{Z_j} \sigma(K).$$

Hence Lemma 2.6 is restated as follows:

Lemma 2.7. Let $k = k(\bar{\eta}) = \sigma(K(\bar{\eta}))$; the symbol of $K(\bar{\eta}) \in \mathcal{I}_R^M(\bar{V}_{\mathcal{E}}^{\mathbb{C}})$ with $M \ge d+1$. Then there exist constants \bar{C} , \bar{R} such that for all $\alpha = (\alpha_+, \alpha_-) \in \bar{\mathbb{N}}^d \times \mathbb{N}^d$ and $\bar{\eta} \in \bar{V}_{\mathcal{E}}^{\mathbb{C}}$

$$\|\partial_z^{\alpha} k(\bar{\eta})\|_{L^2(\mathbb{R}^{2d}_z)} \leq \bar{c} \|K\|_{\mathcal{L}^{M}_{R}(\bar{V}^{\mathbb{C}}_{\varepsilon})} \bar{R}^{|\alpha|}(\alpha_+!)^{1-\rho}(\alpha_-!)^{\rho}$$

where $\rho = 1/(1+h)$.

Now suppose that $K(\bar{\eta}) \in \mathcal{L}_R^M(\bar{V}_{\mathbf{E}}^{\mathbb{C}})$ $(M \ge d+1)$ depends holomorphically on $\bar{\eta}$. Then we have

Proposition 2.8. Let $K(\bar{\eta})$ be as above and let $k(z,\bar{\eta}) = \sigma(K(\bar{\eta}))(z)$. Then there exists a constant C such that for $(z,\bar{\eta}) \in \mathbb{R}^{2d} \times \overline{V}_{\epsilon}^{\mathbb{C}}$, with $0 < \epsilon' < \epsilon$ and for all $(\alpha,\beta) = (\alpha_+,\alpha_-,\beta',\beta'') \in \mathbb{N}^d \times \mathbb{N}^d \times \mathbb{N}^d \times \mathbb{N}^d$

$$(2.18) \qquad |\partial_z^{\alpha} \partial_{\bar{n}}^{\beta} k(z, \bar{n})|$$

$$\leq C^{|\alpha|+|\beta|+1}(\frac{1}{\epsilon-\epsilon'})^{|\beta|} (\alpha_+!)^{1-\rho}(\alpha_-!)^{\rho}\beta!(1+|\bar{\eta}'|)^{-|\beta'|},$$

where $\rho = 1/(1+h)$.

Proof. Recall that

$$\overline{V}_{\varepsilon}^{\mathbb{C}} = \{ \bar{\eta} = (\bar{\eta}^{\,\prime}, \bar{\eta}^{\,\prime\prime}) \in \mathbb{C}^{d} \times \mathbb{C}^{d}^{\,\prime\prime}; \mid \text{Im } \bar{\eta}^{\,\prime} \mid <_{\varepsilon} (1 + |\text{Re } \bar{\eta}^{\,\prime}|), \mid \bar{\eta}^{\,\prime\prime} - \hat{\eta}^{\,\prime\prime} \mid <_{\varepsilon} \}.$$

Then we use the Cauchy inequality to obtain

$$\|\partial_{\bar{\eta}}^{\beta}K\|_{\mathcal{L}^{M}_{R}(\overline{V}_{\varepsilon}^{\mathbb{C}})} \leq \|K\|_{\mathcal{L}^{M}_{R}(\overline{V}_{\varepsilon}^{\mathbb{C}})} (\frac{n}{\varepsilon - \varepsilon})^{|\beta|} \beta! (1 + |\bar{\eta}'|)^{-|\beta'|}.$$

Applying Lamma 2.7 to $\partial_{\bar{\eta}}^{\beta} K(\bar{\eta})$ we get (2.18) by means of the Sobolev

lemma. o

3. Parametrix; proof of Theorem I

In Section 2 we have showed that there is the inverse $\overline{K}(\bar{\eta})$ of $\overline{Q}(\bar{\eta}) = q(\bar{t}, D_{\bar{t}}, \bar{\eta}) = (P^*P)^k (t, D_{\bar{t}}, \eta) \ (2km \ge d+1)$ for $\bar{\eta} \in \overline{V}_{\epsilon}^{\mathbb{C}}$ such that

$$q(\bar{t}, D_{\bar{t}}, \bar{\eta}) \bar{K}(\bar{t}, \bar{s}, \bar{\eta}) d\bar{s} = \delta(\bar{t} - \bar{s}) d\bar{s}$$

with the kernel

$$\overline{k}(\bar{t},\bar{s},\bar{\eta}) = (2\pi)^{-d} \int e^{i\langle \bar{t}-\bar{s},\bar{\tau}\rangle} \overline{k}(\bar{t},\bar{\tau},\bar{\eta}) d\bar{\tau},$$

where \bar{k} satisfies (2.18) in $\mathbb{R}^d_{\bar{t}} \times \mathbb{R}^d_{\bar{t}} \times (\bar{v}^{\mathbb{C}}_{\epsilon}, \cap \mathbb{R}^{d'}_{\bar{n}})$ for $0 < \epsilon' < \epsilon$.

Now we return to the original variables:

$$t=\bar{t}/\eta_n^{\rho},\ \tau=\bar{\tau}\eta_n^{\rho},\ \eta'=\bar{\eta'}\eta_n^{\rho},\ \eta''=\bar{\eta''}\eta_n^{\eta},\ (\eta_n>0)$$

and set

$$\hat{k}(t,s,n) = (2\pi)^{-d} \int e^{i\langle t-s,\tau\rangle} \hat{k}(t,\tau,n) d\tau,$$

where

(3.1)
$$\widehat{k}(t,\tau,\eta) = \eta_n^{-2\rho km} \, \overline{k}(\overline{t},\overline{\tau},\overline{\eta})$$

$$= \eta_n^{-2\rho km} \, \overline{k}(t\eta_n^\rho,\tau/\eta_n^\rho,\eta^\prime/\eta_n^\rho,\eta^{\prime\prime}/\eta_n).$$

Then in view of (2.4)

$$q(t,D_t,\eta)\hat{R}(t,s,\eta)ds = \delta(t-s)ds$$

$$\text{for} \quad \eta \in V_{\varepsilon} = \{(\eta', \eta'') \in \mathbb{R}^n \setminus 0; \mid \eta' \mid < \varepsilon \eta_n, \mid \eta'' - \tilde{\eta}'' \eta_n \mid < \varepsilon \eta_n \}.$$

Let us introduce a cut off function given by Métivier:

Lemma 3.1. For given two cones $V_1 \subset V_2 \subset \mathbb{R}^N \setminus 0$ and $0 < \rho < 1$ there exist $g \in C^{\infty}(\mathbb{R}^N)$ and C such that

$$g(\xi) = 0 \quad for \quad \xi \notin V_2 \quad or \quad |\xi| \le 1$$
(3.2)

$$g(\xi) = 1$$
 for $\xi \in V_1$ and $|\xi| \ge 2$

and

$$|\partial_{\xi}^{\alpha}g(\xi)| \leq C^{|\alpha|+1} \left(\frac{|\alpha|}{|\xi|}\right)^{\rho|\alpha|}$$

for all α , ξ such that $|\alpha| \leq |\xi|$. (Lemma 3.1 in [21].)

With $\rho=1/(1+h)$ and $\xi\in V_1\subset V_2=\{\xi=(\tau,\eta)\in\mathbb{R}^d\times\mathbb{R}^n\colon |\tau|<\varepsilon$, $\eta\in V_{\varepsilon}$, we take $g(\xi)=g(\tau,\xi)$ as above and set $k_g(t,\tau,\eta)=\widehat{k}(t,\tau,\eta)g(\tau,\eta)$. Then

Proposition 3.2. There exists a constant c_0 such that

$$(3.4) \quad |\partial_{\eta}^{\beta} \partial_{\tau}^{\alpha_{-}} \partial_{t}^{\alpha_{+}} k_{g}(t, \tau, \eta)| \leq C_{0}^{|\alpha| + |\beta| + 1} (1 + |t|)^{|\beta|} (|\alpha_{+}|^{1 - \rho} |\xi|^{\rho})^{|\alpha_{+}|}$$

$$\times \left(\frac{|\alpha_{-}|}{|\xi|}\right)^{\rho + |\alpha_{-}|} \left(\frac{|\beta'|}{|\xi|^{\rho} + |\eta'|} + \chi_{g}(\xi) \left(\frac{|\beta'|}{|\xi|}\right)^{\rho}\right)^{|\beta'|} \left(\frac{|\beta''|}{|\xi|}\right)^{\rho + |\beta''|}$$

for $|\alpha_-|+|\beta_-| \leq |\xi_-|$, where $\xi_- = (\tau,\eta) = (\tau,\eta',\eta'') \in \mathbb{R}^N$, $(\alpha,\beta) = (\alpha_+,\alpha_-,\beta',\beta'') \in \mathbb{R}^d \times \mathbb{R}^d \times \mathbb{R}^d \times \mathbb{R}^d$, $\rho = 1/(1+h)$ and χ_g is the characteristic function of the support of ∇_{η} , g.

Now let $K_g = k_g(t, D_t, D_y) = \operatorname{Op}(k_g)$; that is, K_g is the operator defined by the kernel:

(3.5)
$$K_g(t,y,s,w) = (2\pi)^{-N} \int e^{i\langle t-s,\tau\rangle + i\langle y-w,\eta\rangle} k_g(t,\tau,\eta) d\tau d\eta.$$

Then we have

(3.6)
$$QK_{g} = K_{g}^{*}Q = g(D_{t}, D_{y}) = Op(g)$$

and the following

Proposition 3.3.

$$(3.7) WF_A(K_g) \subset \{(t,y,t,w;\tau,\eta,-\tau,-\eta)\in T^*(\mathbb{R}^{2N})\setminus 0\colon y^*=w^*,\ (\tau,\eta)\in \overline{V}_2\},$$

$$(3.8) WF_{1+h}(K_g) \subset \{(t,y,t,y;\tau,\eta,-\tau,-\eta)\in T^*(\mathbb{R}^{2N})\setminus 0; (\tau,\eta)\in \overline{V}_2\}.$$

Proof. By Lemma 3.3 and Remark 3.4 in Métivier [21] we obtain (3.7). Hence to prove (3.8) it suffices to show that K is in G^{1+h} for $y' \neq 0$. Using the vector field $(1/|y'|^2)\langle y', D_{\eta'} \rangle$ for integrating by parts we can prove this as in Case 2 in the proof of Lemma 3.3 in [21]. \square

For any set V we write $\operatorname{diag}(V) = \{(\rho, \rho) \in V \times V\}$. We have therefore proved the following theorem; from which Theorem I follows immediately.

Theorem 3.4. Let P be an operator of the form (1.1) satisfying (H-1), (H-2) for $(\mathring{x},\mathring{\xi}) \in \Sigma$ and let $Q = (P^*P)^k$ with $2km \ge d+1$. Then there are a conic neighborhood $V \subset \mathbb{R}^N \setminus 0$ of $\mathring{\xi}$ and an operator $K: \mathscr{E}'(\mathbb{R}^N) \longrightarrow \mathscr{D}'(\mathbb{R}^N)$ such that for every $u \in \mathscr{E}'(\mathbb{R}^N)$

$$(3.9) WF_A(QKu - u) \cap (\mathbb{R}^N \times V) = \phi,$$

$$(3.10) WF_{A}(K^{*}Qu - u) \cap (\mathbb{R}^{N} \times V) = \emptyset$$

and that

$$(3.11) WF_{1+h}(K) \subset \operatorname{diag}(T^*(\mathbb{R}^N) \setminus 0),$$

where
$$WF_{1+h}(K) = \{(x,\xi;\widetilde{x},\widetilde{\xi}); (x,\widetilde{x};\xi,-\widetilde{\xi})\in WF_{1+h}(K)\}.$$

4. Proof of Theorem II

Let $\hat{\xi} = (0,0,\mathring{\eta}")$ with $\mathring{\eta}" \neq 0$. We consider the operator $p'(t,D_t,\mathring{\eta}")$; which is precisely the same one that was studied by Grušin [10].

From the result of Grušin [10] we can take $c \in \mathbb{C}$ and $0 \neq v \in g(\mathbb{R}^N)$ such that

(4.1)
$$p'(t, D_t, \hat{\eta}'')v(t) = -c^{m}q(\bar{\eta}'),$$

where $\bar{\eta}' \in \mathbb{R}^{d'}$ is fixed with $|\bar{\eta}'| = 1$. Then

$$u_{\lambda}(t,y) = \exp(i\lambda^{\rho} e^{\langle y', \tilde{\eta}' \rangle + i\lambda^{\langle y'', \tilde{\eta}'' \rangle}}) v(\lambda^{\rho} t), \quad \rho = 1/(1+h)$$

is a solution of Pu = 0 for every $\lambda \ge 0$. Hence

$$u(t,y) = \int_{0}^{+\infty} u_{\lambda}(t,y)e^{-\lambda^{\rho}}d\lambda$$

is a C^{∞} solution in $U = \{(t, y', y'') \in \mathbb{R}^N : |\operatorname{Im}_C| |y'| < 1\}.$

By Lemma 3.7 in \overline{O} kaji [22], v satisfies the estimate

$$|\partial_t^\alpha v(t)| \leq c^{|\alpha|+1} (\alpha!)^{1-\rho}.$$

Hence we have

$$(4.2) WF_{A}(u) \subset \{(t,y;0,0,\lambda\mathring{\eta}^{n})\in T^{*}(\mathbb{R}^{N})\setminus 0; \lambda > 0\}$$

in the same way as (3.7).

On the other hand, since v is analytic, $\partial_t^\alpha v(0) \neq 0$ for some $\alpha \in \mathbb{N}^d$. Therefore,

(4.3)
$$|\langle \hat{\eta}^{n}, D_{y^{n}} \rangle^{k} \partial_{t}^{\alpha} u(0,0)| = \int_{0}^{+\infty} |\hat{\eta}^{n}|^{2k} \lambda^{\rho |\alpha| + k} |\partial_{t}^{\alpha} v(0)| e^{-\lambda^{\rho}} d\lambda$$

$$= \text{const. } \Gamma((k+1)/\rho + |\alpha|).$$

This combined with (4.2) implies $(0;0,0,\mathring{n}^n) \in WF_{\mathcal{V}}(u)$ for every v < 1+h, and proof is now complete. \square

5. Second microlocalization in Gevrey class

Following Sjöstrand [29] we introduce the Fourier-Bros-Iagolnitzer transform (F.B.I. tr.):

(5.1)
$$T^{(1)}f(z,\lambda) = \int e^{-\lambda(z-x)^2/2} f(x) dx, \quad (f \in g'(\mathbb{R}^N))$$

associated to $\kappa: T^*(\mathbb{R}^N) \setminus 0 \ni (x,\xi) \longmapsto x - i\xi \in \mathbb{C}_z^N$.

 $T^{(1)}f$ is defined on $\mathbb{C}_{Z}^{N}\times\mathbb{R}_{\lambda}^{+}$, holomorphic with respect to z and bounded by $Ce^{\lambda |\operatorname{Im} z|^{2}/2}(\lambda+|y|)^{k}$ for some C, k real.

In terms of the F.B.I. tr. we can characterize the Gevrey wave

front set as follows: For $f \in g'(\mathbb{R}^N)$, $(\mathring{x}, \mathring{\xi}) \notin WF_{v}(f)$ if and only if there are constants C, c > 0 such that

(5.2)
$$|T^{(1)}f(z,\lambda)| \le Ce^{\frac{\lambda}{2}|\operatorname{Im}z|^2 - c\lambda^{1/\nu}}$$
 for $|z - (\hat{x} - i\hat{\xi})| < c$.

Let Λ be the involutive submanifold of $T^*(\mathbb{R}^N)$:

$$\Lambda = \{(x,\xi) \in T^*(\mathbb{R}^N); \ \xi_1 = \dots = \xi_{d'} = 0\} \ (1 \le d' < N),$$

and Γ_0 be the bicharacteristic leaf pathing through $(\mathring{x},\mathring{\xi}) \in \Lambda$. Then Λ and Γ_0 can be identified with $\kappa(\Lambda) = \{z \in \mathbb{C}^N; \operatorname{Im}_{Z'}=0\}$ and $\kappa(\Gamma_0) = \{z \in \mathbb{C}^N; \operatorname{Im}_{Z'}=0, z''=\mathring{x}''-i\mathring{\xi}''\}$ respectively, where $z = (z',z'') \in \mathbb{C}^{d'} \times \mathbb{C}^{N-d'}$.

We set $\varphi_{\Lambda}(z) = |\operatorname{Im} z^*|^2/2$; which is the pluri-subharmonic function canonically associated to Λ . If Ω is a neighborhood of $\mathring{z} \in \kappa(\Lambda)$, we denote by $H^{\mathcal{V}, loc}_{\Lambda}(\Omega)$ the space of holomorphic functions $u(z, \lambda)$ in Ω with a parameter $\lambda > 0$ such that for all $K \subset \Omega$ and $\varepsilon > 0$ there exists $C_{K,\varepsilon}$ with the estimate:

(5.3)
$$|u(z,\lambda)| \le C_{k,\varepsilon} e^{\lambda \varphi_{\Lambda} + \varepsilon \lambda^{1/\nu}} \quad \text{for } z \in K, \ \lambda \ge 1.$$

For $\dot{z} \in \Lambda$ we also use the notation: $u \in \mathcal{H}^{\mathcal{V}}_{\Lambda}, \dot{z}$ if there is a neighborhood $\omega_{\dot{z}}$ of \dot{z} such that $u \in \mathcal{H}^{\mathcal{V}}_{\Lambda}(\omega_{\dot{z}})$.

If $u \in \mathcal{H}^{\nu, \mathrm{loc}}_{\Lambda}(\Omega)$ we denote by $S^{\nu}_{\Lambda}(u)$ the subset in Ω defined by:

(5.4) $\mathring{z} \notin S^{\nu}_{\Lambda}(u)$ if and only if there exist a neighborhood $\omega_{\mathring{z}}$ of \mathring{z} and constants C, c > 0 such that

$$|u(z,\lambda)| \le Ce^{\lambda \varphi_{\Lambda} - c\lambda^{1/\nu}}$$
 for $z \in \omega_{z}^{\circ}, \lambda \ge 1$.

By applying the maximum principle to $z' \longmapsto \lambda^{-1/\nu} (\log |u(z,\lambda)| - \lambda |\operatorname{Im} z''|^2/2)$ it can be seen easily the following two lemmas.

Lemma 5.1. Let Γ_0 be a bicharacteristic leaf in Λ and ω be a connected open set in Γ_0 containing $(\mathring{x},\mathring{\xi})$. If $u \in H^{\mathcal{V}}_{\Lambda,z}$ for all

 $z \in \kappa(\omega)$ and $\kappa(\mathring{x},\mathring{\xi}) = \mathring{x} - i\mathring{\xi} \notin S^{\mathcal{V}}_{\Lambda}(u)$ then $\kappa(\omega) \cap S^{\mathcal{V}}_{\Lambda}(u) = \phi$.

Lemma 5.2. Let $(\mathring{x},\mathring{\xi}) \in \Lambda$, $f \in \mathcal{G}'(\mathbb{R}^N)$. If $(\mathring{x},\mathring{\xi}) \notin WF_{\mathcal{V}}(f)$ and $T^{(1)}f \in \mathcal{H}^{\mathcal{V}}_{\Lambda},\mathring{x}-i\mathring{\xi}$ then $\mathring{x}-i\mathring{\xi} \notin S^{\mathcal{V}}_{\Lambda}(T^{(1)}f)$.

Let us introduce the F.B.I. tr. of second kind along Λ following Lebeau [19]:

$$(5.5) \quad T_{\Lambda}^{(2)} f(u, \mu, \lambda) = \int e^{-\lambda (u'' - x'')^2/2} -\lambda \mu (u' - x')^2/2 f(x) dx \quad (f \in \mathcal{G}'(\mathbb{R}^N)).$$

Then $T_{\Lambda}^{(2)}f(w,\mu,\lambda)$ is a holomorphic function with respect to $w \in \mathbb{C}^N$ with the bound:

$$|T_{\Lambda}^{(2)}f(w,\mu,\lambda)| \leq Ce^{\frac{\lambda}{2}|\operatorname{Im}w''|^2 + \frac{\lambda}{2}\mu|\operatorname{Im}w'|^2}(\lambda+|w|)^k.$$

It was shown in [20] and [2] that the relation between $T^{(1)}f$ and $T^{(2)}_{\Lambda}f$ is

$$(5.6) T_{\Lambda}^{(2)} f(w,\mu,\lambda) = \left(\frac{\lambda}{2\pi(1-\mu)}\right)^{\frac{d}{2}} \int_{\mathbb{R}^{d}} e^{-\lambda \rho(w'-x')^2/2} T^{(1)} f(x',w'',\lambda) dx',$$

where $\rho = \mu / (1-\mu)$ with an inversion formula:

$$(5.7) \qquad T^{(1)}f(z,\lambda)$$

$$=\frac{1}{2}\left(\frac{1}{2\pi\lambda}\right)^{\frac{d}{2}}\int\limits_{\mathbb{R}_{\xi}^{d'}}e^{-\lambda R\left|\xi'\right|/2}\left(1-i\frac{\langle\xi',\nabla'\rangle}{\lambda\left|\xi'\right|^2}\right)T_{\Lambda}^{(2)}f(z'-i\frac{R\xi'}{\left|\xi'\right|},z'',\mu,\lambda)\frac{Rd\xi'}{R+\left|\xi'\right|},$$

where $\mu = |\xi'|/(R+|\xi'|)$.

Now we define second wave front sets adapted to the Gevrev class. (See also Esser [7].)

Definition 5.3. If $1 \le v < +\infty$ and $f \in g'(\mathbb{R}^N)$, the second wave front set along Λ of f; denoted by $WF_{\Lambda,v}^{(2)}(f)$, is the subset in $T_{\Lambda}(T^*(\mathbb{R}^N)\setminus 0)$ defined by the following condition:

$$(5.8) \qquad (\mathring{x}, 0, \mathring{\xi}''; \mathring{\sigma}') \notin WF_{\Lambda, \mathcal{V}}^{\langle 2 \rangle}(f)$$

if and only if there exist C, c>0, $0<\mu_0<1$ and a decreasing function $o(\lambda)$ with $\lim_{\lambda\to+\infty}o(\lambda)=0$ such that

$$(5.9) |T_{\Lambda}^{\langle 2 \rangle} f(w,\mu,\lambda)| \leq Ce^{\frac{\lambda}{2} |\operatorname{Im} w''|^2 + \frac{\lambda}{2} \mu |\operatorname{Im} w'|^2 - c\lambda \mu}$$

for

$$(5.10) \quad 0 < \mu < \mu_0, \ \lambda \mu > o(\lambda) \lambda^{1/\nu}, \ |w' - (\hat{x}' - i\hat{\sigma}')| + |w'' - (\hat{x}'' - i\hat{\xi}'')| < c.$$

Using (5.6) and (5.7) we can show the following:

Lemma 5.4. Let $(\mathring{x},\mathring{\xi}) \in \Lambda$ and $f \in \mathcal{G}'(\mathbb{R}^N)$. Then $T^{(1)}f \in H^{\mathcal{V}}_{\Lambda,\mathring{x}-i\mathring{\xi}}$ if and only if $\pi_{\Lambda}^{-1}(\mathring{x},\mathring{\xi}) \cap WF_{\Lambda,\mathcal{V}}^{(2)}(f) = \phi$, where $\pi_{\Lambda}:T_{\Lambda}(T^{\star}(\mathbb{R}^N)\setminus 0) \longrightarrow \Lambda$ is the canonical projection.

At last, we introduce the space of partially holomorphic Gevrey functions $G^{\mathcal{V}}_{x}$, as follows: $f(x) \in G^{\mathcal{V}}_{x}$, (Ω) if and only if for every comapct set $K \subset \Omega$ there is a constant C such that

$$(5.11) |\partial_x^{\alpha'} \partial_{x''}^{\alpha''} f(x)| \le C^{|\alpha|+1} \alpha'! (\alpha''!)^{\mathcal{V}} \text{for } x \in K.$$

We have

Lemma 5.5. If $f \in \mathcal{G}'(\mathbb{R}^N) \cap \mathcal{G}^{\mathcal{V}} \mathcal{A}_{x'}(\Omega)$ and $1 \leq v' < v$ then $T^{(1)} f \in \mathcal{H}^{\mathcal{V}'}_{\Lambda,z}$ for every $z \in \kappa(\pi^{-1}(\Omega) \cap \Lambda)$.

6. Proof of Theorem III

As in Section 2 we suppose that $\mathring{x} = 0$, $\mathring{\xi} = (0,0,\mathring{\eta}^n) = (0,\cdots,0,1)$ $\in \mathbb{R}^N \setminus 0$ and set $Q = (P^*P)^k$ with $2km \ge d+1$. Here we also introduce the pseudo-differential operator:

(6.1)
$$O_{P}(r) = O_{P}(n_{n}^{2km/(1+h)}e^{-|\eta'|^{2l(1+h)}/n_{n}^{2l}}),$$

where l is a positive integer to be determined. Then Op(r) has the same quasi-homogeneity in its symbol as Q has.

Consider the operator $Q + \operatorname{Op}(r)$. Then it satisfies (H-2) since Q is non negative self-adjoint operator at $\mathring{\xi}$. We also note that

though not being polynomial, r is holomorphic with the uniform bound $O(|\xi|^{2km/(1+h)})$ in a small quasi-homogeneous neighborhood of ξ of the form:

$$v_{\varepsilon}^{\mathbb{C}} = \{(\eta^{*}, \eta^{*}) \in \mathbb{C}^{d^{*}} \times \mathbb{C}^{d^{*}}; \mid \operatorname{Im}_{\eta^{*}} | \langle \varepsilon(|\eta_{\eta}|^{1/(1+h)} + |\operatorname{Re}_{\eta^{*}}|), |\eta^{*}/\eta_{\eta} - \hat{\eta}^{*}| \langle \varepsilon \rangle\}.$$

Now all the results in Section 2 are remain valid for $Q + \operatorname{Op}(r)$ and we get a symbol $k_{\alpha}(t,\tau,\eta)$ satisfying (3.4) such that

(6.2)
$$\operatorname{Op}(k_g)^*(Q+\operatorname{Op}(r)) = \operatorname{Op}(g).$$

Here g is an arbitrary cut off function satisfying (3.3) for $\rho = 1/(1+h)$ with its support in

$$(6.3) \quad v_{\varepsilon_{0}} = \{(\tau, \eta) \in T^{*}(\mathbb{R}^{N}) \setminus 0; |\tau| < \varepsilon_{0} \eta_{n}, |\eta'| < \varepsilon_{0} \eta_{n}, |\eta'' / \eta_{n} - \tilde{\eta}''| < \varepsilon_{0}\}.$$

If $(\mathring{x},\mathring{\xi}) = (0;0,0,\mathring{\eta}^n) \in \Sigma$ then the bicharacteristic leaf is $\Gamma_0 = \{(0,y',0;0,0,\mathring{\eta}^n); y' \in \mathbb{R}^{d'}\}$. For any compact set $F \subset \pi(\Gamma_0 \cap \mathbb{W})$ there exist a neighborhood $U \subset O_R = \{x \in \mathbb{R}^N : |x| < R\}$ of F and a conic neighborhood V of $\mathring{\xi}$ such that

$$WF_{v}(Pu) \cap \overline{U} \times (\overline{V} \setminus 0) = \phi,$$

where \overline{U} , \overline{V} denote the closures of U, V respectively.

After replacing u by φu with a suitable $\varphi \in \mathcal{C}_0^\infty(\mathcal{O}_R)$ we can suppose $u \in \mathcal{E}'(\mathcal{O}_R)$ with no influence on (6.4).

We fix a conic neighborhood V_2 of ξ with $V_2 \subset V \cap V_{\xi_0}$. If we choose another conic neighborhood V_1 of ξ sufficiently small then the cut off function g in Lemma 3.1 can be taken in the form: $g(\xi) = g'(\eta', \eta_n)g''(\tau, \eta'')$ so that supp $\nabla_{\eta}, g \in \{(t, \eta', \eta''); |\eta'| > \delta |\xi|\}$ for some $\delta > 0$.

As in Proposition 3.3 one can see the following:

Proposition 6.1. If k_g satisfies (3.4) with $\chi_g(\xi) = 0$ for $|\eta'| < \delta|\xi|$ ($\delta > 0$), then

(6.5)
$$K_g(t,y,s,w) \in G^{1+h}A_{y',w'}((\mathbb{R}^N \times \mathbb{R}^N) \setminus \operatorname{diag}(\mathbb{R}^N)),$$

where K_g denotes the distribution kernel of $Op(k_g)$.

Now we let g be taken as above and write for $u \in \mathcal{E}'(O_R)$

$$(6.6) \operatorname{Op}(g)u = \operatorname{Op}(k_g)^* Qu + \operatorname{Op}(k_g)^* \operatorname{Op}(r)u$$
$$= \operatorname{Op}(k_\alpha)^* Qu + \operatorname{Op}(r) \operatorname{Op}(k_\alpha)^* u.$$

We shall apply the theory of second microlocalization along the involutive submanifold:

$$\Lambda = \{(t,y;\tau,\eta',\eta'') \in T^*(\mathbb{R}^N) \setminus 0; \eta'=0\}.$$

Hereafter, we also denote the coodinate in $\mathcal{T}^*(\mathbb{R}^N)$ by

$$x' = y', x'' = (t, y'')$$
 and $\xi' = \eta', \xi'' = (\tau, \eta'')$

and use the notation in Section 5 without mentioning it.

First we study $Op(r)Op(k_{\alpha})^{*}u$, where

$$r(\xi) = n_n^{2km/(1+h)} e^{-|\eta'|^{2l(1+h)}/n_n^{2l}}$$

was given in (6.1). Now we choose l so that (1+h)-(1/2l) > v. Then

(6.7)
$$|\eta'|^{2t(1+h)}/\eta_n^{2t} \ge |\eta'|$$
 for $|\eta'| \ge \eta_n^{-\epsilon} \eta_n^{1/\nu}, \eta_n > 0$,

where $\varepsilon = (1/v) - (2\iota/(2\iota(1+h)-1)) > 0$. We can see easily the following:

Lemma 6.2. If $r = O(e^{-c |\eta'|})$, c > 0 for $|\eta'| \ge \eta_n^{-\varepsilon} \eta_n^{1/v}$, $\eta_n > 0$ then for every $u \in \mathcal{G}'(\mathbb{R}^N)$

(6.8)
$$WF_{\Lambda,\nu}^{(2)}(\operatorname{Op}(r)u) \cap \pi_{\Lambda}^{-1}(\Gamma_{0}) = \emptyset.$$

Since $\operatorname{Op}(k_g)(g) \subset g$: equivalently $\operatorname{Op}(k_g)^*(g') \subset g'$, (6.8) holds for $\operatorname{Op}(r)\operatorname{Op}(k_g)^*u$. Therefore we have

(6.9)
$$f^{(1)}(\operatorname{Op}(r)\operatorname{Op}(k_g)^*u) \in H_{\Lambda,z}^{\mathcal{V}} \text{ for all } z \in \kappa(\Gamma_0)$$

in view of Lemma 5.4.

Next we study $\operatorname{Op}(k_g)^* Qu$. Let \widetilde{g} be another cut off function given by Lemma 3.1 with two cones \widetilde{V}_1 , \widetilde{V}_2 such that

$$v_2 \subset \tilde{v}_1 \subset \tilde{v}_2 = v$$
.

Noticing that $WF_{v}(Qu) \subset WF_{v}(Pu)$, we then get by (6.4)

$$(6.10) WF_{\mathbf{v}}(\mathrm{Op}(\widetilde{g})Qu) \subset WF_{\mathbf{v}}(Pu) \cap (\mathbb{R}^{N} \times \overline{\mathbf{v}}) \subset \pi^{-1}(O_{R} \setminus U),$$

$$(6.11) WF_{v}(\operatorname{Op}(1-\widetilde{g})Qu) \subset WF_{v}(\operatorname{P}u)\cap(\mathbb{R}^{N}\times(\mathbb{R}^{N}\setminus\widetilde{V}_{1})) \subset O_{R}\times(\mathbb{R}^{N}\setminus\overline{V}_{2}).$$

Hence we can write

(6.12)
$$Qu = \chi_F \mathop{\rm Op}(\tilde{g})Qu + \chi_{O_R} (1 - \chi_{F_{\mathfrak{S}}}) \mathop{\rm Op}(\tilde{g})Qu + \chi_{O_R} \mathop{\rm Op}(1 - \tilde{g})Qu$$

$$(\stackrel{=}{\Rightarrow} v_1 + v_2 + v_3),$$

where χ_{B}^{-} denotes the characteristic function of each set B^{-} and

$$F_{\varepsilon} = \{(x', x'') \in \mathbb{R}^N : (x', 0) \in F, |x''| \le \varepsilon\}$$

with $\epsilon > 0$ so small that $F_{\epsilon} \subset U$.

In the following we assume further that

(6.13) F is convex with an analytic boundary in $\pi(\Gamma_0)$,

By (6.10) we see that

$$WF_{v}(v_{1}) \subset \{(x,\xi); (x',\xi') \in T^{\star}_{\partial F}(\pi(\Gamma_{0})), |\chi''| < \varepsilon, \xi'' = 0\} \cup \pi^{-1}(\{x; |x''| \geq \varepsilon\}).$$

Hence by (3.7)

(6.14)
$$\operatorname{Op}(k_g)^* v_1 \in G^{\mathcal{V}}(\operatorname{Int}(F_{\varepsilon})),$$

where $Int(F_{\varepsilon})$ denotes the interior of F_{ε} .

Since $\sup(v_2) \subset \overline{O}_R \backslash F_{\varepsilon}$, it follows by Proposition 6.1

(6.15)
$$\operatorname{Op}(k_g)^* v_2 \in G^{1+h} d_x, (\operatorname{Int}(F_{\varepsilon})).$$

Thus by Lemma 5.5,

(6.16) $T^{(1)}(\operatorname{Op}(k_g)^* v_2) \in \mathcal{H}_{\Lambda, Z}^{\mathcal{V}}$ for all $z \in \kappa(\pi^{-1}(\operatorname{Int}(F_{\epsilon}) \cap \Lambda))$. In view of (6.11),

$${\sf WF}_v(v_3) \subset {\cal O}_R \times (\mathbb{R}^N \backslash \overline{v}_1) \ \cup \ T^\star_{\partial {\cal O}_R}(\mathbb{R}^N) \, .$$

Again by (3.7) this yields

(6.17)
$$\operatorname{Op}(k_g)^* v_3 \in G^{\mathcal{V}}(\operatorname{Int}(F_{\varepsilon})).$$

Consequently, by (6.9) and (6.14)-(6.17), we have

(6.18)
$$Op(g)u = u_1 + u_2,$$

where

$$u_1 = \operatorname{Op}(k_g)^*(v_1 + v_3) \in G^v(\operatorname{Int}(F_{\varepsilon}))$$

and

$$u_2 = \operatorname{Op}(k_g)^* v_2 + \operatorname{Op}(r) \operatorname{Op}(k_g)^* u$$

with

$$T^{(1)}(u_2) \in \mathcal{H}^{\nu}_{\Lambda,z}$$
 for all $z \in \kappa(\pi^{-1}(\operatorname{Int}(F_{\varepsilon}))\cap \Gamma_0)$.

Now we apply Lemma 5.1, 5.2 and obtain

(6.19) If
$$(\mathring{x},\mathring{\xi}) \in \pi^{-1}(\operatorname{Int}(F_{\varepsilon})) \cap \Gamma_{0}$$
 and $(\mathring{x},\mathring{\xi}) \notin WF_{v}(u_{2})$
then $\pi^{-1}(\operatorname{Int}(F_{\varepsilon})) \cap \Gamma_{0} \cap WF_{v}(u_{2}) = \emptyset$.

Because $g \equiv 1$ in the neighborhood V_1 of ξ ,

$$WF_{v}(u_{2}) \cap \pi^{-1}(\operatorname{Int}(F_{\varepsilon})) \cap \Gamma_{0} = WF_{v}(u) \cap \pi^{-1}(\operatorname{Int}(F_{\varepsilon})) \cap \Gamma_{0}.$$

Therefore (6.19) implies Theorem III for $\tilde{\mathbf{W}} = \pi^{-1}(\operatorname{Int}(F_{\epsilon}))$.

Since any compact set in $\Gamma_0 \cap W$ can be covered by a finite number of such \widehat{W} 's we have actually proved Theorem III. \square

7. Remarks

The problem to determine the Gevrey class in which certain c^{∞} hypoelliptic operators still remain hypoelliptic, has its origin in a

celebrated examle given by Baouendi-Goulaouic [1]:

$$P_1 = \partial_t^2 + \partial_x^2 + t^2 \partial_y^2;$$

which has a solution u of $P_1u = 0$ in a neighborhood of the origin only belonging to G^2 .

Deridj-Zuily [5] and Durand [6] have studied Gevrey hypoellipticity for second order operators and proved, for example, G^{1+h+0} and G^{1+h} hypoellipticity of the operator (1.6) in Section 1 respectively.

However, as was shown by Parenti-Rodino [24], hypoellipticity does not always imply microlocal one. In this respect, Iwasaki [17] proved among others $\boldsymbol{\mathcal{C}}^2$ microhypoellipticity for double characteristic operators. Our Theorem I is an extention of this in some sence, though the operators are much restricted.

Recently, Kajitani-Wakabayashi also studied Gevrey microhypoellipticity in [18] but for more general classes of operators and obtained the results including our Theorem I as a spacial case.

However our poof by constructing parametrices reviels how the quasi-homogeneity of operators relate to the lowest order of Gevrey class in which the operators remain hypoelliptic and gives a more precise information on the singularities of solutions (: Proposition 6.1 and Theorem III).

At last, we remark the following: Since $\operatorname{Op}(k_g)$ act on the space of ultra-distributions (g^{1+h}) , preserving local g^{1+h} regularities. Theorem I and III are valid for $u \in (g^{1+h})$, without any change.

References

- [1] Baouendi M.S. and Goulaouic C.: Non analytic hypoellipticity for some degenerate operators, Bull. Amer. Math. Soc. 78(1972) 483-486.
- [2] Bardos C., Lebeau G. and Rauch J.: Scattering frequencies and

- Gevrey 3 singularities, preprint.
- [3] Bony J.M.: Equivalence des diverses notions de spectre singulier analytique, Sém. Goulaouic-Schwartz III(1976-1977).
- [4] Boutet de Monvel L., Grigis A. and Helffer B.: Paramétrixes d'opérateurs pseudodifferentiels à caractéristiques multiples, Astérisque 34-35(1976) 93-121.
- [5] Derridj M. and Zuily C.: Sur la régularité Gevrey des opérateurs de Hörmander, J. Math. pures et appl. 52(1973) 309-336.
- [6] Durand M.: Régularité Gevrey d'une classe d'opérateurs hypoelliptiques, J. Math. pure et appl. 57(1978) 323-360.
- [7] Esser P.: Second microlocalization and propagation theorems for the wave front sets, preprint.
- [8] Grigis A.: Hypoellipticité et paramétrix pour des opérateurs pseudodifférentiels à caractéristiques doubles, Astérisque 34-35(1976)183-204.
- [9] Grigis A., Schapira P. and Sjöstrand J.: Propagation des singularités analytiques pour des opérateurs à caractéristiques multiples, C.R.A.S. 293, I(1981) 397-400.
- [10] Grušin V.V.: on a class of hypoelliptic operators, Mat. Sb. 83 = Math. U.S.S.R. Sb. 12(1970) 458-476.
- [11] : On a class of elliptic pseudodifferential operators degenerate on submanifold, Mat. Sb. 84 = Math. U.S.S.R. Sb. 13(1971) 155-185.
- [12] ———— : Hypoelliptic differential equations and pseudodifferential operators with operator valued symbols, Mat. Sb. 88 = Math. U.S.S.R. Sb. 27(1972) 497-513.
- [13] Hasegawa K.: Propagation of micro-analyticities of solutions to some class of linear partial differential equations with non-involutive double characteristics, to appear in J. Fac. Sci. Univ. Tokyo.
- [14] Hörmander L.: Uniqueness theorems and wave front sets for solutions of linear differental equations with analytic coefficients, Comm. Pure Appl. Math. 24(1971) 671-704.

- [15] : A class of hypoelliptic pseudo-differential operators with double characteristics, Math. Ann. 217(1975) 165-188.
- [16] : The analysis of linear partial differential operators I, Springer, 1983.
- [17] Iwasaki C.: Gevrey hypoellipticity and pseudo-differential operators on Gevrey class, Lecture Notes in Math. 1256(1987) 281-293.
- [18] Kajitani K. and Wakabayashi S.: Hypoelliptic operators in Gevrey class, preprint.
- [19] Lebeau G.: Deuxièm microlocalisation à croissance, Sém. Goulaouic-Meyer-Schwartz XV(1982-1983).
- [20] ——— : Deuxièm microlocalisation sur les sous-varietés isotropes, Ann. Inst. Fourier 35(1985) 145-216.
- [21] Métivier G.: Analytic hypoellipticity for operators with multiple characteristics, Comm. PDE 6(1980) 1-90.
- [22] Okaji T.: Analytic hypoellipticity for operators with symplectic characteristics, J. Math. Kyoto Univ. 25(1985) 489-514.
- [23] Oleinik O.A. and Radkevič E.V.: On the analyticity of solutions for linear partial differential equations, Mat. Sb. 90 = Math. U.S.S.R. Sb. 19(1973) 581-596.
- [24] Parenti C. and Rodino L.: Examples of hypoelliptic operators which are not micro-hypoelliptic, Boll. Un. Mat. Ital. 17-B(1980) 390-409.
- [25] Rothschild L.P. and Stein E.M.: Hypoelliptic differential operators and nilpotent groups, Acta Math. 137(1977) 247-320.
- [26] Sakurai T.: Tempered second wave front sets and quasihomogeneous partial differential operators, Proc. Conf. on spactral and scattering theory for differential operators, 1986.
- [27] ——— : Gevrey hypoellipticity for operators with non symplectic characteristics, Saitama Math. J. 5(1987) 7-25.
- [28] Sjöstrand J.: Parametrices for pseudo-differential operators with multiple characteristics, Ark. Mat. 12(1974) 85-130.

- [29] : Singularites analytiques microlocales, Astérisque 95(1982) 1-166.
- [30] : Analytic wave front sets and operators with multiple characteristics, Hokkaido Math. J. XII(1983) 392-433.