<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル</td>
<td>On Quasi-Hadamard Product of Certain p-Valent Functions with Negative Coefficients</td>
</tr>
<tr>
<td>著者</td>
<td>Sekine, Tadayuki</td>
</tr>
<tr>
<td>引用</td>
<td>数理解析研究所講究録 (1988), 664: 46-50</td>
</tr>
<tr>
<td>発行日</td>
<td>1988-07</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/100638</td>
</tr>
<tr>
<td>タイプ</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>タイマーカー</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
On Quasi-Hadamard Product of Certain p-Valent Functions with Negative Coefficients

日本大学理学部 関根忠行 (Tadayuki Sekine)

1. INTRODUCTION

In [1], Kumar showed some results for the quasi-Hadamard product of certain univalent functions with negative coefficients.

In the present note, we show that Kumar's results [1] are generalized to the case of certain p-valent functions with negative coefficients.

Let \(A(p) \) be the class of analytic and p-valent function \(f(z) \) of the form

\[
f(z) = z^p - \sum_{n=1}^{\infty} a_{p+n} z^{p+n} \quad (a_{p+n} \geq 0, p \in \mathbb{N})
\]

in the unit disk \(U = \{ z : |z| < 1 \} \).

Let \(T^*(p, \alpha) \) and \(C(p, \alpha) \) denote the subclasses of \(A(p) \) which satisfy \(\Re \left(\frac{zf'(z)}{f(z)} \right) > \alpha \) and \(\Re \left(1 + \frac{zf''(z)}{f'(z)} \right) > \alpha \), for \(0 \leq \alpha < p \), respectively.

Clearly the function in \(T^*(p, \alpha) \) and \(C(p, \alpha) \) are p-valent starlike function and p-valent convex function of order \(\alpha \), respectively.
For these classes, Owa has obtained the following results in [2].

LEMMA 1. A function $f(z)$ is in the class $T^*(p, a)$ if and only if

$$\sum_{n=1}^{\infty} (p + n - a) \leq p - a.$$

The result is sharp.

LEMMA 2. A function $f(z)$ is in the class $C(p, a)$ if and only if

$$\sum_{n=1}^{\infty} (p + n)(p + n - a)a_{p+n} \leq p(p - a).$$

The result is sharp.

Let $A_0(p)$ denote the class of analytic and p-valent function $f(z)$ of the form

$$f(z) = a_0 z^p - \sum_{n=1}^{\infty} a_{p+n} z^{p+n} \quad (a_0 > 0, \ a_{p+n} \geq 0, \ p \in \mathbb{N})$$

in the unit disk U.

Furthermore, let $T_0^*(p, a)$ and $C_0(p, a)$ be the subclasses of $A_0(p)$ as follows:

$$T_0^*(p, a) = \{ f(z) \in A_0(p) : \text{Re} \left[\frac{zf'(z)}{f(z)} \right] > a \quad (0 \leq a < p) \}$$
and

\[C_0(p, \alpha) = \left\{ f(z) \in A_0(p) : \text{Re} \left(1 + \frac{zf''(z)}{f'(z)} \right) > \alpha \quad (0 \leq \alpha < p) \right\}. \]

For these classes, by Lemma 1 and Lemma 2, we easily obtain the following theorems, respectively.

THEOREM 1. A function \(f(z) \) in the class \(T_0^*(p, \alpha) \) if and only if

\[\sum_{n=1}^{\infty} (p + n - \alpha) a_{p+n} \leq (p - \alpha) a_p. \]

THEOREM 2. A function \(f(z) \) is in the class \(C_0(p, \alpha) \) if and only if

\[\sum_{n=1}^{\infty} (p + n)(p + n - \alpha) a_{p+n} \leq p(p - \alpha) a_p. \]

We now introduce the subclass \(S_0(k, p, \alpha) \) of the class \(A_0(p) \) as follows.

A function \(f(z) \) belongs to the class \(S_0(k, p, \alpha) \) if and only if

\[\sum_{n=1}^{\infty} \left(\frac{p + n}{p} \right)^k (p + n - \alpha) a_{p+n} \leq (p - \alpha) a_p, \]

where \(k \) is any real number.

Evidently, \(S_0(0, p, \alpha) \equiv T_0^*(p, \alpha) \) and \(S_0(1, p, \alpha) \equiv C_0(p, \alpha). \)

From now on, let the functions of the class \(A_0(p) \) be the following forms:
\[f_i(z) = a_{p,i} z^p - \sum_{n=1}^{\infty} a_{p+n,i} z^{p+n} \quad (a_{p,i} > 0, \quad a_{p+n,i} \geq 0) \]

and

\[g_j(z) = b_{p,j} z^p - \sum_{n=1}^{\infty} b_{p+n,j} z^{p+n} \quad (b_{p,j} > 0, \quad b_{p+n,j} \geq 0), \]

respectively.

Let us define the quasi-Hadamard product \(f_1 \ast g_j(z) \) of the functions \(f_1(z) \) and \(g_j(z) \) by

\[f_1(z) \ast g_j(z) = a_{p,i} b_{p,j} z^p - \sum_{n=1}^{\infty} a_{p+n,i} b_{p+n,j} z^{p+n}. \]

2. RESULTS

Consequently, we have the following theorems. We can prove these theorems by using the same way as Kumar [1].

THEOREM 3. Let the functions \(f_i(z) \) belong to the classes

\[T_0^*(p,a_1) \]

for each \(i = 1, 2, 3, \ldots, m \), respectively. Then the quasi-Hadamard product \(f_1 \ast f_2 \ast f_3 \ast \cdots \ast f_m(z) \) belongs to the class

\[S_0(m-1,p,\beta), \]

where \(\beta = \max(a_1, a_2, a_3, \ldots, a_m) \).

THEOREM 4. Let the functions \(f_i(z) \) belong to the classes

\[C_0(p,a_1) \]

for each \(i = 1, 2, 3, \ldots, m \), respectively. Then the quasi-Hadamard product \(f_1 \ast f_2 \ast f_3 \ast \cdots \ast f_m(z) \) belongs to the class

\[S_0(2m-1,p,\beta), \]

where \(\beta = \max(a_1, a_2, a_3, \ldots, a_m) \).
THEOREM 5. Let the functions $f_i(z)$ belong to the classes $T_0^*(p, a_i)$ for each $i = 1, 2, 3, \ldots, m$ and for each $j = 1, 2, \ldots, q$, let the functions $g_j(z)$ belong to the classes $C_0(p, \beta_j)$, respectively. Then the quasi-Hadamard product

$$f_1 \ast f_2 \ast f_3 \ast \ldots \ast f_m \ast g_1 \ast g_2 \ast g_3 \ast \ldots \ast g_q(z)$$

belongs to the class $S_0(m+2q-1, p, \gamma)$, where $\gamma = \max\{a_1, a_2, a_3, \ldots, a_m, \beta_1, \beta_2, \beta_3, \ldots, \beta_q\}$.

THEOREM 6. Let the functions $f_i(z)$ belong to the class $C_0(p, a)$ for each $i = 1, 2, 3, \ldots, m$ and let $0 \leq \alpha \leq \alpha_0$, where α_0 is a root of the equation $(p + 1)^m(p - m r) - p(p - r)^m = 0$ in the interval $(0, \frac{p}{m})$. Then the quasi-Hadamard product

$$f_1 \ast f_2 \ast f_3 \ast \ldots \ast f_m(z)$$

belongs to the class $S_0(m-1, p, m\alpha)$.

REMARK. If we put $p = 1$ in these theorems, we have the Kumar's results [1].

REFERENCES
