
101

A Rich Hierarchy on the Time Complexity
of Uniform PRAMs

Kazuo Iwama

1. Introduction.
Motivation of introducing the unbounded fan-in circuit model is not unique: In

[1] the authors found a connection between the complexity theory over this model and
a famous open question (at that time) on the polynomial hierarchy. [4] proves that the
model can simulate the parallel random access machines with simultaneous writes
(CRCW-PRAMs) of almost the same depth and size. Recently the present author
claims in [2] that the model can be much more useful than the bounded fan-in model
to study the depth hierarchy of Boolean functions. To this goal, however, it turns out
that the essential nonuniformity circuit models generally possess is a major obstacle
and that the best possible model we have currently seems to be (uniforn) CRCW-
PRAMs. The main result of [2] is the following.

Let $A(i,j)$ be the Ackermann function and let $\overline{A}_{k}(n)$ be its inverse function
defined by $\overline{A}_{k}(n)=leastj$ such that $A(k,j)\geq n$. CRCW-PRAMs here denote parallel
RAMs with simultaneous writes and with operations $+$, –and 1 (bitwise OR). It
should be noted again that CRCW-PRAMs in this paper are unifom, namely, each
RAM has the same program not depending on the size of inputs. Then it follows:

Theorem 1. For any constant $c\geq 4$, there is a nondegenerate Boolean function G_{c}

of n variables such that it takes $\Theta(\overline{A_{c}}(n))$ steps to compute G_{c} by CRCW-PRAMs
with polynomial number of processors.

In this paper we extend this result, which suggests the existence of a rich hierar-
chy on the time complexity of Boolean functions. We will also show a result on a
relation between the star-ffee regular expressions and the unbounded fan-in circuits
which might help removing the obstacle above mentioned (the nonuniformity of the
circuit models).

2. Time Hierarchy.
It should be noted that Theorem 1 is still true if $A_{c}(n)$ is replaced by its composi-

tion like $\overline{A_{c_{1}}}(\overline{A}_{c_{2}}(. (\overline{A_{c_{i}}}(n)).))$ for constants c_{1} , c_{2}, , c_{j}
≥ 4 (e.g.,

$\overline{A}_{4}(\overline{A}_{4}(\overline{A}_{4}(n)))=\log^{*}\log^{*}\log^{*}n)$. In this section we demonstrate that the hierarchy is
much more dense. Let M be a Turing machine computing an integer function $f(n)$ by
producing $1^{f(n)}$ on its output tape from 1n on its input tape. Then f is called a

-1-

数理解析研究所講究録
第 666巻 1988年 101-104

102

polynomial-time function if M halts within $T(n)$ steps for some polynomial T . For
simplicity, we assume that f is monotone, i.e., $f(n+1)\geq f(n)$ for all n .

Theorem 2. Theorem 1 is also true if $\overline{A_{c}}(n)$ is replaced by any polynomial-time
function f .

Proof. A straightforward modification of the proof of Theorem 1 [2]. Use a
sequence of configurations of the Turing machine that computes the polynomial-time
function f instead of the sequence of binary numbers. Details are omitted. \square

Corollary 1. Theorem 1 is still true for $\overline{A}_{n}(n)$.
Proof. We will show that Ackermann function $A(i,j)$ can be computed in a

polynomial number of steps on its answer (not on its input). Then it immediately fol-
lows that $A_{n}(n)$ is a polynomial-time function.

By definition $A(i,j)$ can be obtained by applying the following operations as far
as possible:

$A(0, y)=y+1$ (1)

$A(x+1,0)=A(x, 1)$ (2)

$A(x+1, y+1)=A(x, A(x+1, y))$ (3)

Thus, during the computation we always handle the form like
$A(a_{0},$ $A(a_{1}, \cdots A(a_{n-3}, A(a_{n-2}, a_{n-1}))\cdots)$,

which we denote by string

$\sigma=a_{0}a_{1}\cdots a_{n-1}$.

Let $L(\sigma)$ be the length of $\sigma(=n)$ and $S(\sigma)$ be the sum of the integers
$(=a_{0}+\cdots+a_{n-1})$. Then one can see that:

(i) $L(0)+S(0)$ does not change before and after applying operation (1) or (2).

(ii) Applying operation (3) increases $L(0)+S(0)$ by x . Namely if $x=0$ then
$L(\sigma)+S(\sigma)$ does not change either.

Since the final answer clearly does not exceed $L(0)+S(0)$, the number of times
operation (3) for positive x (that makes $L(0)+S(\sigma)$ larger at least one) is applied must
be less than the value of the answer. Therefore the total number of necessary applica-
tions of operations (1)$-(3)$ depends on the number of applications of those that do not
change $L(\sigma)+S(\sigma)$ or operations (1), (2) and (3) for $x=0$. It should be observed that
the application of the operations is deterministic, i.e., the next operation is determined
uniquely by the current σ. For example, when $0=a_{0}\cdots a_{n-2}a_{n-1}$, operation (3) is
applied if and only if both a_{n-2} and a_{n-1} are positive. Now one can see that a lot of
consecutive applications of operations (1), (2) and (3) for $x=0$ occur when σ looks like

$o=\sigma_{1}a11\cdots 1b$ (m l’s, $a\geq 2$ and $b\geq 1$).

For σ of this form, operation (3) has to be applied b times, operation (2) once and
then operation (1) $b+1$ times, which leaves

$\sigma=\sigma_{1}a11\cdots 1(b+1)$ ($m-1$ l’s).

-2-

103

This sequence of operations is repeated until we run out all the l’s. Thus those opera-
tions that do not change $L(\sigma)+S(\sigma)$ can only continue $O(y\cdot m)$ times. Since both y

and m are less than the final answer, the total number of the whole operations do not
exceed the cube of the answer.

To get $\overline{A}_{n}(n)$, we compute $A(i,i)$ for $i=1,2,$ \cdot . successively until the value
exceeds the input n . On the tape, each a_{i} on the string σ may be represented by a
binary number or a unary number. Clearly it does not take so many steps to carry out
the operations (1)$-(3)$. Also it should be noted that if $L(\sigma)$ becomes larger than n for
the first time when computing $A(i,i)$ then $\overline{A}_{n}(n)$ is $i-1$. \square

Corollary 2. There do not exist nonconstant lower bounds for the computation
time of CRCW-PRAMs.

Proof. It is enough to show that for any recursive function $g(n)$ there exists a
polynomial-time function $f(n)$ such that:

(i) $f(n) \leq\max_{\leq 0i\leq n}g(i)$ and

(ii) $f(n)$ is not bounded by any constant if g is not.

Let M be a Turing machine which computes $g(n)$. We construct the Turing machine
T that computes $f(n)$ as follows: By simulating $M,$ T computes $f(1),$ $f(2)$ and so
on successively and at the same time it counts the number N of its moving steps (one
step for the simulation of $M’ s$ one step). Suppose that when N becomes n (the input
to T) T is computing $f(i)$. Then T halts with leaving on its output tape the max-
imum value in $f(1),$ $f(2)$, , and $f(i-1)$. It is not hard to see this $f(n)$ meets the
above conditions (i) and (ii). \square

3. Star-Free Regular Expressions vs. Unbounded Fan-In Circuits.
In this section we show a sufficient condition analogous to the Unger’s well-

known one [5] that says if a language L over {0,1} is a regular set then L can be
recognized by bounded fan-in circuits of depth $O(\log n)$ and size $O(n)$. Our present
one is:

Theorem 3. Let Σ be an alphabet, h be a homomorphism ffom Σ into $\{$ 0,1 $\}^{*}$

and R be a star-ffee regular expression over Σ. Then if the on-set of a Boolean func-
tion f can be given by $h(L(R))$ ($L(R)$ is the language generated by R), f is com-
puted by an unbounded fan-in circuit C of a constant depth and a polynomial size on
n .

By definition, a star-free regular expression over alphabet Σ is a regular
expression that can use $\phi,$ $\epsilon,$ σ for each 0 in Σ and, as operations, complement, union
\cup , intersection $\cap and$ concatenation Theorem 3 could help to introduce a desirable
unifornity to the unbounded fan-in circuits. (The common uniformity for the bounded
fan-in circuits [3] can of course be applied to the unbounded fan-in model but it is too
weak to discuss relatively low depth complexity. See [2].)

Proof of Theorem 3. Let $\Sigma=\{a_{1}, a_{2}, \cdot. , a_{m}\}$ and suppose that the regular
expression R consists of k subexpressions $R_{1},$ $R_{2},$

\cdot . , $R_{k}=R$. Then we construct
Boolean expressions $f_{i^{1}j},$ $f_{i^{2}j}$, , $f_{i}^{k_{j}}$

, for each i and j such that $0\leq i\leq j\leq n$ where n

is the number of variables $x_{1},$ x_{2} , , x_{n} of the target Boolean expression (or

-3-

104

equivalently the circuit C). f is obtained as $f=f_{0,n}^{k}$. Now the expressions $f_{i^{l},j}$ are of
the following form:

(i) $R_{l}=\phi$. Then $f_{i^{l},j}=0$ for all i and j .
(ii) $R_{l}=\epsilon$. Then $f_{i^{l},i}=1$ for all i and $f_{i,j}^{l}=0$ for all i and j such that $i\neq j$.
(iii) $R_{l}=a_{t}(\in\Sigma)$. Suppose that $h(a_{t})=c_{1}c_{2}\cdots c_{p}(c_{1}, \cdot\cdot , c_{p}\in\{0,1\})$. Then

$f_{i^{l},j}=0$ if $j\neq i+p$. Otherwise $f=x’x’\cdots x_{i+p}’$ where $x_{i+s}’$ is x_{i+s} if $c_{s}=1$ and
$\overline{x_{i+s}}$ if $c_{s}=0$.

(iv) $R_{l}=R_{p}\cup R_{q}$. Then $f_{i^{l},j}=(f_{\iota}^{p_{j}},+f_{\iota}^{g_{j}},)$ for all i and j .
(v) $R_{l}=R_{p}\cap R_{q}$. Then $f_{i\underline,j^{=}}^{l}(f_{\iota}^{p_{j}},f_{\iota,j}^{g})$ for dli and j .
(vi) $R_{l}=\overline{R_{p}.}$ Then $f_{i^{l},j}=(r_{\iota}^{p_{j}},)$ for aUi and j .
(vii) $R_{l}=R_{p}\cdot R_{q}$. Then

$f_{i^{l},j}=(\sum_{i\leq s\leq j}f_{\iota}^{p_{s}},f_{s^{q},j})$
for all i and j .

To show the correctness of the construction, we prove the validity of the follow-
ing sentence by the mathematical induction on the number of operations involved in
the expression R :

$f_{i^{l},j}(x_{1}, x_{2}, \cdot. , x_{n})=1$ if and only if $v_{i+1}v_{i+2}\cdots v_{j}\in h(L(R))$

where v_{i+s} is the value (0 or 1) of the variable x_{i+s} . Details may be omitted since it is
a standard application of the induction method.

As for the number of (unbounded fan-in) gates to realize the expression f , the
following observation will be enough: (a) The number of Boolean expressions $f_{i^{l},j}$ is
$O(n^{2})$. (Note that the length of R or the number k of its subexpressions is a constant.)
(b) To realize $f_{i^{l},j}$ by circuit, we need only $O(1)$ gates for all the construction rules
$(i)-(vi)$. (c) For the rule (vii) also, one can see that $O(n)$ gates are enough. Thus the
total number of gates neCeSSary for the above ConStruction is $O(n^{3})$. 口

References

1. M. Furst, J. Saxe, and M. Sipser, ‘ ‘Parity, circuits and the polynomial-time hierar-
chy,” Proc. 22nd IEEE Symp. on Foundations of Computer Science, pp. 260-270,
1981.

2. K. Iwama, “Very small tight bounds on the time of uniform PRAMs with simul-
taneous writes,” Tech. Rep. COMP87-64, Institute of Elec. Inform. Comm. Eng.
of Japan, 1987.

3. W. L. Ruzzo, “On uniform circuit complexity,” J. Comput. Syst. Sci., vol. 22,
pp. 365-383, 1981.

4. L. Stockmeyer and U. Vishkin, ‘ ‘Simulation of Parallel Random Access Machines
by Circuits,” SIAM J. Comput., vol. 13, pp. 409-422, 1984.

5. S. H. Unger, “Tree Realization of Iterative Circuits,” IEEE Trans. Comput., vol.
C-26, pp. 365-383, 1977.

-4-

