goooboooogn
0 666 O 1988 0 101-104

A Rich Hierarchy on the Time Complexity
of Uniform PRAMs

Kazuo Iwama

Computer Sciences Institute
Kyoto Sangyo University

1. Introduction.

Motivation of introducing the unbounded fan-in circuit model is not unique: In
[1] the authors found a connection between the complexity theory over this model and
a famous open question (at that time) on the polynomial hierarchy. [4] proves that the
model can simulate the parallel random access machines with simultaneous writes
(CRCW-PRAMs) of almost the same depth and size. Recently the present author
claims in [2] that the model can be much more useful than the bounded fan-in model
to study the depth hierarchy of Boolean functions. To this goal, however, it turns out
that the essential nonuniformity circuit models generally possess is a major obstacle
and that the best possible model we have currently seems to be (umfoxm) CRCW-
PRAMs. The main result of [2] is the following.

Let A(i,j) be the Ackermann function and let Ak (n) be its inverse function
defined by Ai(n) = least j such that A (k,j)=n. CRCW-PRAMs here denote parallel
RAMs with simultaneous writes and with operations +, — and | (bitwise OR). It

should be noted again that CRCW-PRAMSs in this paper are uniform, namely, each

RAM has the same program not depending on the size of inputs. Then it follows:

Theorem 1. For any constant ¢ 24, there is a nondegenerate Boolean function G,
of n wvariables such that it takes @(A (n)) steps to compute G. by CRCW-PRAMs
with polynomial number of processors.

In this paper we extend this result, which suggests the existence of a rich hierar-
chy on the time complexity of Boolean functions. We will also show a result on a
relation between the star-free regular expressions and the unbounded fan-in circuits
which might help removing the obstacle above mentioned (the nonuniformity of the
circuit models).

2. Time Hierarchy.

It should be noted that Theorem 1 is still true if A, (n) is replaced by its composi-
tion like A, (A, (" (A,(n)) ")) for constants ¢y, ¢y -, ¢; 24 (eg.,
A 4(A 4(A 4(n)))=log*log*log*n). In this section we demonstrate that the hierarchy is
much more dense. Let M be a Turing machine computing an integer function f (n) by
producing 1/®) on its output tape from 1" on its input tape. Then f is called a

-1-

101

102

polynomial —time function if M halts within T (n) steps for some polynomial T. For
simplicity, we assume that f is monotone, i.e., f (n+1)=f (n) for all n.

Theorem 2. Theorem 1 is also true if A.(n) is replaced by any polynomial-time
function f .

Proof. A straightforward modification of the proof of Theorem 1 [2]. Use a
sequence of configurations of the Turing machine that computes the polynomial-time
function f instead of the sequence of binary numbers. Details are omitted. [J

Corollary 1. Theorem 1 is still true for A, (n).

Proof. We will show that Ackermann function A (i,j) can be computed in a
polynomial number of steps on its answer (not on its input). Then it immediately fol-
lows that A, (#) is a polynomial-time function.

By definition A (i,j) can be obtained by applying the followmg operations as far |
as possible: '

A0, y)=y+1 - e
TA(x+1,0=Ax, 1) | ' (2)
A+, y+1)=Ax,A(x+l,y)) B 3)

Thus, during the computation we always handle the form like
A (a09 A (al’ T A (an—3’ A (an—-Z’ an—-l)) U)’
which we denote by string

o=apyay - " 4,_1-

Let L(c) be the length of ¢ (=n) and S(c) be the sum of the integers
(=agt * - - +a,_1). Then one can see that:

(i) L (0)+S (o) does not change before and after applying operation (1) or (2).

(i) Applying operation (3) increases L(0)+S(c) by x. Namely if x=0 then
L (6)+S (o) does not change either. ‘

Since the final answer clearly does not exceed L (0)+S (0), the number of times
operation (3) for positive x (that makes L (6)+S (o) larger at least one) is applied must
be less than the value of the answer. Therefore the total number of necessary applica-
tions of operations (1)-(3) depends on the number of applications of those that do not
change L (6)+S () or operations (1), (2) and (3) for x=0. It should be observed that
the application of the operations is deterministic, i.e., the next operation is determined
uniquely by the current 6. For example, when 6=ay * - - @, _»a,_y, operation (3) is
applied if and only if both a,_, and a,_; are positive. Now one can see that a lot of
consecutive applications of operations (1), (2) and (3) for x=0 occur when ¢ looks like

o=c1all---1b (m 1’s, a>2 and b21).
For o of this form, operation (3) has to be applied b times, operation (2) once and
then operation (1) b+1 times, which leaves
o=0yall - - - 1(b+1) (m-11’).

This sequence of operations is repeated until we run out all the 1’s. Thus those opera- -

tions that do not change L(G)—lfS (o) can only continue O(y-m) times. Since both y
and m are less than the final answer, the total number of the whole operations do not
exceed the cube of the answer. '

To get A—n(n), we compute A(i,i) for i=1,2, .- successively until the value
exceeds the input n. On the tape, each g; on the string 6 may be represented by a
binary number or a unary number. Clearly it does not take so many steps to carry out
the operations (1)-(3). Also it should be noted that if L (G) becomes larger than n for

the first time when computing A (i,i) then A, (n) is i—1. O]

Corollary 2. There do not exist nonconstant lower bbunds for the computation
time of CRCW-PRAMs. :

Proof. It is enough to show that for any recursive function g(n) there exists a
polynomial-time function f (n) such that: ‘

@ f(n)= max g (i) and

(ii) f (n) is not bounded by any constant if g is not.

Let M be a Turing machine which computes g (n). We construct the Turing machine
T that computes f (n) as follows: By simulating M, T computes f (1), f(2) and so
on successively and at the same time it counts the number N of its moving steps (one
step for the simulation of M’s one step). Suppose that when N becomes n (the input
to T) T is computing f(i). Then T halts with leaving on its output tape the max-
imum value in f (1), f(2), - - -, and f(i—1). It is not hard to see this f (n) meets the
above conditions (i) and (ii). O : '

3. Star-Free Regular Expressions vs. Unbounded Fan-In Circuits.

In this section we show a sufficient condition analogous to the Unger’s well-
known one [5] that says if a language L over {0,1} is a regular set then L can be
recognized by bounded fan—in circuits of depth O(logn) and size O(n). Our present
one is:

Theorem 3. Let X be an alphabet, 2 be a homomorphism from X into {0,1}*
and R be a star-free regular expression over X. Then if the on-set of a Boolean func-
tion f can be given by A(L(R)) (L(R) is the language generated by R), f is com-
puted by an unbounded fan-in circuit C of a constant depth and a polynomial size on
n.

By definition, a star—free regular expression over alphabet X is a regular
expression that can use ¢, €, ¢ for each ¢ in X and, as operations, complement ~, union
U, intersection N and concatenation -. Theorem 3 could help to introduce a desirable
uniformity to the unbounded fan-in circuits. (The common uniformity for the bounded
fan-in circuits [3] can of course be applied to the unbounded fan-in model but it is too
weak to discuss relatively low depth complexity. See [2].)

Proof of Theorem 3. Let X={a;,a, ‘-, a,} and suppose that the regular

expression R consists of k subexpressions Ry, Ry, - - -, Rg=R. Then we construct
Boolean expressions f ,-}j,r f ,-?j, e f ," ; for each i and j such that 0<i<j<n where n

is the number of variables x;, x5, - -, x, of the target Boolean expression (or

103

104

equivalently the circuit C). f is obtained as f=f ’5,,1. Now the expressions f ,’ j are of
the following form:

(i) R;=¢. Then f} =0 for all i and j. J

(ii) R,=e. Then fil',:l for all i and f,-l'j=0 for all i and j such that i#j.

(iii) R;=a, (€X). Suppose that h(a;)=cico "¢, (¢, -, ¢, €{0,1}). Then
f ,-l,j=0 if j#i+p. Otherwise fil,,-+p=x’,~+1x’,-+2 - Xy, where X, is x;, if ¢,=1 and
X;4s if €g=0. '

(V) Ry=R, UR,. Then fli=(fPj+f2;) forall i and j.

(v) Ry=Rp "R, . Then £l =(P;ff)) forall i and j.

(vi) Rj=R,. Then f{ ;=(f;) for all i and j.

(vii) R;=R,'R,. Then f,-’,j=(Y flfdj) foralliand j.

: i<s<j /

To show the correctness of the construction, we prove the validity of the follow-

ing sentence by the mathematical induction on the number of operations involved in
the expression R :

fil,j(xl, X2 * 5 X,)=1 if and only if v;1v;4p * * - Vi€ h(L(R))

where v;,, is the value (0 or 1) of the variable x;,,. Details may be omitted since it is
a standard application of the induction method.

As for the number of (unbounded fan-in) gates to realize the expression f, the
following observation will be enough: (a) The number of Boolean expressions f ,’ i 1s
O(n?). (Note that the length of R or the number k of its subexpressions is a constant.)
(b) To realize f,’ ; by circuit, we need only O(1) gates for all the construction rules
(i)-(vi). (c) For the rule (vii) also, one can see that O(n) gates are enough. Thus the
total number of gates necessary for the above construction is O(n 3)‘ O

References

1. M. Furst, J. Saxe, and M. Sipser, ‘‘Parity, circuits and the polynomial-time hierar-
chy,”’ Proc. 22nd IEEE Symp. on Foundations of Computer Science, pp. 260-270,
1981.

2. K. Iwama, ‘“Very small tight bounds on the time of uniform PRAMs with simul-
taneous writes,”” Tech. Rep. COMP87-64, Institute of Elec. Inform. Comm. Eng.
of Japan, 1987.

3. W. L. Ruzzo, ‘‘On uniform circuit complexity,”” J. Comput. Syst. Sci., vol. 22,
pp. 365-383, 1981.

4. L. Stockmeyer and U. Vishkin, ‘‘Simulation of Parallel Random Access Machines
by Circuits,”” SIAM J. Comput., vol. 13, pp. 409-422, 1984.

5. S. H. Unger, ‘“‘Tree Realization of Iterative Circuits,”” IEEE Trans. Comput., vol.
C-26, pp. 365-383, 1977.

