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1. Introduction and Preliminaries. We denote a two—dimenéj.onal deterministic
(nondeterministic) one-marker automaton by "2-DM;" ("2-NM;"}, and a three-way
two-dimensional deterministic (nondeterministic) Turi}ng machine by "TR2-DTM"
{"TR2-NTM"). TIn this paper, we show that the necessary and 'sufficient space
for TR2-NTM’s to simulate 2-DM:’s (2-NM;’s) is n log n (nz), and the neces-

sary and sufficient space for TR2-DTM’s to simulate 2-DMi’s (2-NMi’s) is

2 0(n log ») (2 00 n%) ), yhere n is the number of colums of rectangular in
put tapes. |

In this paper, the detailed definitions of two-dimensional marker automata
and (space-bounded} three-way two-dimensional Turing machines are omitted. If

necessary, refer to [1,2].

Definitioﬁ 1. Let ¥ be a finite set of symbols. A two-dimensional tape over
2 1is a two-dimensional rectangular array of elements of X .

The set of | all two-dimensional tapes over ¥ is denoted by X (2),

For a tape x€ X (2), we let Q; (x) be the number of rows of x and Q,(x) be
the number of columns of x. If 1<i<Q; (x) and 1{j<Q:;(x), we let x(i,j) denote
the symbol in x with coordinates (i,j). Furthermore, we define

x[(1,3),(1’,3") 1,

when 1<i<i’<Q; (x) and 1<j<j’<Q;(x), as the two-dimensional tape z satisfying
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the following:
(i) Qy(z)=i’-i+1 and Q; (z)=j’-j+1,
(ii) for each k,r [1<k<Q; (2z),1<r<Q,(2)]1, z(k,r)=x(k+i-1,r+j-1).
When a two-dimensional tape x is given to any two-dimensional automaton as an

input, x is surrounded by the boundary symbol "#"s.

Definition 2. Let x be in X (2) and @, (x)=n. When @, (x) is divided by n, we
call
x[((j-1)n+1,1),(jn,n) ]

an n-block of x, for each j(1<j<R;(x)/n).

Definition 3. For any two-dimensional automaton M with input alphabet % ,
define
T(M)={xe X (2)| M accepts x}.
Furthermore, define
£L1[2-DM;1]1={T| T=T(M) for some 2-DM; M} and
£L[2-NM1]={T| T=T(M) for some 2-NM; M}.
We similarly define &£ [TR2-DTM(L(m,n))] (2 [TR2-NTM(L(m,n))]) as the class of

sets accepted by L(m,n) space-bounded TR2-DTMs (TR2-NTMs).

By using an ordinary technique, We can easily show that the following

theorem holds.

Theorem 1. For any function L(m,n)>log n,

& [TR2-NTM(L(m,n) )] < <& [TR2-DTM(20(L(m;n)))],




2. Sufficient Space.
In this section, we investigate the suffioient space for three-way Turing

machines to simulate l-marker automata.

We first show that n log n space is sufficient for TR2-NTM’s to simulate 2-

DMi’s.
Theorem 2. £ [2-DM;] S 2 [TR2-NTM(n log n)].

Proof. Suppose that a 2-DM; M is given. Let the set qf states of M be S. We
partition S into two disjoint subsets S* and,S' which corrésponds to the sets
of states when M is holding and not holding the marker in the finite control,
respectively.! We assume that the initial state qo andvthe’unique accepting
state qa of M are both in S*. 1In order to make our prooflclear, we also as-
sume that M begins to move with its input head on the rightmost bottom bound-
iary symbol # of an input tape and, when M accepts an input, it enters the ac-

cepting state at the rightmost bottom boundary symbol.

- Suppose that an input tape x with @, (x)=m and Q; (x)=n is given to M. For M
"and x, we define three types of mappings f?-i:S-X {0,1,...,n+1}->S-X
{0,1,...,n+¥1}U {2}, fF+;:S*x {0,1,...n+1}>S*x {0,1,...,n+1}JU {2}, and
ft-i:8-x {0,1,...,n+1}>8-%x {0,1,...,n+1}U {Q} (i=0,1,...,m+1) as follows.

f'-i(q-,j)= g‘(q-’,j’): Suppose that we make M start from the configura-

1. Rigorously, S- does not contain the states in which the input head of M

positions on the same cell as where the marker is placed.

73



74

tion (g-,(i-1,j)) with no marker on the input Xf
(i.e., we take away the marker from the input
tape by force). After that, if M reaches the j.

th row of x in some time, the configuration cor<

responding to the first arrival is (q-’,(1,j’));
\\Q : Starting from the configuration (g-,(i-1,J)) with
no marker on the input tape, M never reaches the'

i-th row of x.

fT+i{q*,j)= (q*’,j’): Suppose that we make M start from the configura- :
tion (gq*,(i-1,j)). After that, if M reaches thé
i-th row of x with its marker held in the finite;
control in some time (so, when M puts.down the
marker on the way, it must retﬁrn to this posi- 

- tion again and pick up the marker), the con-
figuration corresponding to the first arrival is

(q*’,(i,3%));

: Starting from the configuration (q*,(i-1,j)) with

—
=)

no marker on the tape, M never reaches the i-th"
row of x with its marker held in the finite con{

trol.

f+t-i(q-,J)= {(q=’,Jj’): Suppose that we make M start from the configura-'i
tion (q-,(i+1,Jj)) with no marker on the input J
tape (i.e., we take away the marker from the in?
put tape by force). After that, if M reaches

the i-th row of x in some time, the configura-
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tion corresponding to the first arrival is (q-
(i, 37)),
: Starting from the configuration (q-,(i+1,j)) with

no marker on the tape, M never reaches the i-th

row of x.

Below, we show that there exists a TR2-NTM(n log n) M such that T(Mf):T(M).
Roughly speaking; while scanning from the top row down to the bottom row of
the input, M’ guesses and checks f* -, constructé fT-; and f'+;, and finally
at the bottom row of the input, M’ decides by using ff-m+1 and ' *n+1 whether
or not M accepts x (see Figure 1). In order to record these mappings for each
i, O(n) blocks of O(log n) size suffice, so totally O(n4logbn) cells of the
working tape suffice. More precisely, the working tape must be used as a
"multi-track" tape. In the following discussion, we omit the detailed con-

struction of the working tape of M’,

First, set f¥-4, ft+, to the fixed value 0.
For i=0 to m+1l, repeat the following. {f?';, f7+; are already computed at the
{i-1)st row.]

(0) Go to the i-th row; When i=0, assume the bbundary symbols on the first
row.

(1) Guess f*-;; if i=m+l, set f*-p+1 to the fixed value Q.

(2) [compute fT-;4+; from ft-;] When i#m+l, do the following: Assume that
there is no marker on the input tape. For each (q-,j)€ S-X
{0,1,...,n+1}, start to simulate M from the configuration (q-,(i,j)).
While M moves only at the i-th row, behave just as M does. On the way

of the simulation, if M would go up to the (i-1)st row at the k-th
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(3)

column and would enter the internal state p-, then search the table,f?-if
to know the behavior of M above the i-th row. If the value fT-;i(p-,k)
is "0", write "Q" into the block Qorfesponding to ft-i+1(q-,J); If the
value ft-i(p-,k) is "(p-’,k’)", restart the simulation of M from the |
\configuration (p-’,(i,k’)). While continuing to move in this way, if M
would go down to the (i+l)st row, then write the pair of the internal
state and ¢column number just after that movement into the block cor-
responding to f’-r+1(q;,j) of the working tape. If M never goes down t&
the (i+1)sf rOW’(including the case when M enters a loop), then write "
0" into the correspondent block.

[compute ff+;,1 from f*-;,f*+;, and f*-;] When i#m+l, do the following:
For each (q*,j)€ S*x {0,1,...,n+1}, starting from the configuration
(q*,(1,J)), simulate M until M goes down to the (i+1)st row with the
marker in the finite control. On the way of the simulation, if M would
go up to the (i-1)st row with the marker held, then search the table
fT+; to lnow the behavior of M above the i-th row. If this value of
f1+, is f;Q", write " 2" into the block corresponding to ff*;+1(q',j);
otherwise, restart. the simulation of M from the configuration on the i- -
th row determined by the table value. If M puts the marker down on the
i-th row of the input tape, then record the column number of this posi-
tion in some track of the working tape and start the simulation of M
which has no marker in the finite control. After that, If M would go
down to the {i+l)st row or would go up to the (i-1)st row, then search
the respective table f*+-; or fi-; to find the configuration in which M
return to the i-th row again. (If M never returns to the i-th row, write
"Q" into the block corresponding to f'*;+i(q*,j)). From this con-

figuration, restart the simulation of M.  After that, if M returns to




the position where M put down the marker previously and picks it up,
then continue the simulation of M; otherwise write " 0" into the block
correspondingkto {q*,Jj). At some point of the simulation, If M goes
down to the (itl)st row with theumarker held,in'the finite control,
write the,pair of the internal state which M would enter just after that
time and the row number of this head position into the block correspond-
ing to fT*i+1(q*,j). If M never goes dgwn to the {i+l)st row, then

write " Q" into the correspondent block.

(4) [check f*-i-, from f*-;] When i#0, do the following: In order to check

that the table f*-i., guessed on the previous row is consistent with the
table ft+-; (guessed at the‘present row), first newly compute a mapping
ft+~,.1, which is uniquely determined from ft*-; and the conteht of the i-
th row of the input. After this computation, check that f*-;-; is.iden—
tical to the mépping f+-i-1 guessed at the previous row. If the

equality holds, then continue the process; otherwise, reject and halt.

After the above procedure, on the (m+l)st row, M’ begins to simulate M from
the initial configuration (qte,(m+1,n+l)) to deciderwhether or not M accepts
the input after all. When M goes up to the m-th row with or without the
-marker, we can know how M returns again to the (m+l)st row, from ff +a+1: Or

£ *m+1, respectively. If M never returns to the (mt+l)st row again, then M’
rejects“and halts. If M returnsrto the (m+1)th row, then M’ continues the
simulation. M"acéepts the input x only if M’ finds that M enters the accept-
ing configufation (q*ta, (m+1,n+1)).

It will be obvious that T(M):T(M’).;

From Theorem 1 and Theorem 2, we get the following.
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Corollary 1. 2 /[2-DM:] € 2 [TR2-DIM(2 ©0(n log n))],

We next investigate suffiébient space for TR2-NTM’s to simulate 2-NM; . By
using the same idea as in the proof of Theorem 2, we can show that the follow-

ing theorem holds.
Theorem 3. 2 [2-NM;] € &£ [TR2-NTM(n?)].
From Theorem 1 and Theorem 3, we get the following.

Corollary 2. £ [2-NM;] & £ [TR2-DIM(2 °(r%))],

3. Necessary space.

In this section, we show that the algorithms described in the previous sec-
tion are optimal in some sense. That is, those spaces are required for three-
way Turing machines when the spaces depend only on one variable n (i.e., the

number of columns of the input tapes).

Lemma 1. Let Ti={xe {0,1}(2)| I n>1[Q, (x)=n & (each row of x contains exactlj
one "1") & 3k>2[(x has k n-blocks) & (the last n-block is equal to some other
n-block)]}]}. Then, |
(1) Tie £[2-DM;] and
(2) T1€ 48 [TR2-DTM(2L(»))] (so, T1€ o [TR2-NIM(L(n))]) for any L:N-R such
that Lifme [L(n)/n log n]=0.

Proof. (1): We can easily construct a 2-DM; M accepting T: as shown in Fig.



(2): The proof of Part (2) is lengthy, so ommited here.
]

Lemma 2. Let T:={xe {0,1}(2)] I3n>1[Q;(x)=n & Fk>2[(x has k n-blocks) & (the
last n-block is equal to some other n-block)]l}. Then,

(1) T2€ £ [2-NM1],

(2) T2€ £ [TR2-DTM(2L(n))] (so, T:€ .2 [TR2-NTM(L(n))!} for any L:N- R such

that limnse [L(n)/nZ]:O.

Proof. - It is shown in [3] that Part (1) holds. From the same reason as in

the proof of Lemma 1(2), we ommit the proof of Part (2).
From Lemma 1 and Lemma 2, we can conclude as follows.

Theorem 4. 7To simulate 2-—DM1 ’s, (1) IRZ—N’IM’S require Q (n log n) space and

(2) TR2-DIM’s require 2 § (n 10&€ n) gpace in general.

Theorem 5. 7To simulate 2-NM;’s, (1) TR2-NIM’s require () (n2?) space and (2)

TR2-DTM’s require 2 % (%) gpace in general.

References
[1] A.Rosenfeld, Picture Language, Chapter 7 (Academic Press, NY, 1979).
{2] K.Inoue and i.Takanami, A Note on Deterministic Three-Way Tape-Bounded
Two-Dimensional Turing Machines. Inform. Sci. 20, pp.41-55 (1980).
{3] K.Inoue and A.Nakamura, Some Properties of Two-Dimensional Nondeter-
ministic Finite Automata and Parallel Sequential Array Acceptors, Trans.

IECE Japan Sec.D, pp.990-997 (1977).



80

ft -, ft+, f+-o
Yy SN Vo7 1
f¥ -, f*+, f+t-

¢ NN L 7 1

VN b o

. ft -y £+ f+-i
b N Vv 7 1
ft-i1 ff+ie ft-ie

y Ny . Z 1P
VN b
f* -n ‘f?"m f*-n

y N VvV Z 1

£t -nst £ tne f4-ner

Fig.1l. Mutual Dependences

.of the mappings.

10

—~+the first
block

-+ the j-th

it ..., 00199}7 block
! .
’ |
1
(
{
—+ the .last
i 20160 block
X
Fig.2. Action of 2-DM; M

on a tape in Ti.



