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Extension Theorem of coherent gX—Modu}es due to Gabber

3. sekiaueni  (PEVZ 8P )

University of Electro-Communications
(.
)

§1. Introduction

The purpose of this note is to prove the follaowing

unpublished result due to 0. Gabber.

Theorem 1.1 (0. Gabber) tLet X be a complex manifald,

T*X the cotangent bundle over X, Q@ an open subset of
T*X - (zero section) and Y a conic closed analytic subset @
with the following condition:

Condition; For any p € ¥, there exist a neighbourhood U
of P in Q and f, g e T, Q) such that fIVIU = 0,
gl = 0 and {f, 3} (p) = 0. (Here {f, g} means the
Poisson bracket.)

Let [ be a coherent gx—madule gn U and a coherent

HZ

Sub-gy(O)—Noduie of M. Put N = {us I ulQ-Y e NiQ-Y}.

Then N’ is also coherent over gX(O).

This theorem is a generalization of the fundamental
theorem of Sato-Kawai-Kashiwara concerning the involutivity of
the characteristic varieties of caherant QX—MUdules (cf.
[SKKIY. Explain the connection shortliy.

Let Q be the one in Theorem 1.1 and let V be a conic
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involutive analvtic subset of T*X contained in Q. Define

¢

I, = 0P e Ey(IQ 5 0, PV =0)

and put 4, = gvk. (Here ;vo = Ex(0).> Now recall the

k

S5 uC s

0
definition of egular singularity".

Definition. A coherent gx—module 0 on Q has regular

singularities (= RS) alang V if for anvy. p € Q, there exist a

neighbourhood U of p 1in Q@ and a coherent gx(O)—Module

on U such that [ = gYE and QVE = L.
In general, for a coherent gX—Module M on Q, define

IRM,W = { pe Q; 8 does not have RS along V

in a neighbourhoad U of »p in Q).

Theorem 1.2, Let Q, VV be as above and g a coherent

gX—MDdu1e on Q. Then IRM,V) 1is an involutive closed

analytic subset of Q and is contained in Supp U.

Sketch of The 1.1 = Th. 1.2. It suffices to shouw the

invelutivity of IRML,V). For this purpose, put 2 = IR(,V).
Changing Q with a smaller one, we may assumé the following
from the first.

{2 Z # 0.

(b F f. g2 TQ, Oy (01 s.t.



f12 = glz =0, {f, atip # O.

(c):% Lt a caherent gX(O)—Module an R s.t.

Im

XE =N, ¢ = Supp(évg/g).

M: ulQ-Z e LIQ-72}. Than, applving Thaorem 1.1,

M

put L* = {u
we conclude that L’ is coherent over Ey (0). Since L CL’,

the condition (c) implies that gx%' = M. On the ather hand,
by definition, I,L” =L"+ Then I has RS along V and we
find that IR{Q.VW =0@. This contradicts the assumption and

Theorem 1.2 follows.

Consider the case V =g in Theorem [.2. Then IR,V =
Supp I and therefore Supp IJ 1is involutive. This statement
is nothing but the contents of the fundamental theorem of
Sato-Kawai-Kashiwara mentioned above. .

Theorem 1.1 has an important consegquence which we are

gning to mention (see [KK1, 2] I[ND.

Theorem 1.3. Let [ "be a holonomic gX—MDdule on Q and
put A = Supp O. Then the following conditions (i)-{iv) are
mutually equivalent. |

(i) Q has RS along A.

(ii> M has RS along any conic involutive analytic subset
V  containing A.

(iiiy o Has RS anné some conic Lagrangian analvytic
~subset A’ containing A,

{iv) @ has RS along A in an‘open‘neighbnurhood of a

dense gpen subset of A.




To prove Theorem 1.1, we need some preparation on 3 kind
of "non-commutative' algebraic geometry thch will be developed
in the subseguent sectians énd therefore the proof of Theorem |
will be postponed until §4. |

Closing this introduction, I give some comments on this
note. . The outline of the proof of Gabber’s theorem was
lectured by M. Kashiwara at RIMS in 1981. S. Ishiura, I.
Noumi, T. Yano and I learned the contents of the proof based on
M. Saito’s notes aof Kashiwara’s lecture. I believe that this
note is not comleted without their help. I thank them for

their efforts and kindness.



"§2. D-rings and MD-rings.

This section is devoted to the preparation to the proof of
Theorem 1.1 of §1 which will be done in §4. Hence we first
introduce the notion of D-rings and MD-rings which are obtained by
abstrac{ing some basic properties of the stalks of the sheaves gx
and gx and next prove some basic properties of them which will be
needed in the next section. For example, the ring of left
fractions, the homogeneous spectrum, the structure sheaf on the
homogeneous spectrum of a D-ring are discussed. HMost results of
this section are well-known when the ring in question is commutative
and therefore the results of this section are in some sense familiar
to the experts for the commutative algebra. The only thing we must
take care of is the difficulty arised from the non-commutativity of

a D-ring.

2.1. The definition of B-ring and MD-ring.

Definition 2.1. Let A be a (not.necessari]y commutative)
ring. Aﬁéume that A has a filtration {A(h)}nez. Namely
{A(n)}nez is a family of sub-Z-modules of A satisfying the
following conditions:

CA(n) C A(n+1), A= U A, AMAWMD) C Alm+n).
neZ
Theﬁ (A, {A(n)}n

ez) or simply A is called a D-ring if the

following conditions (i)-(iv) hold for {A(n)}nezz

(i) [A(m), A(n)] C A(m+n-1) for any m, n € Z.

(i1) A(0) contains 1 and is left and right Noetherian.
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(iii) gr(A) = @ grn(A) (grn(A) = A(n)/A(n—-1)) is a finitely
neZ :
generated gro(A)—algebra.
(iv) A = ® AMT" is also a left and right Noetherian
<T> neZ
ring. (Here, T 1is an indeterminate commuting with each element of

A.)

Lemma 2.2. Let A be a D-ring. Then the following statements

hold.
(i) A 1is left and right Noetherian.

(i1) gr(A) 1s a commutative Noetherian ring.
This lemma is clear from the definition.

Remark 2.3. In the definition of the D-ring, the condition
(iv) does not follow from (i)-@ii). In fact, we can construct a .
ring A uwhich satisfies (i)-(@ii) but does not (iv). For example,
the following is such a ring.

Let A =(CLCx]] be the ring of formal power series of x and

let m = Ax. Define

| A (> O
Atn) = -
: m (n < 0).

In this case, {A(n)} satisfies the conditions (i)-{iii) but A(T)

. , _ < -n . .
is not Noetherian. In fact, J = nzl A<T>xT is an ideal of A(T)

but is not finitely generated over A(T)'

In this section, we will develop "non-commutative algebraic

geometry'” for a D—rihg.‘ In the last part of this section and also
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in the next section, we restrict our attention to such a ring called
an MD-ring which satisfies the conditions straonger than thaose
contained in ihe definition of a D-ring. For this reaéon, we now

give the definition of an MD-ring.

Definition 2.4. Let A be a (not necessarily commutative)

ring with the filtration {A(n)2. Then (A, {A(n)3) or simply A
is an MD-ring if {A(n)} satisFies the the cnditions (i)-(v) belouw:
(i) [A(m), A(N)] € A(m+n-1) for any m, n € Z.
(ﬁ) gr(A) 1is a finitely generated grO(A)—module.
(iii) A(0) contains @ and is left and right Noertherian.
(iv) There exist u e A(-1) and v € A(1) such that
uv = vu = 1. ‘
(v) For'ény a € A(-1), 1+a 1is invertible in A(0), that is,
there exists an element b € A(0) such that (1+a)b = b(1+a) = 1.
It is not clear whether if (A, A(R)3) is an MD-ring, then
(A, {A(n>3) is a B-ring or not. But this is actually true.

Namely, the following lemma holds.
Lemma 2.5. Every MD-ring is a D-ring.

Proof. Let (A, {A(n)}) be an MD-ring. To prove the lemma,

it suffices to show that A = ® A(RT" is left Noetherian and
_ <T> neZ
right Noetherian.
Now show that A ., is left Noetherian. Let
{Iv; v =1, 2,...2 be an increasing sequeﬁce of left ideals of

A(T)' We are going to prove that there exists an integer Vo > 0



such that Iu = IU0 for any v 2 Vge By definition, Iu is

expressed of the form C)I (n)Tn, where each I (n) 1is contained
_ nez Y v,
in A(n) and is an A(O)-module for any v and n. Then, by the

assumption, Iu(n) C Iu (ny ¢ v, n). Fix u € A(-1) and

+1
v € A(1) such that wuv = vu ='1. Now define J@,n) = vnlu(—n) if
n > 0. Then it follows that each J(w,n) 1is a left ideal of A0O)
and that IU(—n) = unJ(v,n). On the other hand, it is easy to see

that

Jw,n) C JWw+l,n), Jw,n) C JWw,n+1) for any v, n > O.

Since A(0) 1is left Noetherian, these imply the existence of
integers Vor Ng > 0 such that Jw,n) = J(uo,no) w 2vy n 2 ngde

Put J = Jw ). Then we find that I (-m) = u"J w 2w

0*"o 0’

n > no). By the same reason, there exists a left ideal J* of

ACO) such that Iu(n) =Vl W 2 Vgs N 2 no). Here we change the
inteéers Vo and Po by the greater ones if necessary. At any
rate, we may assume that there‘exist positive integers wv,, n, and
left ideals J, J* of A(0) such that Iu(n) = vy, I,(-n) = u"J
if v 2vg, n2nge Fix an integer n tInl < ngd. Since if n >0
(resp. n =0, n <0, then ("I (n; v =1, 2,...3 (resp.

{Iu(n): v =1, 2,...3, {v_nlv(—né; v =1, 2,...3) is an increasing
sequence of left ideals of A(O) and since A(0) is left
Noetherian, the sequence is 5tationary§ Therefore we conclude that
the increasing sequence‘ {Iu} of left ideals of A(T) is also
stationary. This means that A(T) is left Noetherian. By the same

way, we can show that A(T) is right Noetherian. q.e.d.



Let (A, {A(n)2)) be a D-ring. For each n € Z, we denote by
g, the natural surjection of A(n) to grn(A). By definition, |
Ker o = A(n-1). If a e A(n)NA(n-1), then n is called the order
of a and is denoted by ord a. On the otBer hand, if a € N A1),
then the order of a is -, Now define a surjection o ofn A to
gr(A) by o(a) = on(a) if ord a = n. It is clear from the
definition that o(ab) = o (ado(b) for any a, b € A.

An element of .gr(A) 1is homogeneous if it is contained in
grm(A) for some me Z and in this case m is called the degree
of it. An ideal of gr(A) 1is called homogeneous if it is generated
by homogeneous elements of gr(A). It is known that if I 1is a
homogeneous ideal of gr(A), then I = :,(I n grm(A)).

If ae€ A(m) and b € A(n), then define

‘ {am(a), Un(b)} = om+n_1([a,~b])- Since o, is surjgctive‘for each
ne g, {f, g s well-defined for any f € grm(A), g € grn(A).
Similarly as in the case of gx; { , 3 1is called the Poisson
bracket on gr(A). The Poisson bracket <{ , > extends to a
Z-bilinear map of gr(A) x gr(A) to gr(A) and has the following

properties:

(2.1.1) {f, f3} = 0 for any f € gr(A).
(2.1.2) {f, gh} = {(f, g)h + g{f, h} for any f, g, h € gr(A).
(2.1.3) {{f, g3, hY + {{g, h}, £} + {{h, f23, g} = O.

Let (B, {(B(n)}) be another D-ring and let ¢ be an algebra
homomorphism of A to B satisfying that &(A(n)) C B(n) (?/n € &)
and that ¢(1) =1. Let < , }A and { , }B be the Poisson

brackets on A and B, respectively. Let ® denote the algebra
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homomorphism of gr(A) to gr(B) induced from ¢. Then it follouws
that &(f, g}A) = {(d(f), é(g)}B for any f, g € gr(A).’

We give here some elementary properties of a D-ring.

Lemma 2.6. Let A be a D-ring. Assume that each element of
1 + A(-1) is invertible in A(0). If a € A 1is such that g(a)
is invertible, then a 1is invertible, that is, there exists a

be€ A such that ab = ba = 1.

Proof. Assume that ord a = k. Since ak(a) is homogeneous

of degree k, the inverse f of ok(a) is homogeneous of degree

-k. Take b1 € A(-k) such that o—k(bl) = f. This implies that
ab1 € ACO) and ao(abl) = 1. Then ab1 = 1+c for some c € A(-1).
From the assumption, 1+c 1is invertible and therefore

b = b1(1+c)—1 is a right inverse of a. Similarly, there exists a

left inverse b’ of a. Then b’ = b’(ab) = (b’a)b = b. Geeode
Lemma 2.7. Let A be a D-ring and assume the condition in
Lemma 2.6. Let N be a finitely generated left A(O)-module. If
A(-1)N = N, then N = O.
Proof. From the assumption, A(-1) is contained in the
Jacobson radical m of A(0O). Hence, if A(-1)N = N, we have
mN = N. Then Nakayama’s lemma implies that N = O. q.e.d.

We are going to give some examples of D-rings.

E#amp]e 2.8. Stalks of the sheaf gx.
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Let X be a complex manifold and let Qx be the sheaf of
differential operators on- X. As in the provious sectian, put
Dx(m) = {P € Dy3 ordP < m} for each me N. Now take x € X and
fix it once for all. Then the stalk QX’x is a BD-ring with the
filtration {A(m)}mez’ uhere Alm) = gx(m)x (m 2 0) and A(m) =0
(m < 0). In this case, gr(A) = A(O)Efl,...,fnj and A(0) - is the
stalk gX’x'

Example 2.9, Stalks of the sheaf 5x’

Let X be a complex manifold and let T*X be the cotangent
bundle over X. Let gx be the sheaf of microdifferentia]
operators on T*X. As in the previous section, put
Ey(m) = {P e Ey; ordP < m} for each me Z. Take p € T*X and fix
it once_for é]l. Now put A = Ex’p and A(m) = gx(m)p for any
me€ Z. Then it follows from Theorem 1.10 that A, {A(m)») is an

MD-ring. In this case, gr(A) = gr (AYL,0!

J and gro(A) is
isomorphic to the ring of convergent power series of

(2n—-1)-variables and grm(A) = grO(A)Qm for every me Z.

Example 2.10. The universal enveldping algebra of a Lie

algebra.

Let g be a Lie algebra defined over € and let U(g) be the
universal enveloping algebra over g. . Let Uk(g) be the linear
subspace of U(g) spanned by the elements of U(g) whose degrees
are < k. Put A = U(g), Alm) = Um(g) if m >0 and Am) =0 if
m < 0. Then.it is clear that A 1is a D-ring with the filtration

{A(m)}. In this case gr(A) coincides with the symmetric algebra

over. g.

— /11—
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Example 2.11. The Weyl algebra CCxqseveax »D, 4eee D T,
n )(1 xn

Let us consider the polynomial ring EExl,...,an of

2

X.  OX.
i i

algebra A generated by Dx ,.--,Dx over C[xl,...,xn] is caned"
1 n
the Weyl algebra. Put A(m) =0 if m < 0 and

n-variables TEREEE N and put D (1 = 1,...{n). Then the

A(O) = Efxl,...xnl. If m > 0, then A(m) is inductively defined

n

as follows: Am = A(m-1) + 2 A(m—l)Dx . Then A 1is a D-ring
k=1 k

with the filtration {A(m)}. In this case,

gr(A) = @[xl,...,xn,fl,...,gnj.

2.2. The homogeneous spectrum of gr(A).

In what follows, (A, {A(n)})) 1is a D-ring unless otherwise

stated.

Definition 2.12. The homogeneous spectrum of gr(A) is the

set of all homogeneous prime ideals of gr(A) and is denoted by

Spech(gr(A)).

Remark 2.13. Spech(gr(A)) 1is analogous to Proj(S) for a

graded ring S with a graduatian {Sm}m>0' But there exist some
differences between Spech(gr(A)) and Proj S. The most crucial
one is this: gr(A) has negative grades in spite that Sm =0

(m < 0).

In the sequel, Spech(gr(A)) 1is denoted by X unless otherwisq

stated. In order to introduce a topology on X, we first give a
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"lemma. For its proof, see [ 3.

Lemma 2.14. For each homogeneous ideal 'I of gr(A), put
VI = {(f e gr(A); f" € I for some n > 0 }. (VI is called the
radical of I1.) Then

Vi= N p.
peX, pdI

In particular, VI 1is also a homogeneous ideal.

For any homogeneous ideal I of gr(A), define
V(I) = { pe X;s p21 3 and for any homogeneous element f of
gr(A), define V((f) = V(gr(A)f). Then the fo]louiﬁgtproperties are
easily proved:
(2.2.1.1) V(0) = X, V(1) =4 .
(2.2.1.i1) Let I and I®* be homogeneous ideals of gr(A).
VI CVI* & V') € VD).

V(I N I) = V(1) VD U w1,

(2.2.1.111) If {Il; A € A}y 1is a set of homogeneous ideals of

> = NV,

gr(A), then V(2 1 2
AEA

2en 4

Now we define a topology on X by taking the subsets of the
form V(I) to be the closed subsets. For each homogeneous element
f of ar(A), we define D(f) = { pe X; £¢ p ) = X-V(f). Then we
find the following: | |
(2.2.1.iv)  { D(f); F‘e gr(A), homogeneous}? forms a basis of open
subsets of X.

(2.2.1.v) For each Bomogeneous'élement f e gr(hA), D(F) is

— /3=
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quasi-compact.

(2.2.1.vi) D(O) =8, D(1) =X,
D(fg) = D(f) N D(g). x

(2.2.1.vii) For any subset Y of X, we define I(Y) = N p.
peY

Then I(V(I)) = VI for each homogeneous ideal I of gr(A).

2.3. Good filtrations on finitely generated left A-modules.

Let M be a finitely generated left A-module. In this
subsection, we introduce the notion of a "good filtration” on M.
This is used in the definition of the chacteristic variety Ch(D
of M which will be done in the next subsection.

First we recall the definition of filtrations on a left
A-module. Let M be a left A-module. Then the,sequence {M(n)}neZ

of sub-Z-modules of M 1is called a filtration on M if the

following conditions hold for {M(n)3:

(2.3.1) M(n) € M(n+1), M=UmMm, Am)M(n) € Mim+n).
: n :
Let N be a sub-A-module of M. Then, putting
N(n) = NN Mn) ( neZ), we obtain a filtration {N(M2> on N.
This is called the induced filtration on N. Similarly, let N be
a left A-module and let @&:M > N be a surjective A-homomorphism.
Then, putting N(n) = ¢(M(n)), we obtain a filtration {N(n)} on

N. This is called the image filtration on N.

If {(M(n)}) 1is a filtration on ™M, we define

gr{M) = M) /Mn-1).
n

— /Y —




Definition 2.15. Let M be a finitely generated left A-module

and let {M(n)}nez be a filtration on M. Then {M(n)} 1is called
a good filtration on M if M<T> =e MT" is a finitely
n

generated left A<T>—modu1e~

Lemma 2.16. Let M be a finitely generated left A-module.
(i) There aluways exists a good filtration on M.
(1i1) Let <{M(n)} be a good filtration on M. Then

gr(M) =@ Mn)/M(n-1) 1is a finitely generated gr(A)-module.

n

Proof. (i) Let Upsererly € M be a system of generators of

r
M over A. Then define M(n) = 2 A(n)ui for each ne Z. It is
i=1
clear from the definition that {M(n)} 1is a good filtration on M.
(ii1) It follows from the definition that gr(M) 1is identified

with ”<T>/TN<T>' Since ”(T) is a finitely generated left
A<T>—modu]e, this implies that gr(M) is a finitely generated

gr (A)-module.

Remark 2.17. It is clear that good filtrations on M are not

unique. In fact if {ul,.., ur} €M 1is an arbitrary system of
generators of M, then as in the proof of Lemma 2.16,(i), we can
define a good filtration on M. For the sake of convenience, such a
filttration on M 1is ca]]ed_a good filtration induced from a finite:

set of generators {Ul""’ur}‘

Since the Noetherian condition is stable by the procedure of

taking subquotient modules, the next proposition follows from the
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definition of a good filtration.

¢ 0
Proposition 2.18. Let O > M > M - M > 0 be an

exact sequence of left A-modules. Assume that M has a filtration

{M(nd)3 Let {N’(n)}n (resp. {M“(n)}n ) be the induced

nez’ eZ €Z
filtrations on M’ (resp. the image filtration on M"). Then M is}|
finitely generated over A and {M(n)} 1is a good filtration on M
if and only if both M ‘and M" are finitely generated over A ‘
and (M’ (n)} (resp. {M"(n)} 1is a good filtration on M (resp. H").i

Furthermore, in this case, we obtain the exact sequence of L
finitely generated left A<T>—m0du]es

,‘Mn

<T>

O — M — N

<T>

___.)0

<T>

and the exact sequence of gr(A)-hodu]es

0O — gr(M*) — gr(M) — gr(N") — 0.

Definition 2.19. Let M be a finitely generated left A—modu]eé
and let {(M(n)} and (M (n)? be good filtrations on M. Then. E
{M(n)} and (M (n)3} are equivalent if there is an integer k > O
such that HM(n) C M’<n+k)"and M’ (n) € M(n+k)> hold for each

neZ#.

Lemma 2.20. Any two good filtrations en M are equivalent to ‘

each other.

Proof. Let (M'(m3 ., (i =1, 2) be tuo good filtrations onf

,_/é_..



M. Define MéT) = M ()T". Then what we must prove is to shouw

n
. . kpl 2
the existence of an integer k > O such that T M(T) c M<T> and
k2 1 '
T & Moy
First assume that Ml(n)‘g M2(n) for each n e Z. Put

Lk = O(Mz(n)ﬂnl(n+k))Tn. Then {Lk; k =1,2,...) 1is an increasing

n

o _ 2 _ml
sequence of left sub A(T) modules of M(T) and L0 = M(T)’
U L, = MZry. It follous from the assumption that M2, is a
k=0

finitely generated left A<T>—modu1e and that A<T> is left

nocetherian. These imply that {Lk} is stationary. Hence there
exists an integer k > O such that Lk = ”3T>' This means that
M2 MMl n+kd) = M%) (Yn e Z), or equivalently that

2ty c M nekd (Wn e ). Therefore (Ml(n)3 and (MP(n)3 are

M
equivalent.

Next consider the general case. Since U(Nl(n)ﬂNQ(n)) =M, it
n

follows from Proposition 2.18 that {Nl(n)ﬂﬂ2(n)} is a good

filtration on M. Therefore applying the previous discussion to the

tuo filtrations (MMZn3 and (123, uwe conclude that there
exists an integer k > O such that M2(nm) C Ml(n+kdMMZ(n+k) for
each n € Z. Since Hz(n) Cc M2(n+k), it follows that
Hz(n) - Ml(n+k) for each n € Z. By changing the roles of Hl(n)
and Nz(n), we conclude the existence of k® > O such that

1 2 2

M*(n)> € M"(n+k’) for each n € Z. Hence {Hl(n)} and - (M (n)2

are equivalent. q.e.d.

— /17—
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2.4. The characteristic variety of M.

Let M be a finitely generated left A-module. We are going to

define the characteristic variety Ch(M) gaof M.

Definition 2.21. Let {M(n)}nez be a good filtration on M.
Define gar(M) = M(n)/M(n-1). Then Ch(UD = V(Anngr(A)gr(H)) is
n
called the characteristic variety of M. Here

Anngr(A)gr(M) = {a € gr(A); agr(M) = 0 3. (It follows from the

definition that Anngr(A)(gr(N)) is a homogeneous ideal.)

As was already shown in Lemma 2.16, there always exists a good
filtration on M and therefore Ch(M) 1is defined for it. Although
the definition of Ch(M) depends on the choice of a good

filtration, the following holds.

Theorem 2.22. Let M be a finitely generated left A-module.

Then the characteristic variety Ch(M) doces not depend on the

choice of a good filtration on M.

To prove Theorem 2.22, we first give a lemma which is easy to

show.

@ ¢
Lemma 2.23. Let O > N? > N > N » 0 be an exact

sequence of graded gr{(A)-modules. Assume that ¢ and ¢ preserve

the graduations. Then

N> = V(Ann N*) U V(Ann

V(Ann ar(A) |

Nl.) .

ar (A) gr (A)

—/8—



1 2
Proof of Theorem 2.22. Let {M (n)}nez and (M (n)}ne

(i)
r

be

Z

™ =8 M /Min-1
n
(i =1, 2). Then it suffices to show the following:

two good filtrations on M. Define‘ g

Dy = veann 2> .

(2.4.1) V(Ann gP(A)QP

gr(A)gr

Define M, =@M (MT" (i =1, 2). Remark that
M |

M/TH; = ar V2 Go=1, 2. Since MMZn} is also a good

filtration on M, it suffices to prove (2.4.1) when mlcn) c Mz(n)

(Y n e Z) or equivalently when Ml c M2. Hence we assume that

My € My. Define L, =@ M2l e+ i T (G =0, 1, 2,...). Then
n ,

{LJ; j=0,1, 2,...} 1is an increasing sequence of left

sub—A<T>-m0dules of M2 and M2 = JEO Lj'

argument as in the proof of Lemma 2.20, we find that there exists an

Therefore by the

integer k > O such that Lk = M2- On the other hand, it follouws
from the definition of L‘j that for each j > O, we have -
. C TL. CL. CL.
TLJ C TLJ+ C LJ C LJ+

1 1’

This implies the following two exact sequences of gr{(A)-modules

(2.4.2) 0 — TLJ+1/TLJ — Lj/TLJ B LJ._/TLJ._"1 — O

(2.4.3) 0 — L /TLy, — L, /Tl — L, /L, — 0.

Applying Lemma 2.23 to these exact sequences, we find that

V(Anngr(A)LJ/TLJ)

—/ f._



= V(Anngr(A)TLJ+1/TLJ) U V(Ann r(A)LJ/TL 1)
= V(Anngr(A)LJ+1/L y U V(Ann (A)LJ/TL 1
= V(Anngr(A)Lj+1/TLj+1)°

(Here we used the isomorphism TLJ+1

. : . / . » i
/TLJ LJ+1 LJ ) Therefore it

follows that

V(Ann r(A)L /TL ) = V(Anngr(A)LJ+1/TLJ+1) « 2 o0.
In particular
V(Anngr(A)LO/TLO) = V(Ann (A)Lk/TL ).
Since L. =M, and L, =M, and since L/TL.= gr< (M  and
0 1 k 2 0 0
Lk/TLk ~ r(2)(n), we have shown (2.4.1). q.e.d.

From now on, we are going to show some elementary properties

Ch(Mm.

Proposition 2.24. tLet O —m M > M > M > 0 be an

exact sequence of finitely generated left A-modules, then
Ch(M) = ChM*)Y U Ch{MN).

This follows from Lemma 2.23 and Proposition 2.18.

Proposition 2.25. Let M be a finitely generated left

— 20—
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A—mnéule and let CPERRRRL be a system of generators of M over
A. Then for any p € X, the following conditions are équivalent.
(i) p ¢ Ch(D
(ii) There exists - an a € A such that au; = O (i =1,.00,r),

g(a) ¢ p.

Proof.  The implication "(i1) é?(i)“ is clear from the
definition of Ch({(M.

We show the part "(i) = Gi)". By definition, u = (ul,...ur)

r

is an element of ® Auj. Define N = Au. Then there exists a
i=1

left ideal I of A such that N = A/I. It follows from

Proposition 2.24 that

~

Ch(Aui) = Ch(
1 i

Ch(M) = Aui) 2 Ch(Aw.

nCo

ne-

1

Now induce the filtrations on I and N from that on A. Then
they are good and gr(N) = gr(A)/gr(I). This implies that

Ch(N) = V(gr(I)). Let p € X be such that p ¢ Ch(M). Then by the
remark above, p ¢ Ch(N) = V(gr(Il)). This implies that g;ﬁ gr(l).
Therefore there exists an element a of 1 such that o(a) £ p.

It follows from the definition of I that (aul,...,aur) = au = 0.

‘q.e.d.

Proposition 2.26. Let A be a D-ring satisfying that each

element of 1+A(-1) has an inverse in A(0). If M 1is a finitely

generated left A-module such that Ch(M) =@, then M = 0.

Proof. Assuming that M # O, we lead a contradiction. Hence

— 2/
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take u e M with u # 0. Then it follows from Proposition 2.24
that Ch(Au) = #. There exists a left ideal I of A such that

Au = A/I. Induce the filtration on I from that on A. Then,
since Ch(Au) = V(gr(I)), it follows that gr(I) = gr(A). Therefore
we obtain A(0) = INACO) + A(-1). Since 1 e A(O), there exist

a e INAO) and b € A(-1) such that 1 = a+b. From the
assumption, 1-b is invertible in A(O) and therefore

1

1 = (1-b) “a € INA(O). This implies I = A. Hence u = 0. This

contradicts the assumption u # O. G.e.d.

2.5. The ring of left fractions and the module of left fractions.

The purpose of this subsection is to define the ring of left
fractions and the module of left fractions for a non-commutative
ring and its module. The reader is refered to [Stenstroml for the
details.

For the present, let A be a ring with the unit 1. Let S
be a multiplicative subset of A. This means that 1 e S and that
if s, t €S, then st € S. Furthermore, we assume that S
satisfies the conditions |

(m.1> If s € S an& a€ A, there exist t €S and b e A
such that rbs = ta.

(m.2) If as =0 with s € S, then ta =0 for some t € S.

Now we define a relation ~ on S x A as follows:
For (Sl’al)’ (52,32) € S x A, (51,31) ~ (52,32) if and
only if there exist t,, t, € A such that t;s; = t,s, € S

and tla1 = t2a2-



Then it is easy to check that "~" is an equivalence relation on
s x A, Let S‘lA denote the quotient space of S x A by the
equivalence relation '"~" and let s_la denote the equivalence
class of  (s,a) € S x A.

For each (Sl’al)’ (52,32) € S x A, we define the sum

- -1 ’ -1 -1
59 al+92a2 and the product S, a;°s5, 3, as fn]]ogs.

- Sum : By the condition (m.1), there exist b b2 € A such

1’

that b,s, = b € S. Then

252

= -1
51 al+s2 a2 = (blsl) (b1a1+b2a2).

Product : By the condition (m.1), there exist b € A and

t € S such that bs2 = tal. Then

-1 -1 _ -1
51 31'52 32 = (tsl) (ba2).

1

In this way, S A has the ring structure.

Definition 2.27. The ring S—IA is called the ring of left

fractions of A by S.

In by o(a) = 171a. Then

We define amap ¢ of A to S
is a ring homomorphism and has the following properties:
(2.5.1) &(s) 1is invertible for each s € S.
(2.5.2) Each element of S-IA is expressed as the form
s(s) lpa) (ses, ae .
(2.5.3) Let a € A. Then ¢(a) = 0 if and only if sa = 0 for

some S € S.

Proposition 2.28. Let B be a ring with 1 € B and let

&

2

3
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¢:A > B be a ring homomorphism such that ¢(s) 1is invertible in B
for each s € S, there exists a unique homomorphism o:S_lA - B
such that o-¢ = ¢.

For a proof, see [St],

Proposition 2.29. Let A and S be as above. Then for every

left ideal I' C S 'A (I # ST1A), there exists a left ideal I of

-1

A such that S "I = I' and that I NS =4.

Corollary 2.30. Let p be a prime ideal of A such that
1

pMN S =g. Then S—lg is a prime ideal of S~

1A is expressed as S—Ig for some prime

A. Furthermore,
every prime ideal of S~

ideal p of A such that pMNs =4.

Proposition 2.29 and Corollary 2.30 are easy to show and
therefore we omit their proof (cf. [B]),

Let S be a multiplicative subset of A satisfying (m.l),

(m.2) and let M be a left A-module. Then S—1

1

M 1is defined by the

1

way similar to S 'A and it has the structure aof left S “A-module.

To explain this, first define an equivalence relation '"~" on

Sx M as follows:

For (sl,ul), (52,u2) €. S x M, (sl,pl) ~ (52,u2) if and

only if there exist t,, t2 € A such that tysy = t252 €S

and tlu1 = t2u2.

1

Let S "M denote the quotient space S x M/~. The sum of tuo

elements of S_IM and the product of an element of S_IA and that

of S M are defined by the way similar to the case of s~ 1a.



1

‘Hence we do not repeat them. At any rate, S ‘M has the structure

of left S la-module.

Definition 2.31. S_IM is called the module of left fractions

Proposition 2.32. Let A and S be as above. .Then for any

1left A—-module M, we have

-1

s s7lag, m

Furthermore S 1A is right flat over A, that is, if

0> M -» M->M'"> 0 1is an exact sequence of left A-modules, then

1 1 1

0-+S 'M - S '"M->S 'M"> 0 is an exact sequence of left

1

S “A-modules.

The proof of this proposition is similar to the commutative

case. Hence we do not give it (cf. [B]),

2.6+ The ring of left fractions of a D-ring.

We return to our situation, namely, let (A, {A(n)}nez) be a
D-ring. The purpose of this subsection is to study the ring of left

fractions of A.

Theorem 2.33. Let (A, {A(n)}) be a D-ring. Let S be a
multiplicative subset of gr(A) consisting of homogeneous elements.
Then S = {s € A; og(s) € S} is a multiplicative subset of A

satisfying the conditions (m.1), (m.2).

— 25—
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Proof. It is clear that S 1is a mu1tiplicative subset of A.
We are going to show that S satisfies (m.1) and (m.2). For
this purpose, put S(n) = SN A(n) (Vn e Z).

First show that (m.2) holds. Assume that as = 0 for

‘a€ A (ord a =k), s € S (oard s = m). Define a left A-endomorphism

r of A by rs(b) = bs. Then a € N

s Ker(rs). Also define

N(nd = NN A (Vn e 2Z) and gr(N) =@ N(n)/N(n-1). Then
o0(s)gr(N) = 0. In fact, for each n € ZT since N(n)s = 0, it
follows that sN(n) = [s, N(n)J C N(m+n-1). Therefore
V(AnngP(A)gr(N)) C V(o (s)) = X-D((s)). On the other hand, since
Aa € N, it follows that Ch(Aa) C V(g (s)). Define é left
A-endomorphism ra for a as we did for s and put I = Ker(ra).

Then we obtain an exact sequence

Define the induced filtration <{I(nd} on I by I(n) =110N A(n)

and put gr(l)> = I(n)/I(n-1>. Since Ch(Aa) = V(gr(l)) C V(a(s)),
n

it follows from (2.1.1.vii) that o0(s)” =0(s") € gr(Id> for n >> O.

Now fix such an n. Then N e I(mn) + A{(mn—-1) and there exist

t € I(mn) and b € A(mn—-1) such that s" =t + b. Since

o(t) =a(s™ =0(s)" €S, we have t € S. Moreover ta = 0. Hence
vwe find that (m.2) holds for S.

Next shdw (m.1). Take a € A (ord a = k) and .5 € S
(ord s = m). Define the image filtration on N = A/As. By
definition, Ch(N) = V(@ (s)). Next define M = Aa/(AalAs) and

M(n) = A(n)a/(A(n)NAs) (VY neZ). Since M= (Aat+As)/As, M is

24—




" regarded as a left sub—A;module of N and {M(n)} 1is a filtration
on - M induced from that on N. Then it Foflows from Proposition
2.24 that Ch(M) € Ch(N) = V(g(s)). This implies that there exists
p > 0 such that o(s>Pgr(M = 0. This means that

sPM(n) C M(n+mp-1) (¥ n € Z). Now we consider the case n = O.
Since M(mp-1) = (A(mp-1)a+As)/As, it follows that

sPa € A(mp-1)a+As. Then there exist b € A and c € A(mp-1) such
that sPa = catbs, or equivalently, that (sP-c)a = bs. Since

o(sP-c) = 0(sP) = 0(s)P € 5, we conclude that

(sP-c)a = bs € As N Sa. Hence (m.1) is shoun. q.e.d.

Let S be a multiplicative subset of gr(A) consisting of

homogeneous elements and put S = {s € A; og(s) € S}. Then in virtue

of Theorem 2.33 and the discussion in subsection 2.5, the ring of

left fraction S—IA is well—-defined.

1 1

For each element s "a€ S "A (s € S, a€ A), define

ord(snla) = grd(a) - ord(s). Then ord(s_la) is independent of the

choice of the representatives. Noting this, we define

s laymy = ts7la e s7la; ordsTlay < ny (Vn e 2).

1

Then {(S A)(n)}nez is a filtration on S—IA and it is easy to

show that

1 1 1

L™ A m, (S 'AMIC S 'Mn+n-1) (Vm, ne ).

1

As in the case of A, we put gr(S-lA) = e grn(S- A), where

n

1 1 1 S

grn(S_ A = (S AN /(S 'A)(n-1) and denote by o> the natural

27
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-surjection of (S~1A)(n) to grn(S_lA). Then we obtain the
surjection aS of S‘1A to gr(S—lA) by putting
o5slay = oﬁ(sula) when ord(s 1a) = n. On the other hand, since

S is a multiplicative subset of gr(A), §_lgr(A) is well-defined.

By direct calculation, we find that

os(s..1 1a(a) € §‘lgr(A) when s € S, a € A.q This implies

a natural isomorphism gr(S_lA) ~ 57!

a) = g(s)

ar(A).

Theorem 2.34. Let A, S and S be as in Theorem 2.33. Then

the fllowing statements hold.

1 1

(i) (S "A, {(S A)(n)}nel) is a D-ring.

(ii) There exists a natural isomorphism gr(S—lA) ~ §—lgr(A).
1

(iii) Each element of 1 + (S "A)(-1) 1is invertible in

s o).

Proof. From the remark before the theorem, (ii) follows. On

the other hand, (ii) 1is clear from the definition. In fact, each

YA)(=1) is expressed of the form t 1t* with

-1

element of 1 + (S~

t, t* € S such that o(t) =0(t*). Then t* "t 1is its inverse.
Hence it suffices to show that S—lA is actually a D-ring. We

are going to prove the conditions (iid)-(iv) of Definition 2.1 hold

for S la.

The condition (ii).

It is clear that (S~1A)(0) contains 1. Hence it suffices to

chow that (S 1A)(0) is left and right Noetherian.

1

Let I be a left ideal of (S "A)(0). Define

Ty =¢aeh; s laele (S—yA)(n) for some s € S3

— 28 —



and T= e T()T". Then T is a left ideal of A<T>'
neZ

1

If I’ s

énother left ideal of (S "AY(0), we also define T’ similarly. By

definition, I = I’ is equivalent to I = 1’. Since A is left

<T>
Noetherian, this implies that ewvery increasing sequence of left

1 1

ideals of (S A)(0) is left

A)(0) is stationary. Therefore (S

1

Noetherian. Similarly, we can show that® (S "AY(0) is right

Noeiherian.

The condition (iii).
1

A) = 5 lgrA)  is commutative, this is well-known

-

Since gr(S

(cf. [B]).

The‘condition (iv).

Define & = U (SNAK))TK. Then ¥ is a multiplicative subset
keZ
of A<T> satisfying the conditions (m.1>, (m.2) and therefore

B eXiS S« UN e 0 er and, 1 3] [a]N1=Y a
¥ 1A<T> t On the other hand, it foll that

1 k

M oTK = (571

¥y -e (s

A
K <

<T> T>°

Since A<f> is left and right Noetherian, this equality implies

that so is (S 1A), .

<T>

1

We have thus shown that S "A is a D-ring. q.e.d.

We now give examples of the ring of left fractions of A which

will be used later.

Example 2.35. The case ybere S =¢(f" n > 0} (f € gr(A),

homogeneous) .

— 27—
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For the sake of convenience, denote by §F, Sf and AF’ the
multiplicative sets S, S and S_IA, respectively.
In particular consider the case where S =1 (that is, f = 1).

In this case, S =1 + A(?l). By definition, we fiad that

s layny = s lan)  for any n € Z,

1

gr(S 'A) = gr(A).

If each element of 1 + A(-1) has its inverse in A(QO), then

s”1a = a.

Example 2.36. The case where S = gr(A)-p (p is a homogeneous

prime ideal of gr(A)).

In this case, S = {f € gr(A); f ¢ p}. For the sake of
1 ‘

convenience, put Aj s 1a.

Lemma 2.37. Let f € gr(A) be homogeneous and let p be a
homogeneous prime ideal of gr(A). Assume that f ¢ p. Then
(AF) 1 = AB.

(A=S p)

Proof. It is not clear whether 3 = Af—S;lg is a

multiplicative subset of AF or not. But this folliows from the
primeness of p. On the other hand, it is easy to check that 3
satisfies the conditions (m.1) and (m.2). The rest of the claim is

shown by an argument similar to the commutative case. g.e.d.

Let S and S be as in Theorem 2.33 and let M be a left

‘A-module. Then the module of left fractions S_IM is well-defined.



- pAs in Examples 2.35 and 2.36, we can define ”F and HP for a
homogenecus element f of gr(A) ‘and for a homogeneous prime ideal

p of gr(A), respectively.

Lemma 2.38. Let M be a left A-module and let f, g € gr(A)

be homogenecus. Consider an element s—lu € ”; with s € S

;
(g (s) = f™ and u e M. Then for any t, t’ € Sg such that

1 1

o(t) = o(t’) = g™, we have (ts) “tu = (t’s) “t’u in Meg

Proof. It follows from (m.1) that there exist p € Sg and
p € A such that pt = p’"t® € Sg. If o(p) = gn, we take a q € S

¢
such that o0(q) = £, Then

qpts = qp’t’s € ng, qptu = qp’t’u.

This means that (ts) ltu = (t*e) 1iry in ”fg' q.e.d.

This lemma implies the following propositian,

Proposition 2.39. Let M, f, g be as in the previous lemma.

. ¢ -1
Define a map ¢f,€g of M? to Mfg as follows. Let s “u .be an

-1

element of M (s—lu) = (ts)

Pe If o(s) = Fm, then ¢ tu for

f,fg
m

some t € Sg such that o(t) = g . Then ¢F,Fg is an

' Af—homomorphism.

The following proposition is also shown by an argument similar
to the case of commutative rings. Hence we do not give here its

proof.

—“3/‘~'
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Proposition 2.40. Let M, f, g be as abaove.

(i) (M M

f)g = Mege

(ii) MF x me for any m e N, .

Let M, f and g be as above. Assume that D(f) > D(g).
Then g™ = fh for som h e gr(A), homogeneous and m > O. Then it
follows from Propositions 2.39 and 2.40 that there exists a natural
left Ac—homomorphism ¢f,§ of M. to ;ng. The fol]ouihg relations

are consequences of Propositions 2.39 and 2.40.

(2.6.1) If D(f) = D(g), then NF = Mg.

(2.6.2) If D(f) D D(g) D DC(h), then ¢F h o ¢g h°¢f q°

Proposition 2.41. Let M be a left A-module and let

f € gr(A) be homogeneous. If u € M satisfies the condition that

u =0 in MP for each p € D(f), then u =0 in ”F'

Proof. Define I = Ann,u - and introduce the induced filtration
on I from A. Shouw that V(gr(I)) C V(f). Take
p e D(Ff) = X-V(f). Since u =0 in ”E’ there exists a t € A
such that tu = 0O and that o(t) ¢ p. Since o(t) € gr(l), we find
that p ¢ V(gr(l)). Hence WV(gr(I)) C V(f). This combined with |
(2.1.vﬁ).implies that f™ € gr(I) for some m > O. Then there
exists a t € I such that o(t) = f™. This means that u = 0 in

m{.. qoeido

Corollary 2.42. Let M and f be as in the proposition. If
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: MB = 0 for each p € D(f), then M. = 0.

This is an easy consequence of Proposition 2.41.

2.7. Sheaves on. Spech(gr(A)).

Let (A, {A(n)}) be a D-ring and let X denote Spech(gr(A)).

We are going to define sheaves on X associated to A and left
A-modules. In particular, the sheaf of rings A associated to A
is regarded as the structure sheaf on X in comparison with the
case of commutative rings.

Since. gr(A) is Noetherian, it follows from the definition of
the topology on X that every open subset of X is expressed of
the form D(f) for some homogenecsus f € gr(A). Noting this, we
define a presheaf A~ on X as follows. For any homdgeneous

f e gr(A), put A (D(f)) = A,. If D(f) D D(g), then the

f
restriction map e g:A“(D(f‘)) > A”(D(g)) is defined by
’
Pf 9 = ¢f q (cf. subsection 2.6). Let A be the sheafication of
A" .

Theorem 2.43. The following properties hold for the sheaf A.

(0) A is a sheaf of rings on X.

(i) KP = A, for each p < X.

Gi) T, &) = A, for each f < gr(A), homogeneous.

Gii) TX, B = s71a, where S =1 + AC-1).

Proof. The claims (0) and (i) are4nearTy obvious from the

definition. On the other hand, (ii1i) is a special case of i).

—33—
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We are going to prove @i1). Define a map 9{.:Af - (D(f), R

by the correspondence: If u € A, then 8.(uw € I'(D(H), &) s

f
defined by &.(u) =u in AE for each p € D(f). Then what we

must prove is the bijectivety of 9;‘

First show the injectivity of 9;' Take wu € AF and assume

that Gf(u) = 0. This means that u =0 in AE for any p € D(f).
Then Proposition 2.41 implies that u = O.

Next show the surjectivity of @ Take v € T(B(f), A). Then

f.
there exist fl""’fm € gr(A), homogeneous and u, € A for each

fi

m , .
i such that D(f) = U D(Fi) and that pf £ (v) = u, . For any i,
i=1 T '
Jos consxder the elements pfi'Fifj(ui) and pfj’Fifj(uj) of
Af PR It follows from the definition that
i

pfi’rirj(ui) = prj’fifj(uj) in AE for any p € D(Fifj). Then
Proposition 2.41 implies that pfi,F.F.(ui) = PF Jf f.(uj)' Now we

i J R R S
need a lemma.

Lemma 2.44. Define

T
i

m
{((zye M A, ; o (z.) =& (z.) (7, i
i =1 Fi Fi,Fifj fj,fifj J

X
1]

m
. — \,,".
{(zi) e z Ao s z€ A sit. 2z, = ¢€’f.(z) (v id} .

Then H and K are left Af—modu]es and H = K.

The proof of this lemma will be given later and we continue the
proof of @ii). By the argument before the lemma, we Pind‘that‘

(Ui) € H. It follows from Lemma 2.44 that there exists a u € AF

(u) (= pf § (u))  for each i. This implies
i 1

such that u; = ¢f’{
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that GF(U)‘= Ve Hence 9f is surjective.

We have thus shown Theorem 2.43. q.e.d.

Proof of Lemma 2.44. 1t is clear from the definition that H

and K are left Af—modules and that K C H.

In virtue of Corolarry 2.42, it suffices to show that KP = H

for each p € D(f). Take p € D(f) and fix it once for all. By

4

definition, we have the following.

m
H = {(z.0)ell (A, ) ; & (z.) = ¢ (z.)
P i i=1 Fi P Fi’fifj i fj,fifj J
in Ay o) (¥i, )
F.0p
1 J
m ,
KB = ((zi)éiEI(Afi)E; z € AE s.t. z; = ¢F,fi(zi)

in (Ag) (Vi) } .

i B

Here we uwrote (Afi)B for (Af )S—IE , etc. e may assume without

i °F,
i
loosing generality that p 1is contained in D(fl). Then it follows
that (Af.l)E = AE, (A{.lfi)E = (A-Fi)E " for each i. Take
(zi) € HE. Then put 2z = 2, € (Afl)E = AE. It follows from the

assumption that @, - (z,) = ¢, (z.) in (A ) . Since
Flof f % Foaf f o E Ff0p
¢f_,f ¢ = id(A y » we conclude that z, = ¢F,f.(2) in
i’’1i Fi P i
(Afi)E (= (Aflfi)g). Then (zi) € KE and therefore the lemma is
shown. qe.e.de.

Remark 2.45. Assume that each element of 1 + A(-1) is

invertible in A{(0O). Then Theorem 2.43, (ii1) is réwritten in the
foTlouing form.

(iii*) T(X, &) =~ A.
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Similar to the construction of &, we can also define a
subsheaf A(n) of A for each n e Z as follows. For each

homogeneous element f of gr(A), put A (N (D(Ff)) = (Af)(n). It

follows from the definition that for homogeneous f, g € gr(A) such
that D(f) D D(g), ¢F g:Af - Ag preserves the filtrations, that is,

o) (A (m)) C ¢F g((Ag)(m)) (V’m‘e Z). Hence A (n) defines a

f,g f
presheaf. Let A(n) be the sheafication of A~ (n). From the

definition, each &(n) 1is a subsheaf of &.

Theorem 2.46.
(Bn)__, is a filtration on &, namely, the following
relations hold:
AmA € Am+nd, A =URm.
Furthermore, | "

(Am), BAn)l C Atm+n-1).

A(n)_ =~ (A)X(n) for each p € X.
p P =

Theorem 2.47. Define gr(A) = K(n)/A(n-1).
n

(1) gr(Z) is the sheaf on X associated to gr(A.

(i1) (gr(?i))E = gr(A,) for each p < X.

(iii) T(D(F), gr(B)) = gr(A>  for each f € gr(A),
homogeneous.‘

(iv) T(X, gr(A)) = gr(A).
Theorem 2.46 follows from the argument before it except the

last eqaulity whose proof is similar to that of Theorem 2.43. On

the other hand, since gr(A) 1is commutative, Theorem 2.47 is proved

Y




.by an standard argument for the case of commutative rings (cf.

CH

Let M be a left A-module. Then as in the case of A, we can
define a sheaf ™ of left A-modules. If M has a filtration

{M(n)?3 then the sheaves M(n) (Y n € Z) and the sheaf gr(M)

neZ’

associated to gr(M) = M(n)/M(n-1) are defined similarly. UWe do
; n ,
not repeat the definition of them.

Definition 2.48. Let M be a left A-module. Then M is

called the left A-Module on X associated to M.

Similar to Theorem 2.43, we also obtain the following theorem

for a left A-module. Hence we omit its proof.

Theorem 2.49. Let M be a left A-module. Then the following

hold for the left A-Module WM.

(i) ﬁg.z M, for each p € X.

i1y T, M = NF for each f € gr(A), hombogeneous.

Gii) o, ™ = s’lm, where S =1 + A(-1).

Corollary 2.50. If M is a left A-module, then T =3 ® A
This follows from Theorem 2.49 and Proposition 2.32.

Recall that for each sheaf S on X, its support Supp(g) is

defined by Supp(9) = {p € X; §E # 02,

Proposition 2.51. Let M be a finitely generated left
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A-module. Then Ch(M) = Supp(t).

This is a direct consequence of Proposition 2.25 and Theorem

2.43, (i).

Remark 2.52. Since A 1is Noetherian, A is a coherent. sheaf

of rings on X. Hence if M 1is a finitely generated 1eft A-module,
then ™ 1is a coherent A-Module. In this way, we can develop the
general theory of coherent sheaves for a D-ring. But this will be
not necessary in the subsequent discussions, we stop the‘arguments

at this stage.
2.8, MD-rings.

In this subsection, we always assume that (A, {A(n)}) 1is an
MB-ring (cf. Definition 2.4). Then, by definition, there exist

u € A(-1) and v € A(1)  such that uv
-1

vu = 1. Define
§ =o(v) € grl(A). Then o(u) = § € gr_l(A). By definition, we

cbtain

A(n) = A(O)vn, A(-n) = Ao (\/n > 0.
This implies that gr(A) = grO(A)[f,E-ll. Then the natural
inclusion grO(A)C; gr(A) induces a homeomorphism of - Spech(gr{(A))
to Spec(gro(A))‘ defined by p — p(0) = gﬂgro(A). Its inverse is
defined by p(0) — @ E(O)fn. Now put X = Spech(gr(A)) and

n
Xo = Spec(grO(A)). In the sequel we frequently identify X with

XO by the above homeomorphism.
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For each homogeneous element f of gr(A), we find that

0CEf) = pee !

1l

D(F) f). Noting this, we can take

{D(F); f € grO(A)} as a basis of open subsets of X = XO.

If f e grO(A), then 'Sf is contained in A(0) and therefore

A (n) = s3t

¢ ¢ (A(n)) holds for each n € Z.

Definition 2.53. Let N be a left A(O)-module. Then

~

N = B0) ® N 1is called the 1e?t A(0)-Module on X associated to
ACO) :
N.

Theorem 2.54. Let N be a left A(O)-module. Then the

following properties hold for the left A(0)-Module N.

~

(0))(0) ® N for any p(0) € X

(i) NE(O) ~ (AE ® o) o
(i) T, N) = N, for each f e gr (A).
(i) Xy, B = N.

Since the proof is similar to that of Theorem 2.43, we omit it.

Remark 2.55. If N is a left A-module, then A(0) ® N
, ACO)

coincides with A oAN.

Proposition 2.56. If N 1is a left A(O)-module such that
‘Supp(N) =@, then N = O.

Proof. Since the procedure of left fractions and that of
inductive limits are commute to each other, we may assume from the
first that N is finitely generated over A(O).

~

Define N = N/A(-1)N. Then N is a ary(A)-madule. Let (N)

— 39—
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"be the gro('ﬁ)-—MOdule- on Spec(gro(A)) associated to N. Since
Supp ((N)™) C Supp(N), it follows that Supp((N)") =g. Then N =0
or equivalently, N = A(-1)N. UWe conclude from Lemma 2.7 that

N=0‘ q-e-do
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'§3. Gabber’s theorem on the characteristic variety.

The purpose of this section is to prove a theorem on MD-rings

which is an algebraic version of Theorem 1.14.

3.1. A theorem on non—commutative rings.

&)
Theorem 3.1 (0. Gabber. Let B be a left and right

Noetherian ring containing @ and satisfying the following
conditions (i) and (@i):

(i) There exists an element w e B such that Q commutes
with every element of B, that u2 = 0 and fhat B =B/uB is a
commutative local ring.

(ii) There exist f, g € B such that w = [f, gl and that
fuB and guB are contained in the maximal ideal of B.

Under the condition, if Q@ 1is a‘left B-module of finite length
such that w@ = { ue Q; wu =0 3, then Q = 0.

Proof. (1) Let p:B = B be the canonical projection and let

m be the maximal ideal of B. Define m = p_l(ﬁ). The assumption

that B is commutative is equivalent to saying that [B, Bl is

contained in the left and right ideal wB of B. On the other

hand, since w2 = 0, WwB 1is contained in the center of B. In fact,

(3.1.1) wB, Bl C wlB, Bl € w(wB) = 0.

It follouws from the assumption that @ = Q/w@ is isomorphic to w@.

Then we find that @ has the structure of B-module of finite
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length.

(2) We now show that B is assumed to be left Artinian.
Since @ is a B-module, consider its annihilator ideal

{ae B; aQ@ = 0} of B. On the other hand, since Q@

1= AnnB(Q)

is a finitely generated B-module, so is Q. Taking a system
{uyse.oyuyd of generators of @ over B, we defineé a mapping

B> a- (aup)\_, « @ By (3.1.1), I is the kernel of this mapping

and we obtain an injection B/I - EN. Since I 1is a bi-ideal of

N

B, this is a left B/I-homomorphism. On the other hand, Q is of

finite length over B and is also of finite length over B/I.

Therefore B/1 1is left Artinian. This combined with that I/I2 is

2

finitely generated over B/I implies that I/1 is also Artinian.

Then in virtue of the exact equence 0 - I/I2 - B/l2 - B/1 » 0 we -

2

find that B/I is also Arfinian. Since IQ@ C wQ, it follows that

129 € 1uwg € w2q = o.

Hence Q is regarded as a left B/Iz—modu]e. Replacing B with

8/12, we may assume from the first that B 1is left Artinian.

(3) Before continuing the proof, we need a lemma.

Lemma 3.2 (Cohen). Let C be a commutative Artinian local

Q-algebra and‘1et m be its maximal ideal. Then there exists a

subfield F of C such that C = F E)@.

Proof. The totality of the subalgebras R of C such that

RMNm= {0 is an inductively ordered set. Therefore there exists
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a maximal element R of this set containing @ (by Zorn’s lemma).
Let =:C - C/m be the natural projection. Since RN m = {03,
x!R:R = C/m 1is injective. This implies that R 1is an integral

domain.

(a) R is a field.
Take an a € R (a # 0). Since a¢ m, a 1is invertible in C.

—13. Let b = a_nc € Ra (c € R) and

Consider the ring R, = R[a
assume that =(b) = 0. Then =x(c)= 0. This implies that ¢ = 0
and therefore b = 0. Hence we find that R, Nm={0). The

maximality of R implies that a ! e R, = R-

(b)) R+ m=C.

First note that there exists an isomorphism =#x:R = m(R).

Let x € C. Assume first that =(x) 1is algebraically
independent over the field "(R). Then we have an isomorphism

between the polynomial rings
REx1 = n(RY[x(x)].

It follows from the maximal condition on R that x € R[x] = R.
Let x € C and next assume that =x(x) 1is algebraic over

A(R). Let f(X) be the minimal polynomial of =m(x) over xn(R):

O = x4+ a x™l s .42
1 . m

a,ss00,a_ € R,
1 *“m

(Here we idenitified a; with R(ai).) Define inductively e C

*k
(k = 1,2,3,...) such that
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Xk = x (mod m)

(3.1.2)k K
F(xk) = 0 (mod m™).

First put x4 = %+ Assuming the existence of X1 satisfying

(3.1.2)k, we prove the existence of satisfging (3.1.3)

*k+1
Let f*(X) be the differential of f(X). Since R 1is of

k+1°

characteristic O, it follows that

AOE (%)) = f’(z(xk)) = f' (m(x)) # O. Namely, £ (x

k) is invertible in C. Put

K ¢ m and

- 0 "'1

’ y = —-f (xk) f(xk). k
Then by the hypothesis of induction, F(xk) € mk. Hence vy € mk and .
v e ol (i > 1. Now put

therefore f’(x

ket T *k
(mod m). Taking the Taylor expansion, we find that

+ y. Then

H
x

X1+ 1 = X, =

Flx,) S 000 + £ (¢ )y = 0 (mod <"1y,

We have thus shown the existence of X1+ satisfying (3.1.3)k+1.
On the one hand, since C 1is an Artinian ring, it follows that
mk = 0 for a sufficiently large k. Take such a k and fix it

once for all. Then f(xk) = 0 and we have R(xk) =~ g (RY®m(x)).

€ R(xk) = R.¥

Since R C R(xk), the maximality of R implies that X\

Therefore x € R + m.

Putting R F, we obtain the lemma. q.e.d.

(4) Since B = B/wB is a commutative Artinian local Q—algebra&
we apply Lemma 3.2 to B. Then it follows that there exists a ‘
subfield F of B sch that B=F®m. Since B is Artinian, we

5k/ik+1-

find that '§, @ and are finite dimensional Qector spacesf




" gver F.

Take an F-basis 51,...,e of Q (we denote by Ei the class

r

of e, € @ in Q) as follows:

ry < ro € oo < Py =T mo = 0

gr +1200 " Er € m'@ form an F-basis of §1§/§1+1§
i i+1
(o {1 < k-1).

Then it follows that
pl@ = 3 Fe, (0 < i< k-1).

Now fix 1 and consider Feis By definition, there exist

O

Jji

€ B such that fe. =5 F%.5.. Then fe. -5 F%.e. € wa@. As
. 1 j J17J 1 j J1 J

was noted before, w@ is identified with Q. Hence there exist

1 o

Fji € B such that fei - % FJi ;

=2 F}iuej. By the same reason,
J

, 0 1 , _ 0] 1
there exist Gji’ Gji € B such that ge, = % Gjiej + % Gjiuej'
Hence we obtain rxr matrices FO = (F?i), F1 = (F}i), GO = (G?i),
G1 = (G}i). These matrices are so taken that the following

conditiens hold.

i) The entries of p(F%) (= (D(F?i))), oFly, 266%, peh

are contained in F.

0

ity F® and @°

are zero.

In fact, since f, gem, if r, <i<r ., then Ei e m’Q and
fgi € §U+1§ = 3 FEJ. Therefore we may take
J)Pu+1
fe. = 3 oF%08., o(F9) < F,
iS5 Ji’% ji
v+l

— 45—

are lower triangular matrices whose diagonals
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This implies that FO satisfies ii). Since

- Z FJ € w@ * Q@ and since ‘ue‘j (j =1,.44,r) form an

1 i

F-basis of wQ, it follows that F1 satisfies i).

By direct calculation, we find that

. Je
1 J

Je
J°

1
fge, = f G + 2 G .we )
1 e Ul U v vi1

<, 0 1 0

= E(Gvifeu + Gviufeu + FF, Gui]eu)

_ 0 .0 0 .1 1 0 0

=35 (6);F0 e + GO Fi ue, + GLFD we ) + 3rf,68
V,J J

=5 6% F% e + wFl 6%, e. + wFC Gl ey + SI¥, GO
U,J Ul Jv J JU Ul J Jv Ul J J

(Here we used (3.1.1).). Nouw put

FO _ 0 O
Jl - z(Gl)l Jv FﬁiGJu

)

0 . _ 0 - _

Note that (Aji) and (Hji) are lower triangular matrices whose

diagonals are zero and that p(AiJ) € F. Then it follows that

we = fgei - gfei

0 1

=S a..e. +3 «afFl, 6% + f%, ¢

. J + H).,,we..
J1 J J1 J

This implies that

2 p(AJi)eJ = 0.
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Since {Ei} are linearly independent and since p(Aji) € F, we have

p(AJi)

Put

O. Then there exists an A, € B such that A.. = wA’..
Ji Ji Ji

o8
1}

(Bji) with Bji =KA3i + Hji' Then

ve, =5 + F%, 6l1 + trl, 6% . e ..
1 X J1 J

J

This combined with Q@ = w@ implies that

0 1 0

e, = Z(B + [F 7+ CFY, 6

J

, G 3 ..e. {(mod w@.
J1 J

Nouw we show that there exists a lower triangular matrix

B’ = (B%..) (B.. € F) such that B’. = 0 (i) and that
Ji Ji ii
S B..e. =2 B%.e..
; .

« Then it follows from the definition of B..
v = v+l J1

-™M
©
"

: S C Z Bjiéj),
J u=p+1 ru<Jgrﬂ+1

where’ Bjigj e m“Q@. On the other hand, since e; € maQ, it follous

that

k-1 _ . _ _ . _
S (3 B.eo)e Sntacila= s  Fs..

X J1 4 . J
v+
un 1 Pu<J(Pu HOV J)Pu

+1 +1

This assures the existence of the matrix B* with the required‘

properties.
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From the definition, we find that

0 1 1 0

Ei = 2(B* + [p(F), p(G)] + [p(F), p(G

; )])Jiej‘
It follows from the freeness of the basis (EJ) that

1 =8 + p(F%, oehra + toFhy, 6% 1.

Taking the traces of both sides of this equation, we find that
r = 0. This is a contradiction. This means that Q = 0, that is,

w@ = 0. Since @ = Q/uw@, we conclude that @ = 0. q.e.d.

3.2. Involutive subsets of Spech(gr(A)).

Let (A, {A(n)}) be an MD-ring and put X = Spech(gr(A)).
Following Definition 1.6, we introduce the notion of an involutive

closed subset of X.

Definition 3.3. Let Y be a closed subset of X. Then Y ’is

called involutive if {IC(Y), IC(Y>} C I(Y), where I(Y) 1is the

defining ideal of Y.

Let Y be a closed subset of X. Then define an increasing

sequence {Ik}k>0 of homogeneousiideals of gr(A) as follouws:

I, =1, 1

= ’ .
Iy = VOALLGLT (k> 0

Since gr(A) is Noetherian, this sequence is stationary and
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'therefore there exists an integer N > O such that.

any n > N. Define I = I,. Then, by defnition, VI

In = IN for

= I and

{I, 1> € 1. In particular, V(I) 1is involutive. Since V(D)

depends only on Y, we denote it by R(Y) in the .sequel.

Lemma 3.4. The.closed subset R(Y) has the fol
properties.

(i) R(YD is‘involutive.

(ii) Let Z be an involutive closed subset of

Y. Then Z is contained in R(Y).

This lemma is clear from the arguments above.

lowing

X contained

The following theorem is fundamental in,the subsequent

discussions.

Theorem 3.5. Let A be an MD-ring. Let M be

a finitely

generated. left A-module and let N . be a sub-A(O)-module of M.

Define

Q={pe X N is finitely generated over

‘m a neighbourhood of [
Then Z = X-Q 1is an involutive closed subset of. . X.

Proof. It is clear from the definition that 2
subset of X. Hence it suffices to show that Z s

Let Ugspeees UL be a generators of M over A,

A(0)

is a closed
invalutive.

that is,

M=3 Auj. Define L =2 A(O)uj.» Then clearly, M = AL.

J ' J
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VFurfhermore define

N(J) = NN A(jOL. Then {N(J)}jem is an
increasing sequence of sub-A(O)-modules of N such that
N = U NG,
The follouwing two lemmas are easy to shou.
Lemma 3.6. Let p be a homogeneous prime ideal of grO(A).

Then NB is a finitely generated A(O)E—module if and

sequence {N(j)E} is stationary.

Lemma 3.7. Let w € A(-1) be invertib]e.) Then

J € N, the map QU ¢ NCGJI/NG-1) — N(j-1)/N(j-2) d

U~ wu 1is an injective grO(A)—homomorphism.

We return to the proof of Theaorem 3.5. Assuming

not involutive, we lead a contradiction. Then by the

there exist f, g € 1(Z) such that h {f, g} ¢ I(Z

assume that f and g are homogeneous. Furthermore

assume from the definition of an MD-ring that f and

homogeneous of degree O. Hence it follows that h €

the assumption, there exists p € Z such that

with D(h), Z with Z N D(h>, A with Ah’ Mo wit

with (Ah)(O)OA(O)N, we may assume that h is invert

Hence we may assume from the first that there exist

g e I1(2) N gr (A) such that h {f, g € gr_ (A i

0

Let (N(j)/N(j-1))" denote the gro(%)~ﬂodulev0n

X, = Spec(gro(A))

0
define ZJ

Supp((N(j)/N(j-l))N). It follows from L

ZJ c ZJ._1 for every j € N. Hence {ZJ} is a de

JeN

—$0—

h ¢ p.

associated to the gro(A)—module N(JIY/N(j-1)

cnly if the

for every

efined by

that Z is ﬁ
assumption,
). UWe may

we may also

g are both

gr_I(A). By

Replacing X

h M and N

h

ible in gr(A).

f,

s invertible.

and
emma 3.7 that

creasing




- gsequence of closed subsets of XO' Since grO(A) is Noetherian,

this is stationary, namely, there exists an integer > 0 such

io

that Z; =z, 7> ig)+ On the other hand, we find that

J
0
Z = rlZJ. In fact, it follows from Lemma 3.6 that p € Q if and
J

gnly if (N(j)/N(j—l))p =0 (j 2% jl)' This is equivalent to
saying that p ¢ ZJ G 2 jl).

Let p be a generic point of Z. This means that there exists
a neighbourhood U of p such that ZMNU = {pY N U. Nouw localize
A, M and others at p. Namely, we replace A with AE, M with
M, N with - (A)O)e

p P aco)N» ACO)
Spec(grO(Ap)) and Z with <{p}. Hence we proceed with the

L with (AE)(O)Q L, X with
discussion by assuming that Z = {p} and that grO(A) is a local
ring with the maximal ideal p.

In virtue of the above discussion, we assume that p is the
unique closed point of X and that Supp((N(j)/N(j-1))") = {p2
J 2 jO > 0). Since ’N(j)/N(j—l) is a finitely generated
gro(A)-modu]e, we find that EF(N(J)/N(j—l)) = 0 for some r > O.
Since grO(A) is é local ring with the maximal ideal p, it follows
that QPO(A)/EP is a grO(A)—modu)e of finite length. These imply
that N(j)/N(j-1) 1is of finite length as a grO(A)—madule. Let S
denote the length of N(j)/N(j-1) as a gro(A)—module. Then it
follows from Lemma 3.7 that {PJ; J 2 jo} is a decreasing segquence
of positive integers and therefore is stationary. Hence the
grO(A)—homomorphism 2 sNGI/NG-1) — NG-1)/N(G=2)  is bijective
for a sufficiently large j. Now take j >> 0 such that this is
actually bijective and fix it. Define B = A(0)/A(-2), w € B (the
class of w), @ = N(j)/N(j-2). Then the assumptions of Thearem 3.1

hold for B, w, Q. In fact, we have the following:

—§5/—
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(a) 52 =0, w is contained in the center of B and
B/wB = grO(A) is a commutative local ring with the maximal ideal

m = p/WB.

(b) Let f and g be the classes of f and g in B,

respectively. Then f, g€ p and [Ff, g1 = u.

(¢) Ker(@ =5 @) = ua.

( ) Ker(@ =25 @) =~ {u € N(j); wu € N(j-2)3I/N(j-2)

12

N(j-1)/N(j-2>.
On the other hand,

WQ = (WNCJI+N(j=2))/N(j-2) = N(j-1)/N(j-2).

Hence applying Theorem 3.1, we conclude that @ = 0. This
means that N(j)/N(j-1) = 0 and therefore contradicts that
Supp ((N(JI/NCi-1)7) = {pJ.

We have thus shown that Z is involutive. q.e.d.

Corollary 3.8. Let A be an MD-ring. Let M be a finitely

generated left A-module and let N be a finite1y generated
sub-A(0)-module of M. Let Z be a closed subset of X such that
R(Z) =@. Define

N' = { ue M ¢B(u) € (AB)(O)OA(O)N for any p € X-Z 2.

Here ¢E is the natura)l homomorphism of M to ME. Thén N? is a

finitely generated A(O)-module.
Proof. As in Theorem 3.5, we define a subset Q@ of X by

Q={peX;TFfeagrg(A s.t. (1) pe D
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(2) (N’)f ‘"is a finitely generated

left (A{)(O)—mndu1e 3.

. We now.show that Q = X. In fact, if p € X-Z, then it is
clear that 'NE(O) = NE(O),‘uhere p(0) = gﬂgrO(A). This implies
that p € Q. Hence X-Q 1is contained in Z. Theorem 3.5 shous

that X-Q 1is involutive. But *R(Z) =#8. Hence, in virtue of Lemma

3.4, we find that Q = X.

Since X ' is quasi-compact and since X = Q, we may assume that

there exist a finite number of elements of grO(A), say f , T

l’oot r

r
such that X = U D(Fi) and that (N’)f is a finitely generated
_ i=1 i
£ Y(O)-module for each i. Furthermore we also assume that
i

left (A

m

there exist Upseovsl € N* such that (N')Fi = kzl(Afi

define N'" = 2% A(O)uk. Then N" is a finitely generated
k

)(O)Uk. Now

sub-A(0)-module of N’. On the other hahd, from the assumption, we

have (N’/N”)f =0 (1 <1i<r). Then it follows from Proposition
i

2.56 that N = N".

We have thus shown Corocllary 3.8. gq.e.d.
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§4. The characteristic variety of a coherent gx—ﬂodu]e.

In this section, we complete the prduf of Theorem 1.1 and
discuss the properties of the characteristic variety a little more.

The notation introduced in §1 are used without any comment.

4.1. An extension theorem for a coherent §X~Nodu)e.

Throughout this section, Q denotes an open subset of T*X

unless otherwise stated.

Lemma 4.1. Let [ be a coherent gx—Module defined on Q.

Assume that jhere exists a system {ul....,um} of generators of [

gx(k)ui for each

m
over §x defined on Q. Define WN(k) =

1
k € Z. Then Supp(l]) = Supp((0)/P(-1)).

Proof. It is clear from the definition that
Supp () D Supp(M(0)/M(-1)). UWe are going to prove the converse
inclusion. Let p ¢ Supp(g(O)/g(—l)). Since H(-1) = £, (-DIO),
it follous that E,(=1) M(0) = M(-1)_ C MO . Then N«ikaquq’s
Lemmqimplies that Q(O)p'= 0. Since @ = E,H(0), we conclude that
QP = 0, whence p ¢ Supp(lD. q.e.d.

This lemma implies the following.

Proposition 4.2. Let M be a coherent gx—ﬂodule defined on

Q. Then its support Supp(g) is a closed analytic subset of Q.

Proof. The question being local, we may assume from the first
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that [ 1is generated by sections of T (Q, W, say, I =

M3

gxu

i=1

holds on @ for éome Upseews U € T(Q, M. Then

m

Moy = ZEX(O)Ui is coherent over EX(O). Furthermore, HM(O)/M(-1)
- i=1" ‘ - B -

is coherent over Qqwy. Hence Supp(H(0)/U(-1)) 1is a closed
analytic subset of Q. Then Lemma 4.1 implies the proposition.

q.endn

Definition 4.3. Let [1 be a coherent gx—Monle defined on Q.

Then a coherent sub—gx(O)—Houdle L of @O 1is called a lattice of
B if O =E,L holds on Q.
The next theorem due to O. Gabber plays a fundamental role in

the proof of Theorem 1.1 as well as in the definition of a system

with regular singularities whieh—will bedevetoped—in—the—subsequent
(cf. 51)

seetitonsw~— Before state the theorem, we need a .preparation. Let Y

be a closed analytic subset of Q. -Then Y 1is called homogeneous

if there exists a homogeﬁeous closed analytic subset Y of T*X

such that Y =¥ Naq.

Theorem 4.4 (OEGabber). Let Y be a homogeneous closed

AN

analytic subset of Q. Let .j:Q-Y Q;Q be the natural projection.

Assume that there exist f, g € I'(Q, QT*X(O)) such that

flY = glYy = 0 but {f, g3(p) # O for any p € VY.
Let M be a coherent (gle)—MDdule and let N be a lattice of
M. Then BN J ' is a coherent Ey(0)-Module on Q.

Proof. (1) Define N =D N j7!N. Then it is easy to shou

that E,(0) acts on N and therefore N is an Ey(O)-Module.
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Furthermore, define an increasing sequence N3 k= 0,1,2,...2 of

left E,(0)-Modules, inductively, as follows:
- _ .. =1 -

No = 8y N = Ex(DN, _, Ny J No_, ¢ k > 0.
Note that N, =N on Q-Y for every k > O.

(2) Each N, is a coherent E,(0)-Module.

Proof. We prove this by the induction on k. It is clear from
the definition that Ny is coherent over E,(0). Hence assuming
that N is coherent over E,(0), we show that so is N, ,,. Since

O N — Ny /Ny — O
is an exact sequence of Ey(0)-Modules, it suffices to show that
Ny+17N, 1is coherent over E,(0), or equivalently, is coherent over
Qr»yx(0). By definition, we have

§k+1/gk = { u € gx(l)gk/gk: supp u C Y 3.

Let 1  be the defining Ideal of Y in QT*X' Then it follows from
the Nullstellen Satz of Hilbert that '

(4.1.1 N /N =

W Cs8
m

g=0 ~d

where Ey = { ue E (DN /N (INDr, (0% = 0 3. Since

ng*x(O) is a Noetherian sheaf of rings and since each Ed is
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‘coherent over (.. (0), it follouws that the
increasing sequence {Ed} is locally stationary. This combined
with (4.1.1) implies that N, ,/N,  is coherent over Qrwy (0> on

Q. Hence we conclude that gk+1 is coherent over gx(0>. q.e.d.

(3) Define Sk = Supp(gk/gk_l). Since each gk/gk_l is
coherent over QT*X(O)’ it follows that {Sk; k = 1,2,...3 1is a

sequence of closed analytic subsets of Q »andvthat each Sk is

contained in Y. On the other hand, it is clear from the definition

that 'Sk - Sk—l’ Hence {Sk} is locally stationary. This implies

that S = N Sk is a closed analytic subset of Q. Since S CY,
k=1 '
the definition of Y implies that S does not contain any

involutive closed subset.

(4) S = ﬂf or equivalently, the increasing sequence {Nk} is

locally stationary.

Proof. Assuming that S #Q, we lead a contradiction. Thus

take a p € S and fix it once for atl.

1l

Now put A = Ey, , A(m) =E,(m , M=, N=N,N =N

=p k k’p

(VKk e and I = ;Y’ where is the defining Ideal of Y in

1=

QT*X' As was noted before, A 1is an MD-ring, M 1is a finitely
generated left A-module and N 1is a finitely generated A(O)-module
contained in M. Put Z = VU(I). Since the germs of f and g at
P afe contained in I but {f, g} is iﬁvertible, it follows that
R(Z) =@ . On the other hand, it follows that (N} is an
increasing.sequence of finitely generated left A(O)-modules.

We are going to show that each Nk is contained in the left

_ 7
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.A(O)—modu]e N?* defined by

N* = {u € M; ¢E(u) € (AE)(O)N for any p € Spech(gr(A))-23,
where ¢E is the homomorphism of M to MB defined by u = l—lu
for each u € M. For this purpose, define a left Ideal ] of

gx(O)IQ by 1 ={Pe gx(O)lQ; oc~(P) € ;ﬂQT*x(O)} and also define

0
J = Jp. Since Y is homogeneous, it follows that

0o¢d) = INQwy(0)1Q) and that I 1is a homogeneous ideal of A.
On. the other hand, it follows from the definition of N that

u € Nk if and only if wu € A(I)Nk_1 and JMu € Nk—1 for some
me N_. Let p e Spech(gr(A)) be such that p ¢ Z. Then there
exists a homogeneous element h of 1 such that h ¢ p. Take a

P e J such that g(P) = h. Then for each u € N it follows that

k)

PMy e Nk—l for some m € N_. This implies that wu € (N = N_.

k—l)g [
Hence it follows from the definition of N’ that u is contained
in N’.

Since R(Z) = 4§, it follows from Corollary 3.8 that N’ is a
finitely generated left A(O)-module. Since {Nk} is an increasing
sequence, this implies that this sequence is stationary. "Then
Nk—i = Nk for a sufficiently large k. Hence (Qk/gk-l)p = 0, or
equivalently, p ¢ S for k >> 0. This contradicts the assumption
that p € S.

(3) Define N" = Q N+ Then it Fo]lcué from (4) that N
is a coherent gX(O)—ModﬁTg. On the other hand, the equality

N" = gx(l)g” N j*j—lg” follows from the definition of Qk.
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Proof. It is clear from the definition that N" € N’. Hence it

suffices to show that N’ € N". Since N C N" and since [ = Exl,
it follows that [0 = gxg“ = U gx(k)g“. This implies that
k
N = U (N N Ex(k)N”). Therefore if we show that
- k>0 - -

N M E GON" = N M Ey(k=1)N" for every k 2 1, we conclude that
r = Q’ n gx(o)un g

Iz

N". Take p € Q and fix it once for all.
Assume that k > 1 and take wu € (N 0 gx(k)g")P. We may assume

that u 1is a section on a small neighbourhood U of p. It

follows from EZSK:K} that there exists P € [ (U, gx(l))
which is invertible at p. Then Pl_ku € (U, EX(1)§”)° On the
other hand, since ul(U-Y) e I'(U-Y, N) and since Pl_k € gX(O), it

follows that (Pl—k

1-'ku € g;. Hence u € (E_Z_X(k—l)_b_}”)p and therefore

wlU-Y) € T(W-Y, N). These combined with (5)
imply that P
(N’ N gx(k)g”)p C (N N gx(k—l)g")p- This holds for every p € Q.
Hence N’ N Ey(koN” € ¥ N Ey(k=1)N". UWe have thus shown that

Q' - g" and therefore that g’ = g”-

(7> It follous from (5) and (6) that N’ 1is a coherent
Ey (O)-Module.

We have thus proved the theorem caompletely. q.e.d.

4.2. Prcof of Theorem 1.1

Theorem 1.1 1is a consequence of Theorem 4.4.

Theorem 1.1 (repeat). Let [ be a coherent gx—ﬂodule defined

on Q. Then its support Supp([l) is an involutive closed analytic
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" subset of Q.

Proof. Define Y = Ch(1>. Then it follows from Proposition
4.2 that Y is a closed analytic subset of Q.

Assuming that Y is not involutive, we lead a contradiction.
Then there exist p € Y and holomorphic functions f, g defined in
a neighbourhood of p such that flY = glY =0 but {f, g¥(p) # O.
Then replacing Q with a small neighbourhood of p, we may assume
from the first that {f, g)(q) # O for any q € Q. We may also
assume that there exists a lattice L of @ defined on Q. If
JMNY G Q is the natural inclusion, it is clear from the definitioni
that p N j*J“1E coincides with [ itself. Then Theorem 4.4
implies that U 1is a coherent E,(0)-Module. Take q € Y and fix
it once for all. Noting that Y is homogeneous, we find from
Efjkj<} that there exists an invertible element
E e gx(—l)q. Hence Qq = EE_lgq c qu c gx(—l)ng. Then
Nﬁkﬂyama%LEMWUL implies that M = 0. This contadicts that
q €Y =Ch(lD. q.e.d.

Theorem 4.4 is slightly generalized as follouws.

Theorem 4.5 (0. Gabber). Let Y be a homogeneous closed

analytic subset of Q. Let j:Q~Y§;§) be the natural inclusion.
Assume‘that for each p € Y, there exist holomorphic functions f, g{
defined in a neighbourhood of p such that flY = glY = 0 but

{f, g3(p) # O.

Let [ be a coherent gx—ﬂodUle defined on. Q and let N be a

coherent sub—gx(O)—Hodule of [ defined on Q. Then
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N =8N j*j—lg is also a coherent E,(0)-Module.

Proof. The questionlbein§ local, we may replace Q with a
small open subset of it if necesséry. Take a p € Y and fix it
once for all. Then we may assume that there exist holomorphic
functions f, g defined on Q such that flY = glY = 0 but

{f, g} 1is invertible on Q.

We show that N C gXN on Q. In fact, take an element

u € N'. Then we may assume that v € I'(U, 1) for some open subset

U of Q. Since the §X~M0du]e g =

is coherent over gx, it follows from Theorem 1.1 (proved just

~

nm
c
+

g N)/E g defined on U

before!) that Supp(L) 1is involutive. On the other hand, since
ul (U-Y) is contained in T (U-Y, N), it follows that
Supp(L) C U N Y. Noting that Y does not contain any involutive
subset, we find that Supp(L) = g, or equivalently that
Eyu + ExN = E,N on U. Hence u < E,N and we conclude ihat
N C gy

From the discussion above, we may replace 1 with the
'sub—gx—ﬁddule gxg of it. ‘Then N is a lattice of M. UWe find

from Theorem 4.4 that N’ is coherent over gx(O). q.e.d.
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