The Kazhdan-Lusztig polynomials arising in the modular representation theory of reductive algebraic groups

兼 田正治 Kaneda Masaharu

Department of Mathematics Niigata University, Niigata 950-21

- 1. Lusztig's conjecture. A prime objective of the modular representation theory of reductive algebraic groups is to find a character formula for their simple modules. All the modules considered in this survey are rational.
- (1.1) Let G be a simply connected simple algebraic group over an algebraically closed field K of characteristic p > 0 split over $\mathbb{F}_{\mathcal{R}}$. Let B be a split Borel subgroup of G, T a split maximal torus of B, and F the Frobenius endomorphism of (G, B, T). We denote by R the root system of G relative to T, by R^+ the positive system of R determined by B, by Δ the simple system of R^+ , and put $X(T) = \text{Hom}(T, GL_1)$. We write the group operation on X(T) additively:

$$(\lambda + \mu)(t) = \lambda(t)\mu(t)$$
 $\forall \lambda, \mu \in X(T) \text{ and } t \in T$,

and define a partial order \geq on X(T) by

 $\lambda \geq \mu$ iff $\lambda - \mu \in \mathbb{ZR}^+$.

For a T-module M, as T is diagonizable, M admits the weight

space decomposition:

(1)
$$M = \coprod_{\lambda \in X(T)} M_{\lambda}$$
 with $M_{\lambda} = \{ m \in M \mid tm = \lambda(t)m \mid t \in T \}$.

We call $\lambda \in X(T)$ a weight of M iff $M_{\lambda} \neq 0$.

Let $\mathbb{Z}[X(T)]$ be the group algebra of X(T) over \mathbb{Z} with a natural basis $e(\lambda)$, $\lambda \in X(T)$. For a finite dimensional T-module M, we put

(2)
$$\operatorname{ch} M = \sum_{\lambda \in X(T)} \operatorname{dim} M_{\lambda} e(\lambda) \in \mathbb{Z}[X(T)]$$

and call it the (formal) character of M.

For each $\alpha \in R^+$ let $\alpha^{\mathbf{V}}$ be its coroot and put $X(T)^+ = \{ \lambda \in X(T) < \lambda, \alpha^{\mathbf{V}} > \geq 0 \}$. The simple G-modules are parametrized by $X(T)^+$:

(3) $X(T)^+ \ni \lambda \longrightarrow L(\lambda)$ the simple G-module of highest weight λ .

Thus we are after ch $L(\lambda) \stackrel{\forall}{} \lambda \in X(T)^+$.

(1.2) Let $X_1(T) = \{ v \in X(T)^+ \mid \langle v, \alpha^{\mathbf{v}} \rangle \langle p^{-\forall} \alpha \in \Delta \}$. For each $\lambda \in X(T)$ write

(1)
$$\lambda = \sum_{i \geq 0} p^{i} \lambda^{i}, \quad \lambda^{i} \in X_{1}(T).$$

Then

Steinberg's tensor product theorem (cf. [11],(II.3.17)). $L(\lambda) = \bigotimes_{i \geq 0} L(\lambda^{i})^{[i]},$

where $M^{[i]}$ for a G-module M is the i-th Frobenius twist of M obtained from M by composing the i-th power of $F: G \xrightarrow{F^i} G \to GL(M)$, says we have only to find ch $L(\lambda)$ $\forall_{\lambda} \in X_1(T)$.

(1.3) For a B-module M define a sheaf $\mathcal{L}_{G/B}(M)$ on G/B by

(1)
$$\forall V \in \text{Top}(G/B), \quad \Gamma(V, \mathcal{L}_{G/B}(M)) =$$

$$\{ f \in \text{Mor}(\pi^{-1}V, M) \mid f(\hat{b}\hat{x}) = b^{-1}f(x) \quad \forall b \in B, x \in \pi^{-1}V \},$$

where $\pi:G\to G/B$ is the natural projection. It is a quasi-coherent G-linearized sheaf, so each i-th cohomology $H^i(G/B,\mathcal{L}_{G/B}(M))$ comes equipped with the structure of a G-module. Let U be the unipotent radical of B. For each $\lambda\in X(T)$ we may regard the 1-dimensional T-module K_λ with weight λ as a B-module through the natural projection $B=T\bowtie U\to T$. We often abbreviate $H^i(G/B,\mathcal{L}_{G/B}(K_\lambda))$ as $H^i(\lambda)$. Put

(2)
$$\chi(\lambda) = \sum_{i \geq 0} (-1)^{i} \operatorname{ch} H^{i}(\lambda).$$

As usual, the alternating sum of ch $H^{\ell}(\lambda)$ is easy to find. Let $W = N_G(T)/T$ the Weyl group of G. With the set S of simple reflections, (W, S) forms a Coxeter system. Let $\ell : W \to \mathbb{N}$ be the length function relative to S. We regard W as acting on $E = X(T) \otimes \mathbb{R}$ from the right.

Besides the usual action we introduce the dot action of W on E:

$$(3) v \cdot w = (v + \rho)w - \rho, \quad v \in E, \ w \in W,$$

where $\rho \in X(T)$ with $\langle \rho, \alpha^{\mathsf{V}} \rangle = 1$ $\forall \alpha \in \Delta$.

Weyl's character formula (cf. [11],(II.5.10)). $\forall \lambda \in X(T)$, $\chi(\lambda) = \frac{\sum_{w \in W} (-1)^{\ell(w)} e(\lambda \cdot w)}{\sum_{w \in W} (-1)^{\ell(w)} e(0 \cdot w)}.$

Moreover, we have

Kempf's vanishing theorem (cf. [11],(II.4.5)). $\forall \lambda \in X(T)^+-\rho$ and $i \geq 0$, $H^i(\lambda) = 0$. In particular, $ch H^0(\lambda) = \frac{\sum_{u \in W} (-1)^{\ell(u)} e(\lambda \cdot u)}{\sum_{u \in W} (-1)^{\ell(u)} e(0 \cdot u)} .$

We also know (cf. [11],(II.2.4)) that $\forall \lambda \in X(T)^+$,

(4)
$$\operatorname{soc} H^{0}(\lambda) = L(\lambda)$$

(5)
$$[H^0(\lambda) : L(\lambda)] = 1,$$

where [:] denotes the multiplicity of the second term in a composition series of the first.

but the affine Weyl group $W_p = W \ltimes p\mathbb{Z}R$ plays a more important role in the representation theory of G, where $p\mathbb{Z}R$ consists of the translations t_γ by $\gamma \in p\mathbb{Z}R$. Under the dot action W_p is generated by the reflexions $\mathbf{S}_{\alpha,n}$, $\alpha \in R$, $n \in \mathbb{Z}$, in the hyperplanes $H_{\alpha,n} = \{v \in E \mid \langle v+\rho, \alpha^{\mathsf{V}} \rangle = np\}$. We will abbreviate $\mathbf{S}_{\alpha,0}$ as \mathbf{S}_{α} . Put $\mathbf{S}_p = S \cup \{\mathbf{S}_{\alpha_0,-1}\}$, where α_0 is the highest short root of R^+ . Then (W_p, S_p) forms a Coxeter system with a subsystem $(W, S=(\mathbf{S}_{\alpha} \mid \alpha \in \Delta))$. We extend the length function on (W, S) to one on (W_p, S_p) , still denoted by ℓ .

We say λ is strongly linked to μ and write $\lambda\uparrow\uparrow\mu$, λ , $\mu\in X(T)$, iff there is a sequence of reflections $s_{\alpha_1,n_1},\ldots,s_{\alpha_r,n_r}$ in W_p such that $\lambda\leq\lambda\cdot s_{\alpha_1,n_1}\leq\ldots\leq\lambda\cdot s_{\alpha_1,n_1}\ldots s_{\alpha_r,n_r}=\mu$.

Andersen's strong linkage principle (cf. [11],(II.6.13)). Let $\lambda \in X(T)^+-\rho$ and $\eta \in X(T)^+$. If $[H^i(\lambda \cdot w) : L(\eta)] \neq 0$ for some $i \geq 0$ and $u \in W$, then $\eta \uparrow \uparrow \lambda$.

(1.5) In analogy to the Kazhdan-Lusztig conjecture for the irreducible character formula of the complex simple Lie algebra (cf. [23] for a survey) G.Lusztig proposed a conjecture expressing ch $L(\lambda)$ in terms of various ch $H^0(\mu)$'s.

His strategy exploits another reduction of the problem. A connected component of $E \setminus \bigcup_{\alpha \in R, n \in \mathbb{Z}} H_{\alpha, n}$ is called an alcove. Let \mathscr{A} be the set of alcoves on E. The affine Weyl group W_p permutes \mathscr{A} simply and transitively. We will abbreviate its action $A \cdot w$ as Aw for $A \in \mathscr{A}$, $w \in W_p$. Note also that each translation t_γ by $\gamma \in pX(T)$ preserves \mathscr{A} .

Let $H_{\alpha,n}^{\pm}=\{v\in E\mid \langle v+\rho,\,\alpha^{\rm V}\rangle>np\}$ and define a "distance" function $d:A\times A\longrightarrow \mathbb{Z}$ by

(1)
$$d(A, B) = \#\{H_{\alpha,n} \text{ separating } A \text{ and } B \mid H_{\alpha,n}^- \supset A\} - \#\{H_{\alpha,n} \text{ separating } A \text{ and } B \mid H_{\alpha,n}^+ \supset A\}.$$

From now on assume $p \ge h = \langle \rho, \alpha_0 \rangle + 1$ the Coxeter number of G so that each alcove may contain an element of X(T). Let A^+ (resp. A^-) be the alcove containing 0 (resp. $0 \cdot w_0 = -2\rho$, where w_0 is the longest element of W). For each $A \in \mathcal{A}$ let 0_A be the image of 0 in A under W_p and let $\mathcal{A}^+ = \{A \in \mathcal{A} \mid 0_A \in X(T)^+\}$, $\mathcal{A}^- = \mathcal{A}^+ w_0$.

It is known (Jantzen's translation principle, cf. [11],(II.7)) that each ch $L(\lambda)$ can be obtained from ch $L(0_A)$ for a suitable $A \in \mathcal{A}$, and we are now ready to state

<u>Lusztig's conjecture</u> ([20], Problem IV). ${}^{\forall}C \in \mathcal{A}$ with ${}^{0}C$ satisfying the Jantzen condition

(2)
$$\langle 0_C^{+\rho}, \alpha_0 \rangle \langle p(p-h+2),$$

one shoud have

ch
$$L(0_C) = \sum_{A \in \mathcal{A}} (-1)^{d(A,C)} P_{A,C}(1) \text{ ch } H^0(0_A).$$

Here $P_{A,C} = P_{y,w}$ with $y, w \in W_p$ such that $A = A^-y$ and $C = A^-w$ are Kazhdan-Lusztig polynomials for the Coxeter system (W_p, S_p) . It is known that the coefficients of $P_{y,w}$, $y, w \in W_p$, account for the dimensions of the hypercohomology of Deligne's complex of ℓ -adic sheaves on a certain variety (Kazhdan-Lusztig [19]), so they are

nonnegative. Also (Kazhdan-Lusztig [18], (2.6))

(3)
$$P_{y, w}(0) = 1 \quad \forall y \leq w$$
.

(1.6) In this subsection we let (W, S) denote an arbitrary Coxeter system. The Kazhdan-Lusztig polynomials for (W, S) were introduced in the study of the representations of the Hecke-Iwahori algebra $\mathcal H$ associated to (W, S).

Let q be an indeterminate. The algebra $\mathcal H$ is a free $\mathbb Z[q,q^{-1}]$ -module with a basis T_n , $w\in \mathbb W$, and the multiplication given by

$$(T_s+1)(T_s-1) = 0$$
 $\forall s \in S,$
$$T_uT_u, = T_{uu}, \text{ if } \ell(u) + \ell(u') = \ell(ww').$$

There is a ring involution $\overline{}$ on \Re such that

$$(1) q \longmapsto q^{-1} and T_{w} \longmapsto T_{w^{-1}}^{-1} \forall w \in W.$$

For y, $w \in W$ define $R_{y,w} \in \mathbb{Z}[q]$ by

(2)
$$T_{w^{-1}}^{-1} = \sum_{y \in W} q^{-\ell(w)} \overline{R_{y,w}} T_{y}.$$

Then the Kazhdan-Lusztig polynomials $P_{y,w}$ are determined uniquely

also as the polynomials that are 0 unless $y \le w$, of degree $\le \frac{1}{2}(\ell(w)-\ell(y)-1)$ if y < w, and 1 for y = w, satisfying

(3)
$$q^{-\ell(u)}P_{y,u} = \sum_{z \in W} q^{-\ell(u)}\overline{R_{y,z}} \overline{P_{z,u}}.$$

In short, we have

Theorem ([18],(1.1.c)). $\forall u \in W$, $\exists ! C_u^* \in \mathcal{X}$:

(i)
$$\overline{C_w^*} = q^{-\ell(w)}C_w^*$$
,

(ii) $C_{w}^{*} = \sum_{y \in W} P_{y,w} T_{y}$, where $P_{y,w} \in \mathbb{Z}[q]$ is 0 unless $y \leq w$ in the Bruhat order, has degree $\leq \frac{1}{2}(\ell(w) - \ell(y) - 1)$, and $P_{w,w} = 1$.

There is also an inductive formula to define the polynomials. $\frac{\frac{1}{2}(\ell(u)-\ell(y)-1)}{\text{in}}$ For $y, w \in \mathbb{W}$ let $\mu(y, w)$ be the coefficient of q^2 in $P_{y,w}$. We have for $w \in \mathbb{W}$ and $s \in S$ with sw > w

$$(4) \qquad C_{SW}^{*} = (T_{S}^{+1})C_{W}^{*} + \sum_{y \in W, SY \leq y} \mu(y, w) (-1)^{\ell(w) - \ell(y)} q^{\frac{1}{2}(\ell(w) - \ell(y) + 1)} C_{y}^{*}$$

from which we get $\forall y \in W$,

(5)
$$P_{y,sw} = q^{1-e}P_{sy,w} + q^{e}P_{y,w} - \sum_{z \in W, sz \leq z} \mu(z,w)q^{\frac{1}{2}(\ell(w)-\ell(z)+1)} P_{y,z}$$
,

where $c = \begin{cases} 1 & \text{if } sy < y \\ 0 & \text{otherwise.} \end{cases}$

For the properties of the Kazhdan-Lusztig polynomials one can

also check a concise survey in [22]. We only add a handy remark that

(6)
$$P_{y^{-1}, w^{-1}} = P_{y, w} \quad \forall y, w \in W.$$

- 2. Q-polynomials. The study of Kazhdan-Lusztig polynomials in the representation theory of G started, however, really with Lusztig's [21], where he considered the inverse problem of his conjecture.
- (2.1) The present representation theory has benefitted much from regarding G as a group scheme. It allows us to look at the representations of the Frobenius kernel $G_1 = \ker F$ of G. They are, equivalently, the right comodules over the Hopf algebra $K[G_1] = K[G]/\sum K[G]f^p$ the coordinate algebra of G_1 , where I is the $f \in I$ augmentation ideal of K[G].

Let $G_1T = F^{-1}(T)$. J.C.Jantzen [10] has exhibitted us a tight relationship between the representations of G and G_1T . The simple G_1T -modules are parametrized by the entire X(T):

(1) $X(T) \ni \lambda \longrightarrow \hat{L}_1(\lambda)$ the simple G_1T -module of highest weight λ .

For $\lambda \in X_1(T)$ the simple G-module $L(\lambda)$ remains G_1T -simple :

(2)
$$L(\lambda) = \hat{L}_1(\lambda) \quad \forall \lambda \in X(T),$$

so we may look for ch $L_1(\lambda)$ instead of ch $L(\lambda)$.

Let $B_1T = F|_{B^{-1}}T$. For a B_1T -module M, define a sheaf $\mathcal{L}_{G_1T/B_1T}(M)$ on G_1T/B_1T just as for G/B, and take its cohomology $H^i(G_1T/B_1T,\mathcal{L}_{G_1T/B_1T}(M))$. Unlike the cohomology on G/B, all the higher cohomologies vanish on G_1T/B_1T by Serre's theorem as G_1T/B_1T is affine, so we put

(3)
$$\hat{Z}_1(M) = H^0(G_1T/B_1T, \mathcal{L}_{G_1T/B_1T}(M)).$$

Its character is given by (cf. [11], (II.9.2))

(4)
$$\operatorname{ch} \widehat{Z}_{1}(M) = \operatorname{ch} M \frac{\prod_{\alpha \in R}^{+} (1 - e(-p\alpha))}{\prod_{\alpha \in R}^{+} (1 - e(-\alpha))}.$$

Also $\forall \lambda, \eta \in X(T)$, we have

(5)
$$\hat{Z}_1(\lambda + p\eta) = \hat{Z}_1(\lambda) \otimes p\eta ,$$

(6)
$$\operatorname{soc} \widehat{Z}_{1}(\lambda) = \widehat{L}_{1}(\lambda), \operatorname{so} \widehat{L}_{1}(\lambda + p\eta) = \widehat{L}_{1}(\lambda) \otimes p\eta,$$

(7)
$$[\hat{Z}_1(\lambda) : \hat{L}_1(\lambda)] = 1,$$

(8) if
$$[\hat{Z}_1(\lambda) : \hat{L}_1(\eta)] \neq 0$$
, then $\eta \uparrow \uparrow \lambda$.

The Lusztig conjecture for G_1T -modules may be formulated as

(9)
$$\operatorname{ch} \hat{L}_{1}(0_{C}) = \sum_{A \in \mathcal{A}} (-1)^{d(A,C)} \hat{P}_{A,C}(1) \operatorname{ch} \hat{Z}_{1}(0_{A}) \quad \forall A, C \in \mathcal{A},$$

where the $\hat{P}_{A,C}$ are generic Kazhdan-Lusztig polynomials introduced by Kato [17]. We will turn to those later in § 4. Note that by (2) the formula (9) will be enough (for $p \ge h$) to determine all the irreducible characters of G.

(2.2) Back to Lusztig's work, we call a connected component of $E \setminus \bigcup_{\alpha \in \Delta, n \in \mathbb{Z}} H_{\alpha, n}$ a box. For $v \in pX(T)$ let $A_v^{\pm} = A^{\pm}t_v$, and we denote by $\alpha \in \Delta, n \in \mathbb{Z}$ the box containing A_v^{+} (resp. A_v^{-}). In particular, we will abbreviate $\Pi_{-\rho}$ (resp. $\Pi_{-\rho}^{-}$) as Π (resp. $\Pi_{-\rho}^{-}$). Put $W_v = t_{-v}Wt_v$ and $W_v = t_{-v}Wt_v$. In the category of G_1T -modules a little bit of maneuvering is possible (cf. [11],(II.9.13)): $\forall A, B \in \mathcal{A}$ with $B \subset \Pi_v^{-}$ and $W \in W_v$,

(1)
$$[\hat{Z}_1(0_{Aw}) : \hat{L}_1(0_B)] = [\hat{Z}_1(0_A) : \hat{L}_1(0_B)].$$

Also from (2.1.5, 6) $\forall A, B \in \mathcal{A} \text{ and } v \in pX(T)$,

(2)
$$[\hat{Z}_1(0_{At_v}) : \hat{L}_1(0_{Bt_v})] = [\hat{Z}_1(0_A) : \hat{L}_1(0_B)].$$

Consequently, the formal $\mathbb{Z}[q,q^{-1}]$ -linear combination of alcoves

(3)
$$\sum_{A} c_{BA} A \quad \text{with} \quad c_{BA} = [\hat{Z}_1(0_A) : \hat{L}_1(0_B)] \quad \text{for} \quad B \supset \pi_v^-$$

is invariant under the action of W_{ij} :

$$\Sigma_{A} c_{BA}^{A} w = \Sigma_{A} c_{BA}^{A} \quad \forall w \in W_{v}.$$

Also $\forall v \in pX(T)$,

$$c_{BA} = c_{Bt_{v},At_{v}}.$$

Lusztig's objective was to construct a q-analogue D^B of the element (3) by replacing the coefficient c_{BA} by certain polynomials in q^{-1} . He poses some simple conditions on this element:

- (i) it should satisfy a q-analogue of Weyl group invariance property (4),
- (ii) each coefficient must have a certain explicit bound for its degree,
- (iii) it must enjoy a simple symmetry property with respect to $\boldsymbol{w}_{_{\boldsymbol{V}}}$,

and proceeds to show that these properties determine the element D^B uniquely. He does that by defining on the free $\mathbb{Z}[q,q^{-1}]$ -module

(6)
$$\mathcal{M} = \coprod_{A \in \mathcal{A}} \mathbb{Z}[q, q^{-1}]A$$

with basis corresponding to the alcoves a module structure over the Hecke-Iwahori algebra # for the affine Weyl group $W_{_{D}}$ (cf. (1.6)) via

(7)
$$\forall s \in S_p \text{ and } A \in \mathcal{A}, \ T_s A = \left\{ \begin{array}{ll} sA & \text{if } s \notin \mathcal{L}(A) \\ qsA + (q-1)A & \text{if } s \in \mathcal{L}(A). \end{array} \right.$$

Here we define the left action of W_p on \mathcal{A} by

(8)
$$w(A^{-}y) = A^{-}wy \quad \forall w, y \in W_{p}.$$

Also for each $A \in \mathcal{A}$ we set

(9)
$$\mathscr{L}(A) = \{ s \in S_p \mid sA < A \}.$$

In order to state Lusztig's result we introduce a partial order \leq on $\mathscr A$ as follows :

(10)
$$A \leq B$$
 iff \exists a sequence $A = A_0$, A_1 ,..., $A_n = B$:
$$\forall_i \in [1,n], \exists_{\alpha_i} \in R \text{ and } n_i \in \mathbb{Z} : A_i = A_{i-1} s_{\alpha_i}, n_i \text{ and } d(A_{i-1}, A_i) = 1$$

It is easy to show that

$$(11) A \leq B iff O_A \uparrow \uparrow O_B .$$

For $v \in pX(T)$ put

(12)
$$e_{v} = \sum_{A \ni v} A \in \mathcal{M},$$

and let $\mathbf{M}_{\mathbf{V}}$ the $\mathbf{H}\text{-submodule}$ of \mathbf{M} generated by $\boldsymbol{e}_{\mathbf{V}}$.

Theorem (Lusztig [21],(1.8)). Let $v \in pX(T)$ and $B \subset \Pi_v^-$. Then $\exists ! D^B \in \mathcal{M}_v$:

(i)
$$D^B = \sum_A Q^{B,A}(q^{-1})A$$
, where $Q^{B,A} \in \mathbb{Z}[q]$ is 0 unless $B \le A$, has degree $\le \frac{1}{2}(d(B,A)-1)$ if $B < A$, and $Q^{A,A} = 1$.

(ii) $q^{d(B,A_V^+)}Q^{B,A}(q^{-1}) = Q^{B,AW}V(q)$.

The fact $D^B \in \mathcal{M}_{v}$ implies that $D^B(1)$ is invariant under W_{v} :

$$D^{B}(1)w = D^{B}(1) \qquad \forall w \in W_{v},$$

thus

$$Q^{B,A}(1) = Q^{B,Aw_{v}}(1) \quad \forall w \in W_{v}.$$

(2.3) We have

$$(1) \qquad \sum_{B} (-1)^{d(A,B)} \hat{P}_{A,B} Q^{B,C} = \delta_{A,C} \quad \forall A, C \in \mathcal{A},$$

so the G_1T -Lusztig conjecture (2.1.9) is equivalent to

(2)
$$[\hat{Z}_1(0_A) : \hat{L}_1(0_R)] = Q^B, A(1) \quad \forall A, B \in \mathcal{A}.$$

It is called the generic decomposition pattern conjecture by the following reason: in [10], Jantzen showed $\forall \lambda$, $\xi \in X(T)^+$,

$$(3) \quad [H^{0}(\lambda) : L(\xi)] = \sum_{\eta \in X(T)} [\hat{Z}_{1}(\lambda) : \hat{L}_{1}(\eta)] [L(\eta^{0}) \otimes \chi(\eta^{1})^{[1]} : L(\xi)].$$

In particular, if
$$[\hat{Z}_1(\lambda) : \hat{L}_1(\eta)] = 0 \quad \forall \eta^1 \notin \overline{A^+}$$
 (eg. if $4(h-1) \le$

 $\langle \lambda^1, \alpha^{V} \rangle \leq p-4(h-1)$ $\forall \alpha \in R^+$), then we get via the strong linkage principle (1.4) and Steinberg's tensor product theorem (1.2)

(4)
$$[H^{0}(\lambda) : L(\mu)] = [\widehat{Z}_{1}(\lambda) : \widehat{L}_{1}(\mu)],$$

thus $H^0(0_A)$ for 0_A in such a region exhibit a decomposition pattern depending only on the position of A in the box containing it (cf. (2.2.2)) and we expect "generically"

(5)
$$[H^0(0_A) : L(0_B)] = Q^B, A(1) .$$

(2.4) Let $v \in pX(T)$ and define a map $\phi_v : \mathcal{M} \longrightarrow \mathcal{M}$ via

$$(1) \Sigma_{A} c_{A} A \longrightarrow \Sigma_{A} \overline{c_{A}} A w_{v} , c_{A} \in \mathbb{Z}[q, q^{-1}].$$

Then $\varphi_{\mathcal{V}}$ is an \mathcal{H} -antilinear, i.e., $\varphi_{\mathcal{V}}(h\pi) = \overline{h}\varphi_{\mathcal{V}}(\pi)$ $\forall h \in \mathcal{H}$ and $\pi \in \mathcal{M}$, involution leaving $\mathcal{M}_{\mathcal{V}}$ invariant. For $B \subset \pi_{\mathcal{V}}^-$ put $C = Bw_{\mathcal{V}}$, $Q_{A,C} = Q_{A,C}^B$ and let $Q_C = \varphi_{\mathcal{V}}(D^B)$. Then $Q_C = \sum_A Q_{A,C}^A$, thus we can restate

Theorem ([21],(2.15)). Let $v \in pX(T)$ and $C \in \pi_v$. Then $\exists ! D_C \in \mathcal{M}_v$:

(i) $D_C = \sum_A Q_{A,C}^A$, where $Q_{A,C} \in \mathbb{Z}[q]$ is 0 unless $A \leq C$, has degree $\leq \frac{1}{2}(d(A,C)-1)$ if A < C, and $Q_{C,C} = 1$,

(ii)
$$q^{d(A_{v}^{+},C)} Q_{A,C}(q^{-1}) = Q_{Aw_{v},C}(q)$$
.

Note, in particular,

$$D_{A_{v}^{+}} = e_{v} \qquad \forall v \in pX(T) .$$

For a psychological reason we prefer to work with D_C whose coefficients are polynomials in q rather than in q^{-1} .

We call a function $\delta: \mathcal{A} \longrightarrow \mathbb{Z}$ a length function iff

(3)
$$d(A, B) = \delta(B) - \delta(A) \quad \forall A, B \in A.$$

By δ we will always mean such a function. Let \mathbb{H}^0 be the \mathbb{H} -submodule of \mathbb{H} generated by all e_v , $v\in pX(T)$:

$$\mathcal{M}^{\circ} = \sum_{\mathbf{v} \in pX(T)} \mathcal{H}e_{\mathbf{v}}.$$

We have ([21],(2.12)) an $\mathcal{H}-$ antilinear involution Φ_{δ} of \mathcal{M}^{0} such that

(5)
$$\Phi_{\delta} e_{v} = q^{-\delta(A_{v}^{+})} e_{v} \qquad \forall v \in pX(T).$$

Then the condition (ii) in the above theorem is equivalent (cf. [21], (2.13)) to

$$\Phi_{\delta} D_C = q^{-\delta(C)} D_C .$$

(2.5) Let $C \subset \Pi_v$ and $w \in W_p$ with $wA_v^+ = C$. Using (2.4.6) Lusztig

[21], Theorem 5.2 shows

$$D_{C} = \sum_{y} P_{yw_{v}, ww_{v}} T_{y} e_{v},$$

$$\ell(yw_{v}) = \ell(y) + \ell(w_{v})$$

consequently,

(2)
$$Q_{A,C}(1) = P_{z,ww_{v}}(1) \text{ if } A = zA_{v}^{-}.$$

Meanwhile, according to [21], Jantzen conjectured

(3) ch
$$L(0_C) = \sum_{A} (-1)^{d(A,C)} Q_{A,C}(1)$$
 ch $H^0(0_A)$ $\forall C \subset \Pi$.

We see that it is compatible with Lusztig's conjecture (1.5) as

(4)
$$Q_{A,C}(1) = P_{A,C}(1) \quad \forall C \subset \Pi \text{ and } A \in A^{+}$$

by (2).

Kato [17] shows, conversely, that

(5) Jantzen's conjecture (3) implies the Lusztigs conjecture.

Again the formula (3) would be enough to determine all the irreducible characters of G while in Lusztig's conjecture not all O_C , $C \subset \Pi$, may satisfy the Jantzen condition (1.5.2) for small p.

(2.6) For each A let $E_A = T_w e_v$, where $v \in pX(T)$ with $A \subset \Pi_v$ and $w \in W_p$ with $A = wA_v^+$. Then the E_A 's form a basis of M^0 ([21],(6.1)):

$$\mathcal{M}^{\circ} = \coprod_{A \in \mathcal{A}} \mathbb{Z}[q, q^{-1}] E_{A}.$$

Let \mathcal{R} be the set of formal $\mathbb{Z}[q,q^{-1}]$ -linear combinations $\sum_{A\in\mathcal{A}} c_A A$ of alcoves such that $\{A\mid c_A\neq 0\}$ is bounded above. It forms an \mathcal{H} -module in a natural way, containing \mathcal{H} as a subnodule. Moreover, each element of $\widehat{\mathcal{H}}$ can be written uniquely in the form $\sum_{B\leq A_0} c_B E_B$, $c_B\in \mathcal{H}$

 $\mathbb{Z}[q,q^{-1}]$. We extend the \mathcal{H} -antilinear involution Φ_{δ} on \mathcal{M}° to a map $\hat{\Phi}_{\delta}:\hat{\mathcal{M}}\longrightarrow\hat{\mathcal{M}}$ via

(2)
$$\sum_{B \leq A_0} c_B E_B \longmapsto \sum_{B \leq A_0} \overline{c_B} \Phi_{\delta}(E_B),$$

and write

(3)
$$\hat{\Phi}_{\delta}(A) = q^{-\delta(A)} \sum_{B} (-1)^{d(A,B)} \Re_{B,A}^{B}, \quad \Re_{B,A} \in \mathbb{Z}[q,q^{-1}].$$

Then the $Q_{A,C}$ are uniquely determined also as the polynomials that are 0 unless $A \leq C$, of degree $\leq \frac{1}{2}(d(A,C)-1)$ if A < C, and $Q_{C,C} = 1$, satisfying

(4)
$$Q_{A,C} = \sum_{B} (-1)^{d(A,B)} \Re_{A,B} \overline{Q_{B,C}} q^{d(B,C)} \quad \forall A, C \in A.$$

In short,

Theorem ([21],(7.3)).
$$\forall C \in \mathcal{A}, \exists ! D_{C} \in \hat{\mathcal{M}} :$$

(i)
$$\hat{\Phi}_{\delta} D_C = q^{-\delta(C)} D_C$$
,

(ii) $D_C = \sum_A Q_{A,C}A$, where $Q_{A,C} \in \mathbb{Z}[q]$ is 0 unless $A \leq C$, has degree $\leq \frac{1}{2}(d(A,C)-1)$ if A < C, and $Q_{C,C} = 1$.

It follows that

(5)
$$D_C t_v = D_{Ct_v} \qquad \forall C \in A \text{ and } v \in pX(T) .$$

- (2.7) We have noted in (1.5) that the coefficients of $P_{y\,,\,w}$ are all nonnegative, from which one can also show that
- (1) the coefficients of $Q_{A,C}$ are all nonnegative ${}^{\forall}A, C \in A$.

Define μ : $A \times A \longrightarrow \mathbb{N}$ by

(2)
$$\mu(A, C) = \text{the coefficient of } q^{\frac{1}{2}}(d(A,C)-1)$$
 in $Q_{A,C}$,

so $\mu(A,C)=0$ unless $A\leq C$ and d(A,C) is odd. Lusztig [21], Theorem 8.2 shows $\forall C\in \mathcal{A}$ and $s\in S_p$,

$$(3) \ T_{S} \ D_{C} = \left\{ \begin{array}{ll} qD_{C} & \text{if } S \in \mathcal{L}(C) \\ -D_{C} + D_{SC} + \sum\limits_{A,S \in \mathcal{L}(A)} \mu(A,C) q^{\frac{1}{2}} (d(A,C) + 1) \\ D_{A} & \text{otherwise.} \end{array} \right.$$

It follows that

$$\mathcal{M}^{0} = \coprod_{C \in \mathcal{A}} \mathbb{Z}[q, q^{-1}] D_{C}.$$

Also $\forall A, C \in A \text{ and } s \in \mathcal{L}(C)$,

$$Q_{A,C} = Q_{SA,C} \quad \forall A \in A,$$

(6)
$$\mu(A,C) = 0$$
 if $s \notin \mathcal{L}(A)$ and $A \neq sC$.

For $v \in pX(T)$ define a new right action of W_D on A by

(7)
$$A \longmapsto AI_{v,w} = At_{(\eta-v)w-(\eta-v)} \quad \forall w \in W_p \text{ if } A \subset \pi_\eta^-$$
.

There is also an \mathcal{H} -linear right action of $W_{\mathcal{D}}$ on \mathcal{M}^0 defined by

(8)
$$e_{v} \longmapsto e_{v}\theta_{w} = q^{\frac{1}{2}d(A_{vw}^{\dagger}, A^{\dagger})}e_{vw}.$$

We have ([21], (8.7))

(9)
$$D_C \theta_w = q^{\frac{1}{2}d(CI_{-p\rho}, w, C)} D_{CI_{-p\rho}, w} \quad \forall C \in \mathcal{A} \text{ and } w \in W_p,$$

consequently,

(10)
$$\mu(A, C) = \mu(AI_{-p\rho, w}, CI_{-p\rho, w}) \quad \forall A, C \in \mathcal{A} \text{ and } w \in W_p$$
.

(2.8) We will now describe an inductive algorithm to compute D_C . For $C \subset \Pi_V$ write $C = wA_V^+$, $w \in W_D$, and put $n_C = d(A_V^+, C)$. The induction will be on n_C . If $n_C = 0$, then $D_C = e_V$, so assume $n_C > 0$ and that the elements $D_{C'}$ with $n_{C'} < n_C$ have already been constructed. In particular, $\mu(A, C')$ are known for such C' and all $A \in \mathcal{A}$. Choose $s \in \mathcal{L}(C)$ with $sC \subset \Pi_V$. Then $n_{sC} = n_C - 1$ and we have from (2.7.3)

$$(1) \quad D_C = (T_s + 1)D_{sC} - \sum_{s \in \mathcal{L}(A)} \mu(A, sC)q^{\frac{1}{2}d(A,C)} D_A \ .$$

Here Lusztig [21], Corollary 10.6 shows

(2)
$$n_A < n_{SC} \quad \forall A \in \mathcal{A} \text{ with } S \in \mathcal{L}(A) \text{ and } \mu(A,SC) \neq 0$$
,

consequently, the $D_{\mathcal{A}}$'s appearing on the right hand side of (1) are already known. Thus (1) provides a desired inductive formula, from which we also get

(3)
$$Q_{A,C} = q^{C}Q_{SA,SC} + q^{1-C}Q_{A,SC} - \sum_{s \in \mathcal{L}(B)} \mu(B,sC)q^{\frac{1}{2}d(B,C)}Q_{A,B}$$
,

where
$$c = \begin{cases} 1 & \text{if } s \notin \mathcal{L}(A) \\ 0 & \text{if } s \in \mathcal{L}(A) \end{cases}$$
.

(2.9) Basic properties of \Re -polynomials introduced in (2.6.3) can be found in [], $\S11$ (see also Andersen-Kaneda [4],(4.2)). Using those Lusztig [21], Corollary 11.14 shows that the function

 $(-1)^{d(B,C)}Q_{B,C}(0)$ is the Möbius function of the partially ordered set (A, \leq) :

(1)
$$\sum_{\substack{B\\A \leq B \leq C}} (-1)^{d(B,C)} Q_{B,C}(0) = \delta_{A,C} \qquad \forall A, C \in \mathcal{A}.$$

Also for $v \in pX(T)$ we have ([21],(11.15))

$$Q_{yA_{v}^{-}, wA_{v}^{-}} = P_{y,w} \qquad \forall y, w \in W_{v}.$$

(2.10) One finds in [21], §12 beautiful pictures of D_C for the groups of type A_1 , A_2 , B_2 , and G_2 .

For $C \subset \Pi_{v}$ define

(1)
$$\sup D_C = \{A \in A \mid Q_{A,C} \neq 0\}$$
.

We have noted in (2.7.1) that

(2)
$$\sup D_C = \{A \in A \mid Q_{A,C}(1) \neq 0\}$$
,

so it is invariant under the action of W_p by (2.2.14), consequently

(3)
$$\sup D_C \subset \{A \in \mathcal{A} \mid Cu_v \leq A \leq C\} .$$

One observes, moreover, that the pictures of D_C in [21],§12 have no holes, that is indeed a general fact (Kaneda [12]):

(4) supp
$$D_C = \{A \in \Pi_v \mid A \leq C \} W_v \qquad {}^{\forall}C \subset \Pi_v.$$

This was proved in response to

Ye's theorem [25]. Let
$$v \in pX(T)$$
 and $C \subset \Pi_v^-$. If $p \ge 2(h-1)$, then $\{A \in \mathcal{A} \mid [\hat{Z}_1(0_A) : \hat{L}_1(0_C)] \ne 0 \} = \{A \subset \Pi_v^- \mid A \ge C \} W_v$.

There is yet another symmetry in the pattern D_C . It was discovered (Andersen-Kaneda [4]) in the process of studying the structure of the injective hull of $\widehat{L}_1(C)$. Let ν , $\eta \in pX(T)$ and $A \subset \Pi_{\nu}$, $C \subset \Pi_{n}$. Then $\forall u \in W$,

$$(5) \qquad \sum_{B} q^{\delta(B)} Q_{B,A} Q_{Bt_{\xi},C} = q^{n_{u}(v-\eta)} \sum_{B} q^{\delta(B)} Q_{B,A} Q_{B,C},$$

where $\zeta = (\nu - \eta)w - (\nu - \eta)$ and $n_w(\nu - \eta) = \frac{1}{2}d(A^-, A^-t_{(\nu - \eta) - (\nu - \eta)w})$. In particular,

(6)
$$\sum_{\substack{B \\ \overline{B} \ni v}} q^{\delta(B)} Q_{Bt_{\xi},C} = q^{n_{w}(v-\eta)} \sum_{\substack{B \\ \overline{B} \ni v}} q^{\delta(B)} Q_{B,C}.$$

3. Inverse Kazhdan-Lusztig polynomials $Q_{A,C}$. By the equation

$$\sum_{B \in \mathcal{A}^{-}} (-1)^{d(A,B)} P_{Aw_0,Bw_0} Q_{C,B}^{C} = \delta_{A,C} \qquad \forall A, C \in \mathcal{A}^{-}$$

we can define polynomials $Q_{A,C} \in \mathbb{Z}[q]$, $A,C \in \mathbb{A}^-$, called the inverse Kazhdan-Lusztig polynomials for the affine Weyl group (W_p,S_p) . Much alike characterization of the Q'-polynomials as for Lusztig's Q-polynomials are available by Andersen [1].

(3.1) Lusztig [21], Corollary 11.9 showed

(1)
$$Q_{A,C} = Q_{A,C}$$
 if $A, C \in \mathcal{A}$ are sufficiently far from the hyperplanes $H_{\alpha,0} \forall \alpha \in \Delta$,

thus Lusztig's Q-polynomials are sometimes called the generic inverse Kazhdan-Luztig polynomials. More precisely, we have (Kaneda [131,(2.2))

(2)
$$Q_{A,C} = \sum_{w \in W} (-1)^{\ell(w)} q^{\frac{1}{2}d(CI_{p\rho,w}, C)} Q_{A,CI_{p\rho,w}} \quad \forall A, C \in \mathcal{A}^{-}.$$

In characteristic 0 the Borel-Weil-Bott theorem (cf. [11], (II.5.5)) brings complete information about all $H^{i}(\lambda)$: $\forall \lambda \in X(T)^{+}-\rho$, $w \in W$, and $i \geq 0$,

(3)
$$H^{i}(\lambda \cdot w) = \begin{cases} H^{0}(\lambda) & \text{if } \lambda \in X(T)^{+} \text{ and } i = \ell(w) \\ 0 & \text{otherwise.} \end{cases}$$

A similar result holds in our situation generically (cf. [11],(II.9.14)), but fails badly when λ is close to an $H_{\alpha,0}$, $\alpha \in \Delta$. Andersen [1] asks how the cancellation on the right hand side of (3)

is related to the failure of the Borel-Weil-Bott theorem in positive characteristic.

(3.3) With the Q-polynomials we can invert the Lusztig conjecture: ${}^\forall A, C \in {}^{d}$ with 0C satisfying the Jantzen condition (1.5.2),

$$[H^0(0_C) : L(0_A)] = Q_{Cw_0, Aw_0}(1) .$$

On the other hand, we have (Humphreys [8], Jantzen, Doty-Sullivan [6]) $\forall A, C \in A^+$ with 0_C satisfying the Jantzen condition,

$$(2) \qquad [H^{0}(0_{C}) : L(0_{A})] = \sum_{w \in W} (-1)^{\ell(w)} [\hat{Z}_{1}(0_{C}) : \hat{L}_{1}(0_{AI_{0,w}})],$$

so the inversion formula (1) for the G-module would follow from the inversion formula for the G_1T -modules via (3.1.3), i.e.,

(3) the G_1T -Lusztig cinjecture (2.1.9) implies the Lusztig conjecture (1.5).

For p >> 0 this was known before (Kato [17]). The converse is also known to hold if p is large enough that 0 should satisfy the $A_{p\rho}^{-}$

Jantzen condition (Kaneda [14]).

Can we show Jantzen's conjecture (2.5.3) is equivalent to the G_1T -Lusztig conjecture : ${}^{\forall}C\in \mathscr{A}^+$ with $0_A\in X_1(T)$,

(4)
$$\sum_{A \in \mathcal{A}^{+}} (-1)^{d(A,C)} P_{A,C}^{(1)} \frac{\sum_{w \in W} (-1)^{\ell(w)} e(0_{A} \cdot w)}{\sum_{w \in W} (-1)^{\ell(w)} e(0 \cdot w)} = \sum_{A \in \mathcal{A}} (-1)^{d(A,C)} P_{A,C}^{(1)} e(0_{A}) \frac{\prod_{w \in R^{+}} (1-e(-p\alpha))}{\prod_{\alpha \in R^{+}} (1-e(-\alpha))}$$
?

- 4. Generic Kazhdan-Lusztig polynomials $\hat{P}_{A,C}$. There are several ways to define the generic Kazhdan-Lusztig polynomials for (W_p, S_p) , due to Kato [17], one of which is already given at (2.3.1).
- (4.1) For $\gamma \in p\mathbb{Z}R$ choose $\xi \in p\mathbb{Z}R \cap X(T)^+$ such that $\gamma + \xi \in X(T)^+$ and set

$$\widetilde{T}_{\gamma} = T_{\gamma + \xi} T_{\xi}^{-1} ,$$

which can be shown to be well-defined. For $w \in W_p$ write $w = xt_\gamma$ with $x \in W$ and $\gamma \in p\mathbb{Z}R$, and set

$$\widetilde{T}_{w} = T_{x} \widetilde{T}_{\gamma}.$$

Kato [17], Proposition 1.10 shows

(3)
$$\mathcal{H} = \coprod_{u \in W_p} \mathbb{Z}[q, q^{-1}] \widetilde{T}_u,$$

(4)
$$\mathcal{M} \simeq \mathcal{H}$$
 as $\mathcal{H}\text{-modules}$ via $A^- w \longmapsto \widetilde{T}_w$.

Using the isomorphism he transfers the map $\widehat{\Phi}_{\delta}$ of (2.6) on $\widehat{\mathcal{H}}$ to define an \mathcal{H} -antilinear involution Ψ on $\widehat{\mathcal{H}}$ via

$$(5) \qquad \Psi(\widetilde{T}_{w}) = q^{d(A^{-}w, A)} \sum_{\substack{y \\ A^{-}y \leq A^{-}w}} (-1)^{d(A^{-}y, A^{-}w)} \mathcal{R}_{A^{-}y, A^{-}w} \widetilde{T}_{y}.$$

Then the generic Kazhdan-Lusztig polynomials $\hat{P}_{A,C}$ are uniquely determined as the polynomials that are 0 unless $A \leq C$, of degree $\leq \frac{1}{2}(d(A,C)-1)$ if A < C, and $\hat{P}_{C,C} = 1$, satisfying

(6)
$$q^{-\delta(A)} \hat{P}_{A,C} = \sum_{B} q^{-\delta(A)} \overline{\mathcal{R}_{Bu_0,Au_0}} \hat{P}_{B,C} .$$

In short, if we define an \mathcal{H} -antilinear involution $\overset{\sim}{\Phi}_{\delta}: \overset{\widehat{}}{\mathcal{M}} \longrightarrow \overset{\widehat{}}{\mathcal{M}}$ via

(7)
$$A \longmapsto \sum_{B} q^{-\delta(B)} \mathcal{R}_{Au_0,Bu_0} B ,$$

then $\forall C \in \mathcal{A}$, $\exists ! E_C = \sum_A \hat{P}_{A,C} A \in \mathcal{A}$:

(8)
$$\widetilde{\Phi}_{\delta} E_{C} = q^{-\delta(C)} E_{C} ,$$

where $\hat{P}_{A,C} \in \mathbb{Z}[q]$ is 0 unless $A \le C$, has degree $\le \frac{1}{2}(d(A,C)-1)$ if A < C, and $\hat{P}_{C,C} = 1$.

It follows that

(9) $\hat{P}_{A,C} = P_{A,C}$ if A, $C \in \mathcal{A}^+$ are sufficiently far from $H_{\alpha,0} \forall \alpha \in \Delta$,

suggesting the name "generic" Kazhdan-Lusztig polynomial for $\hat{P}_{A,C}$. More precisely, Kato [17], Corollary 4.3 shows

(10)
$$P_{A,C} = \sum_{w \in W} (-1)^{\ell(w)} q^{\frac{1}{2}d(CI_0, w, C)} \hat{P}_{A,CI_0, w} \quad \forall A, C \in A^+.$$

(4.2) We now turn to the extension problem in the G_1T -module category following Vogan [24] and Andersen [1].

The automorphism φ of G corresponding to the root system automorphism $\alpha \longmapsto -\alpha$ $\forall \alpha \in R$ leaves G_1T invariant, so we may define the contravariant dual DM of each G_1T -module M by the composition $G_1T \xrightarrow{\varphi} G_1T \longrightarrow GL(M^*)$. We have (cf. [11],(II.11.1)) $\forall \lambda$, $\eta \in X(T)$ and $i \geq 0$,

(1)
$$\operatorname{Ext}_{G_1 T}^{\boldsymbol{i}}(\hat{Z}_1(\lambda), D\hat{Z}_1(\eta)) \simeq \operatorname{Ext}_{G_1 T}^{\boldsymbol{i}}(D\hat{Z}_1(\lambda), \hat{Z}_1(\eta))$$

$$\simeq \begin{cases} K & \text{if } \lambda = \eta \text{ and } \boldsymbol{i} = 0 \\ 0 & \text{otherwise,} \end{cases}$$

from which we get $\forall \lambda \in X(T)$,

(2) ch
$$\hat{L}_1(\lambda) = \sum_{\eta \in X(T)} \sum_{i \geq 0} (-1)^i \text{dim } \operatorname{Ext}_{G_1}^i T(\hat{L}_1(\lambda), \hat{Z}_1(\eta)) \text{ch } \hat{Z}_1(\eta),$$

so we can reformulate the G_1T -Lusztig conjecture (2.1.9) as

(3)
$$(-1)^{d(A,C)} \hat{P}_{A,C}(1) = \sum_{i \in \mathbb{N}} (-1)^{i} \dim \operatorname{Ext}_{G_{1}T}^{i} (\hat{L}_{1}(0_{C}), \hat{Z}_{1}(0_{A})) \quad \forall A, C \in A.$$

It is even equivalent (cf. Kaneda [14], (4.12)) for p > h to

(4)
$$\hat{P}_{A,C} = \sum_{i \geq 0} q^{i} \dim \operatorname{Ext}_{G_{1}}^{d(A,C)-2i} (\hat{L}_{1}(0_{C}), \hat{Z}_{1}(0_{A})) \quad \forall A, C \in \mathcal{A}.$$

The conjecture (3) has been verified for $C = A^{+}$ by Andersen-Jantzen (cf. Kaneda [14],(4.6)):

(5)
$$\hat{P}_{A,A}^{+} = \sum_{i \geq 0} q^{i} \operatorname{dim} H^{d(A,A^{+})-2i}(B_{1}, O_{A})^{T} \quad \forall A \in A,$$

putting together Kato [16],(1.8) with the determination of the B_1 -cohomology by Andersen-Jantzen [3],(2.3) and (2.9): for p > h

(6)
$$H^{\bullet}(B_1, K) \simeq S^{\bullet}(u^*)^{[1]}$$
 as graded B-algebras,

(7) $\forall \lambda \in X(T) \text{ and } i \in \mathbb{N}, \text{ as } B\text{-modules}$

$$\frac{i-\ell(w)}{S} = \frac{i-\ell(w)}{2} (u^*)^{[1]} \otimes p\gamma \quad \text{if } \lambda = 0 \cdot w + p\gamma \text{ for some} \\ \mathcal{H}^i(B_1, \lambda) \simeq \left\{ \begin{array}{c} w \in W \text{ and } \gamma \in X(T) \text{ with } i-\ell(w) \text{ even} \\ 0 & \text{otherwise,} \end{array} \right.$$

where ${\bf u}$ is the Lie algebra of U and $S'({\bf u}^*)$ is the symmetric algebra on ${\bf u}^*$ with each $S^i({\bf u}^*)$ given the degree 2i.

The cohomology of higher Frobenius kernel $B_r = \ker(F|_B)^r$, r > 1, is unknown. As usual, their alternating sum is easy to find, however (Kaneda-Shimada-Tezuka-Yagita [15],(2.5)): for p > h

(8)
$$\forall \eta \in X(T) \text{ and } r > 0$$
, $\sum_{i \geq 0} (-1)^i \dim H^i(B_{r+1}, K)_{p^{r+1}\eta} = \sum_{\substack{w \in W \\ \lambda \in X(T)}} \sum_{i \geq 0} (-1)^i \dim H^i(B_r, K)_{p^r(0 \cdot w + p(\eta - \lambda))} \sum_{\substack{\lambda \in X(T)}} (-1)^j \dim H^{j-\ell(w)}(B_1, K)_{p\lambda}.$

One suspects if $H^{\bullet}(B_{r}, K)$ for r>1 may also be described using the generic Kazhdan-Lusztig polynomials. If r=2, ch $H^{\bullet}(B_{2}, K)$ is available for SL_{2} (Andersen-Jantzen [3],(2.4.2)) and for SL_{3} (Kaneda-Shimada-Tezuka-Yagita [15],(5.11) for p>3).

- 5. Some consequences of the Lusztig-conjecture. In this section assume the G_1T -Lusztig conjecture. We will state some consequences.
- (5.1) As already suggested in (4.2.4), the \widehat{P} -polynomials seem to carry information on the structure of $\widehat{Z}_1(\lambda)$, $\lambda \in X(T)$. Indeed, following Andersen [1], Gaber-Joseph [7] and Irving [9], it was proved (Andersen-Kaneda [4],(6.3)) that the socle series and the radical series of each $\widehat{Z}_1(0_C)$ coincide and that ${}^{\forall}C \subset \Pi_V$,

(1)
$$Q_{A,C} = \sum_{j} q^{\frac{1}{2}(d(A,C)-j)} [rad_{j} \hat{Z}_{1}(0_{A}) : \hat{L}_{1}(0_{Cw_{v}})],$$

where $\operatorname{rad}_{j} \hat{Z}_{1}(0_{A}) = \operatorname{rad}^{j} \hat{Z}_{1}(0_{A}) / \operatorname{rad}^{j+1} \hat{Z}_{1}(0_{A})$ is the j-th level in the radical series of $\hat{Z}_{1}(0_{A})$.

(5.2) From (5.1.1) it follows ([4], (6.5)) that

$$(1) \qquad \operatorname{Ext}_{G_1}^1 T(\hat{L}_1(0_C), \ \hat{Z}_1(0_A)) = \operatorname{Ext}_{G_1}^1 T(\hat{L}_1(0_C), \ \hat{L}_1(0_A)) \quad \forall A \leq C.$$

On the other hand, from (4.2.4) one expects

(2)
$$\mu(A, C) = \dim \operatorname{Ext}_{G_1}^1(\hat{L}_1(0_C), \hat{Z}_1(0_A)),$$

consequently,

$$(3) \qquad \mu(A, C) = \dim \operatorname{Ext}_{G_1 T}^1(\widehat{L}_1(0_C), \widehat{L}_1(0_A)) \qquad \forall A \leq C.$$

For A, $C \in A$ set

(4)
$$\widetilde{\mu}(A, C) = \left\{ \begin{array}{ll} \mu(A, C) & \text{if } A \leq C \\ \mu(C, A) & \text{otherwise,} \end{array} \right.$$

and put $\widetilde{\mu}(A) = \{B \in \mathcal{A} \mid \widetilde{\mu}(A, B) \neq 0\}$. Doty-Sullivan [5] conjectures

(5) for $A \subset \Pi_{\mathcal{V}}^-$, $\widetilde{\mu}(A)$ should be the union of $I_{\mathcal{V},\mathcal{W}_{\mathcal{V}}}$ -orbits of $\{A^{\alpha} \mid \alpha \in \Delta \}$, $\{B \in \mathcal{A} \mid B \text{ is adjacent to } A \}$, $\{B \in \mathcal{A}^+ t_{\mathcal{V}-p\rho} \mid B < A, \mathcal{L}(A) \subset \mathcal{L}(B), d(B,A) \text{ odd } \}$, and $\{B \in \mathcal{A}^- t_{\mathcal{V}} \mid A < B, \mathcal{L}(B) \subset \mathcal{L}(A), d(A,B) \text{ odd } \}$,

where $A^{\alpha} = As_{\alpha,n}$ if $pn < <0_A$, $\alpha^{v} > < p(n+1)$. It has been verified in [5] (cf. also Kaneda [14]) that $\widetilde{\mu}(A)$ is $I_{v,W_{v}}$ -invariant and is contained in the union of the prescribed orbits. Conversely, it is

easy to see that the first two sets in the list are contained in $\mu(A)$ For G of rank ≤ 2 one observes also

(6)
$$\widetilde{\mu}(A, B) = \widetilde{\mu}(Au_0, Bu_0) \quad \forall A, B \in A.$$

Does it hold in general ?

References

We often referred to the results in Jantzen's book [11], hoping that the reader should easily be able to trace back the articles on which they originally appeared.

[1] Andersen, H.H., An inversion formula for the Kazhdan-Lusztig	
polynomials for affine Weyl groups, Adv. Math. 60 (1986),125-153	
[2], Jantzen's filtration of Weyl modules, Math. Z.	
194 (1987), 127-142	
[3] and Jantzen, J.C., Cohomology of induced	
representations for algebraic groups, Math. Ann. 269 (1984), 487-5	2 5
[4] and Kaneda, M., Loewy series of modules for the	
first Frobenius kernel in a reductive algebraic group, Proc. LMS (t o
appear)	
[5] Doty, S.R. and Sullivan, J.B., On the geometry of extensions o	f
irreducible modules for simple algebraic groups, Pac. J. Math. 130	
(1987), 253-273 1	
Filtration matterns for	

representations of algebraic groups and their Frobenius kernels, Math. Z. 195 (1987), 391-407 [7] Gaber, O. and Joseph, A., Towards the Kazhdan-Lusztig conjecture, Ann. Sci. Ec. Norm. Sup. 14 (1981), 261-302 [8] Humphreys, J.E., Cohomology of line bundles on G/B for the exceptional group G_2 , J. Pure Appl. Math. 44 (1987), 227-239 [9] Irving, R., The socle filtration of a Verma module, Ann. Sci. Ec. Norm. Sup. 21 (1988), 47-66 [10] Jantzen, J.C., Darstellungen halbeinfacher Gruppen und ihrer Frobenius-Kerne, J. reine angew. Math. 317 (1980), 157-199 [11] ______, Representations of Algebraic Groups, Acad Press, Orlando, 1987 [12] Kaneda, M., On the symmetry of inverse Kazhdan-Lusztig polynomials for affine Weyl groups, Proc. Symp. Oure Math. 47 AMS (1987), 201-205[13] , On the inverse Kazhdan-Lusztig polynomials for affine Weyl groups, J. reine angew. Math. 381 (1987), 116-135 _____, Extensions of modules for infinitesimal algebraic groups, J. Alg. (to appear) [15] _____, Shimada, N., Tezuka, M. and Yagita, N., Cohomology of infinitesimal algebraic groups (to appear) [16] Kato, S., Spherical functions and a q-analogue of Kostant's weight multiplicity formula, Inv. Math. 66 (1982), 461-468 [17] _____, On the Kazhdan-Lusztig polynomials for affine Weyl groups, Adv. Math. 55 (1985), 103-130 [18] Kazhdan, D. and Lusztig, G., Representations of Coxeter groups

and Hecke algebras, Inv. Math. 53 (1979), 165-184