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1. Lusztig's conjecture. A prime objective of the modular

representation theory of reductive algebraic groups is to find a
character formula for their simple modules. All the modules considered

in this survey are rational.

"(1.1) Let G be a simply connected simple algebraic group over an
algebraically closed field K of characteristic D > 0 split over Fp.
Let B be a'split Borel subgroup of G, T a split maximal torus of B,
and F the Frobenius endomorphism of (G, B, T). We denote by R the
root system of G relative to I, by R¥ the positive system of R
determined by B, by A the simple system of R+, and put X(I) =
Hom(T, GL,). We write the group operation on X(I) additively:

o+ W) = aut) YA, ne XTI and t €T,

and define a partial order 2 on X(T) by
x2>2u iff x - u € IR".

For a T-module M, as T is diagonizable, M admits the weight
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space decomposition:

v

(1) M= L M. with HJL = {(m€ M| tr = x(t)m t € Ty.

XEX(T) A

We call A € X(T) a weight of M iff M, # 0.
Let ZLX(T)>]1 be the groub algebra of X(T) over Z with a natural

basis e(dx), x € X(T). For a finite dimensional T-module M, we put

(2) ch M =3 dim ", e(x) € ZIX(T)1
XEX(T)

~and call it the (formal) character of M.

For each o € R* 1et a¥ be its coroot and put X(ID' = { 12 € X

< X, av > =2 0 v ¢ € A }. The simple G-modules are parametrized by
XD
(3) X(T>"> A — L) the simple G-module of highest weight A.

v

Thus we are after ch LX) A € X(T)+.

(1.2) Let X, (I) ={(veXD | <v,a”><p Yaeay. For

each X € X(I) write

(1) A =3 phat, it ex, .

Then
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Steihberg's tensor product theorem (cf. [111,(I1.3.17)).

Loy = Lot
=20

where M[LJ for a G-module M is the i-th Frobenius twist of M obtained
from M by composing the i-th power of F : G — G — GL(M), says

we have only to find ch LX) vk_e X (D).

(1.3) For a B-module ¥ define .a sheaf ZG/B(M) on G/B by

v -
(1 V € Top(G/B), TV, £n,pUD)) =

Vb € B, z € n"'vy,

(f € Moru v, ¥) | f@Bd) = b 'f(z)
where m : G — G/B is the natural projcotion. It is a quasi-coherent
G-linearized sheaf, so each i-th cohomology Hi(C/B, ZG/B(M)) comes
equipped with the structure of a G-module. Let U be the unipotent
radical of B. For each A € X(I) we may regard the‘l-dimensional
T-module Kl with weight X as a B-module fhrough the natural
projection B = Tvk U-— T. We often abbreviate Hi(G/B, ZG/B(KA)) as

HY(x). Put

(2) x(x) =3 (-D¥eh HY ).

120
As usual, the alternating sum of ch Ht(A) is easy to find. Let W =
NC(T)/T the Weyl group of G. With the set S of simple reflections,.
(W, S) forms a Coxeter system. Let { : W — N be the length function

relative to S. We regard W as acting on £ = X(T) ® R from the right.



132

Besides the usual action we introduce the dot action of W on E :

(3) vw = (V + pu p, vV € FE, we€eW,

"
—t
R
m
>

where p € X(I') with <p, o>

Weyl's character formula (cf. [113,¢I1.5.10)).

S (-t

WEW

2 (
wew

e(x-w)

X)) =
DD g 0-w)

Moreover, we have

Kempf's vanishing theorem (cf. [111,(I1.4.5)).

i20, H*() = 0. In particular,
E,(—l){(U)e(x-u)
ch HO(x) = XE¥ o :
2 (-1 e(0-u)
weW
We also know (cf. [111,(I1.2.4)) that VA € X(T)+,

(4) soc HO) L)

(5) LHO(x) ¢+ L)1

[
[e—y
-

v

VA € X,

A € X'V -p and

where [ : ] denotes the multiplicity of the second -term in a

composition series of the first.



- (1.4) It has long been recognized that nbt the Wey! group W
put the affine Weyl group wp = W X pZR plays a more. important role in
the representation theory of G, where pZR consists of the
translations t?;by_? € pZR. Under the dot action Wp is generated by

¢ € R, n € Z, in the hyperplanes H = {v € E |

the{reflex;ons S «.n

o,n’

v ‘ . . _
v+p, o« > = np}. We will abbreviate s, as 8- Put Sp =S UV {Sa }

,0 0,1

where oy is the highest short root of R*. Then‘(Wp, Sp) forms a
Coxeter system with a subsystem (W, S={Sd]a€A}). We extend the length‘
function on (W, S) to one on (WP, SP), still denoted by <¢.

We say X is strongly linked to u and write x Tt u, x, u € X(I),

iff there is a sequence of reflections s eees S in W_ such
4 ®y,My’ ’ XL p

that x £ x+8 i < ... £ Xx*8 «..8 = .
xXy,Ny oy ,Ny ar"nr‘ #

Andersen's strong linkage principle (cf. [11],(11.6.13)). Let

X € X(T)+—p and n € X(T)+. If (HY(x-w) : Ln)l # 0 for some 1 =

0 ahd w € W, then n T X.

(1.5) In analogy to the Kazhdan-Lusztig conjecture for the
irreducible character formula of the complex simple Lié algebra (cf.
[23]1 for a survey) G.Lusztig proposed a conjecture expressing ch L(X)
~in terms of various ch HO(u)'s. |
His strategy éxplbits another rédﬂctidﬂ of the problem. A

connected“comﬁonent of £E NV Ha n is called an alcove. Let 4 be
x€ER,n€l :

the set of alcoves on E. The affine Weyl group Wp permutes 4 simply
and transitively. We will abbreviate its action A-w as Aw for A € d,

w € wp. Note also that each translation tY by v € pX«(I) presefves d.

- 5 -
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Let H; n = WE E | <v+p, aV> > np) and define a “distance" function

d : &d x4 — Z by

(1) d(A, B) = #{Ha,n separating A and B | Ha,n o> A -

#(H, , separating A and B | H;,n > A).

From now on assume P = h = <p, Q@p> + 1 the Coxeter number of G
so that each alcer may contain an element of X(I). Let A" (resp. A )
be the alcove containing 0 (resp. 0O-wg = -2p, where wo is the longest
element of W). For each A € 4 let OA be the image of 0 in A under Wp
and let 4" = (Aed | 0, € XD, 47 = &g,

It is known (Jantzen's translation principle, c¢f. [111,CI1.7))
that each ch L{(A) can be obtained from ch L(OA) for a suitable A € 4,
and we are now ready to state

Lusztig's conjecture ([20], Problem IV). vC € 4 with OC

satisfying the Jantzen condition
(2> 0p*p, Xo> < p(p-h+2),
one shoud have

< dA,0, o
ch L(0p) -Agd( D) Py ctl2ch HOC0 .

Here PA,C = Py,u with ¥, w € Wp such that A = Avand C = A w

are Kazhdan-Lusztig polynomials for the Coxeter system (Wp, Sp). It

is known that the coefficients of Py w Yy, W € Wp , account for the

dimensions of the hypercohomology of Deligne's comﬁlex of {-adic

sheaves on a certain variety (Kazhdan-Lusztig [19]), so they are
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W
&n

nonnegative. Also (Kazhdan-Lusztig [181,(2.6))

(3) P U(O) =1 y < w

(1.6) In this subsection we let (W, S) denote an arbitrary
Coxeter system. The Kazhdan-Lusztig polynomials for‘(w, S) were
introduced-in the study of the representations of the Hecke-Iwahori
algebra # associated to (W, S). |

Let ¢ be an indeterminate. The algebra # is a free Z[g,q !1-

module with a basis Tu’ w € W, and the multiplication given by

v

1}
(=)

(Ts+1)(Ts-1) s €5,

n
~3

TUTU’ - if L) + L) = L(ww').

There is a ring involution " on £ such that

(1) q+— g ! and Tw — Tw-l‘li Vu € W.
For ¥y, w € W define Ry v € ZLql by

Then the Kazhdan-Lusztig polynomials Py v are determined uniquely
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also as the polynomials that are 0 unless ¥ < w, of degree <

%(t(w)-£(y)—l) if vy Cw, and 1 for y = w, satisfying

-4 -t 57—
(3) q P =2 q R p .
YU ey Y,z zZ,u

In short, we have

v Ik

Theorem ([181,(C1.1.¢)). ‘'w € W, o€t
cL Ak =L(W)
(i) Cu = q Cu .
(ii) c; =3 p, T, vwhere P, € Z[ql is 0 unless y < w in the

yEeW Yy, wy
Bruhat order, has degree < %(t(u)-t(y)—l), and Pw w = 1.

?

There is also an inductive formula to define the polynomials.
| | L -L@)-1)
For ¥, w € W let u(y, w) be the coefficient of q in

Py g We have for w € W and 8 € S with sw > w

1
_ (L -L(y)+1)
4y c¥ = (TS+1)C; + 3 n(y,w) (-1 Lty 2 c

Su yeW, sy<y

*
Y

from which we get Vy €E W,

Liean-tzm+n

1-¢ e
(5) P =q °P + q°P -2 u(z,uw)q P
y,su 8y,u y,u Z€EW,32<2Z ¥,2

1 if sy < ¥

where ¢ = { 0 otherwise.

For the properties of the Kazhdan-Lusztig polynomials one can



also check a concise survey in [22]. We only add a handy remark that

1=P vy,uGW.

(6) Py'l,w' v,

2. Q-polynomials. The study of Kazhdan-Lusztig polynomials in

the representation theory of G started, however, really with
Lusztig's [21]1, where he considered the inverse problem of his

conjecture.

(2.1) The present representation theory has benefitted much
from regarding G as a group scheme. It allows us to look at the
representations of the Frobenius kernel G; = ker F of G. They are,
equivalently, the right comodules over the Hopf algebra K[G;] =

KIG1/ 2 K[C]fp the coordinate algebra of G; , where I is the
fel

augmentation ideal of KI[GI.
Let G;T = F-'(I). J.C.Jantzen [10] has exhibitted us a tight
relationship between the representations of G and G;7. The simple

G,T-modules are parametrized by the entire X(7I) :
A
(1) X(T)? x — L{(X) the simple G;T-module of highest weight xA.

For x € X,(T) the simple G-module L(X) remains G T-simple :

~ v

(2) Lx) = L) X € X,
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' LA
so we may look for ch Li(X) instead of ch L{X).

Let B,T = FIB‘lT. For a B;T-module M, define a sheaf KGIT/BIT(M)

on G,T/B,T just as for G/B, and take its cohomology

Hi(Glf/BiT,%zGIT/BIT(M)). Unlike the cohomology on G/B, all the

higher cohomologies vanish on G{7/B;T By Serre's theorem as G, T/B.T

is affine, so we put

Z _ 70
(3) Z,(M) = H°W(GT/B,T, chT/BlT(M))'

Its character is given by (cf. [111,(11.9.2))

n +(l—e(-poz))

Z _ 0ER
(4> ch Z,(4) = ch M T +(1-e(—a))
oER
Also VA, n € X(I), we have
A A
(5) - Zy(X -+ pn) = Z{(X) ® pn ,
A A A A
(6) soc Z1(x) = LX), so Li(x + pn) = LX) ® pn ,
N Vel
(7) [Zy(x) : L; (1 =1,

A A
(8) if [Z;(x) ¢ L)1 # 0, then n Tt X

‘The Lusztig cohjecture for G;T-modules may be formulated as

- 10 -
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A
d(A,C)p

A . e
(9) ch L0y = 5 (-1 A.c(ch Z1 00, VA, C e 4,

A€d

A

where the PA c are generic Kazhdan-Lusztig polynomials introduced by
Kato [17]. We will turn to those later in § 4. Note that by (2) the
formula (9) will be enough (for p = h) to determine all the

irreducible characters of G.

(2.2) Back to Lusztig's work, we call a connected component of
‘ +
E N U H a box. For v € pX(T) let A = Ait , and we denote by
o, N v v
€A, nEL

"v (resp. H; ) the box containing A; (resp. A; ). In particular, we

i i m . T n LT z
will abbreviate -p (resp -p ) as (resp ). Put Wv , t_thv

U In the category of G;T-modules a little bit of
maneuvering is possible (cf. [111,(I1.9.13)) : VA, B € 4 with B c n;

and w, = t_vuot

and w € Wv,

. .S A A . A ‘
(1) [Z1C0,, ) = L1(0pT = [Z,(0,) & Li(0pT.
Also from (2.1.5, 6) VA, Bed and v € pX<T),
Val A Val /N

Consequently, the formal Z[q,q !]1-linear combination of alcoves

A

A -~
(3) | ZA cgp A with CBA = [Z;€04) : L1(0p)] for B DT,

is invariant under the action of wv :

- 11 -
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_ v
(4) ZA cpafu = EA cpah weW, .

Also vv € pX(T),

(5) ' e = C
BA Btv’Atv
Lusztig's objective was to construct a g-analogue DB of the element
(3) by replacing the coefficient CBA by certain polynomials in g !,
‘He poses some simple conditions on this element
(i) it should satisfy a g-analogue of Weyl group invariance

property (4),

(ii) each coefficient must have a certain explicit bound for its

degree,

(iii) it must enjoy a simple symmetry property with respect to

lJv,

and proceeds to show that these properties determine the element

DB uniquely. He does that by defining on the free Z[q,q !I1-module

(6) # =4 Zrq,q" 1A
A€ed

with basis corresponding to the alcoves a module structure over the
Hecke-Iwahori algebra X for the affine Weyl group wp (cf. (1.6)) via
SA if s ? Z2A)

(7) Vs €S and A € 4, T A = { | ‘
p _ gsA + (q-1DA if s € Z(A).

_12_




Here we define the left action of.wp on 4 by

(8) WA Y) = A wy Vu, y € wp
Also for each A € 4 we set
(9 Z(A) = (s € S, | sA < Ay,

In order to state Lusztig's result we introduce a partial order

< on 4 as follows

(10) A<B iff 1, sequence A = Ay , Ay ,..., A =B :

Y. 3 . =
i € [1,n], "«;€ R and n;€ Z : A, = Ai-lsq,ni

It is easy to show that
(11 A< B iff OA Tt OB .
For v € pX(T) put

(12) e =2 A € 4,

and let KU the #-submodule of X generated by ev .

Theorem (Lusztig [211,¢1.8)). Let v € pX(T) and B ¢ H; . Then

' B .
D" € X, :
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(i) DB = ZA QB’A(q"i)A , where QB4 ¢ ZLql is 0 unless B < A,
AA

has degree < %(d(B,A)-l) if B < A, and @Q = 1.
+ B, Au
(ii) qd(B’Av’QB’A<q‘1) = Q Yo

The fact DB € ﬂv implies that DB(l) is invariant under Wv :

(13) pBcvw =08  Vwe W,
thus
(14) QB A - QB'AN”<1> Vu € wP
(2.3) We have
(1) 23<—1>d(A’B)§;’BQB’C = 5, ¢ YA, C e d,

so the G;T-Lusztig conjecture (2.1.9) is equivalent to

A \4

> . _ nB,A
(2) ©LZ10p : LiopT = @) TA, B € 4.

It is called the generic decomposition pattern conjecture by the

following reason : in [101, Jantzen showed vx. ¢ € X(T)+,

A A )
(3 [H°M) : L(©1 = 3 [Zi () : LimILa®exit)
: : nex(«r) - :

(1. 1 era.

A

A .
In particular, if [Z;(X) : L;(n)]1 =0 vn1 f A (eg. if 4(h-1) <

_14..
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it aV> < p-4Ch-1) Va € RY ), then we get via the strong linkage

principle (1.4) and Steinberg's tensor product theorem (1.2)

A

FaY
(4) HO(x) ¢ L)1 = [Zy() ¢ Ly,

thus HO(OA) for‘OA in such a region exihibit a decomposition
patterh depending only on the position of A in the box containing it

(cf. (2.2.2)) and we expect “generically”

(5) [HO (0, ) L(OB)] = QB’A(I)

A

(2.4) Let v € pX(T) and define a map e, : H — H via’

(1) Zpcp A 2, cy Au c, € Lq,q7'1.

v

Then ®, is an ¥-antilinear, i.e., ¢v(hM) = va(m) h € £ and m € X,

involuiion leaving ﬂv invariant. For B ¢ ﬂv put C = Buv, QA,C =
B,Au, B
Q A € 4 and let DC = ¢v(D ). Then DC = EA QA,CA , thus we can

restate

Theorem ([211,(2.15)). Let v € pX(T) and C € "v' Then

ER

DC € Kv

(i) DC = ZA QA,CA’ where QA,C € Z[q]l is 0 unless A < C, has
1 _ s -

degree < E(d(A,C) 1) if A ¢ C, and QC,C‘— 1,

d(A,C)
(i) q Q@™ = Q. @
: ; ’ - ) v’ '
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Note, in particular,

(2) D = e Vv € pXI)

For a psychological reason we prefer to work with DC whose
coefficients are polynomials in ¢ rather than in g !.
We call a function 8 : 4§ — Z a length function iff

(3) d(A, B) = 8(B) - 8(A) VA, B € d.

By & we will always mean such a function. Let #° be the #-submodule

of # generated by all e, , v € pX(I) : |

(4) ' H =3 Re

vepX(T) Y

We have ([211,(2.12)) an X-antilinear involution 05 of #° such that

(5) 06 e. =9 e vv € pX(I).

Then the condition (ii) in the above theorem is equivalent (cf. [21],

(2.13)) to

-5(0)
q 7Dy

(6) o, Dp =
(2.5) Let C c W and w € W with uA; = C. Using (2.4.6) Lusztig

- 16 -
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[211, Theqrem 5.2 shows

(1) ' Dpn = 2 P T e
C y yu ,uw, Y,
t(yuv)=£(y)+£(uv)
consequently,
(2> QA,C(I) = Pz,uuv(l) if A= ZAV

Meanwhile, according tb {211, Jantzen conjectured

d(A,C) v

- - 0
(3) ch L(0y) = ZA< 1) QA,C(I)ch H 0 C c .

We see that it is compatible with Lusztig's conjecture (1.5) as

- Y _ ot
(4) Qq oD = Py oD Ccm . Aej

by (2).

" Kato [17] shows, conversely, that
(5) Jantzen's conjecture (3) implies the Lusztigs conjecture.
Again the forﬁula (3) would be enough to determine all the

irreducible characters of G while in Lusztig's conjecture not all

OC’ C c M, may satisfy the Jantzen condition (1.5.2) for small p.

k;. 17 =
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(2.6) For each A let EA = Twev , where - pX(T) with A c'nv and
w € Wp with A = uA; . Then the EA ‘s form a basis of #°

(0211,(6.1))

(1) ' #° =4 Z1q,q 11E

Acd A

Let ﬂ be the set of formal Z{q q !l1-linear comb1nat1ons > c A
A€d

of alcoves such that (A | Cp ™ 0} is bounded above. It forms an
X-module in a natural way, containing X as a subnodule. Moreover,

A \ : .
each element of # can be written uniquely in the form CBEB s cB €
B<A,

Zlgq,q !'1. We extend the #-antilinear involution mé on #° to a map
A A A

¢6 : 4 — K via
(2) S cpE,b—— 3 ¢, ®.(E,),
BSAO B B BSAO B 8 B
and write
A _ =3 (A)s ,_, d(A,B) ' -
(3) ¢ (A = q ZB< 1) QB’AB , mB,A € Zlq,q '1.

Then the QA C are uniquely determined also as the polynomiéls that
are 0 unless A < C, of degree < %(d(A,C)—l) if A < C, and QC c = 1,

satisfying

d(B,C) V¥

d(A,B)
mA B QB c 9

(4) QA,C = EB(—l) A, C € d.




In short,

v 3! -

Theorem ([211,(7.3)). DC € x

. ~ _ =80y,
(i) ¢5 DC = q DC ’

(ii) Dy = ZA QA,CA , where QA,C € ZIql is 0 unless A < C,

C € 4,

has degree < %(d(A,C)—l) if A < C, and QC c = 1.

It follows that

(5) D t, = Dgy Yc € 4 and v € pX(I)

(2.7) We have noted in (1.5) that the coefficients of Py v are

all nonnegative, from which one can also show that
(1) “the coefficients of QA c are all nonnegative VA; C € d
1]

Define u : 4 x 4 — N by

1

2(d(A.C)-l)

2) u(A, C) = the coefficient of q in QA c

so u(A,C) = 0 unless A < C and d(A,C) is odd. Lusztig [21],Theorem

8.2 shows vC € drahd s € Sp ,

qDC if'g €. 2(C)
(3) T, Dy = { %(d(A,C)+1) |

-Dp + Dyo + > u(A,C)q D, Votherwise.

A,8€2(A)

- 19 -
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It follows that

(4) #° =4 Z[q,q“]DC .
ced
Also YA, C € A and s € 20,

- v
(5) QA,C - QSA,C A e d,

(6) u(A,C) = 0 if s ¢ £(A) and A = sC .

For v € pX(T) define a new right action of Wp on 4 by

. - V. o . -
(7) AbF— Alv,u = At(n-v)U-(n-v) w € Wp if Ac "n

There is also an ¥-linear right action of Wp on #° defined’by

JAAS ., AT

(8) e, — eveu = q €
We have ([211,(8.7))

| %d(CI_pp o ©) v
(9) DC eu = q i DCI C €4 and w € W_ ,

-pp,u p
consequently,
) / : v

(10) ucCA, O = u(AI-pp,u’ Cl—pp,u ) A, C € 4 and w € Wp .

- 20 -



(2.8) We will now describe an inductive algorithm to compute DC .
. _ + _ +
For C c Uv write C = uAv , W € Wp , and put ne = d(Av’ C). The
induction will be on nc . If nC = 0, then DC = ev , SO assume nC > 0
and that the elements DC’ with nC» < nC have already been constructed.

In particular, u(A, C’) are known for such €  and all A € 4 . Choose

g8 € 2(C) with sC c "v : Then'nSC = T -] and we have from (2.7.3)

5 %d(A,C)
(1) D~ = (T_ +1OD - u(A,sC)q D
¢ s sC  gez(ay ' A

Here Lusztig [21],Corollary 10.6 shows

2)  m, < mgg VA € 4 with s € £(A) and u(A,sC) = 0 ,

consequently, the DA 's appearing on the right hand side of (1) are
already known. Thus (1) provides a desired inductive formula, from

which we also get

5 %d(B,C)
Q, ..~ - u(B,sC>q Q ,
AsC v ) A,B

_C 1-c
(37 QA,C =4q QSA,SC *q

where o0 = (1 1f s # £
o it sezw

*(2.9) Basic properties of Q—polynomials introduced in (2.6.3)
can be found in [ 1,811 (see also Andersen-Kaneda [41,(4.2)).

Using those Lusztig [21], Corollary 11.14 shows that the function

- 21 -
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(-l)d(B’C)QB C(O) is the Mobius function of the partially ordered set}

(4, <) :
- £ d(B,0) _ Y
(1) % ;( 1) QB,C(O) = 5A,c A, C e d .
A<B<C '
Also for v € pX(T) we have ([211,(11.15))
(2) Q = pP vy weEW
yA; ,uA; Y, T Ty

(2.10) One finds in [211, 8§12 beautiful pictures of DC for fhe
groups of type A; , Az , B, , and Gy .
For C ¢ ﬂv define '
(1) supp DC = (A€ d| QA,C Z 0)
We have noted in (2.7.1) that
(2) supp DC = (A€ A QA,C(I) # 0} ,
so’it is invariant under the action of Wp by (2.2.14), consequently

(3) supp DC c (A€ d | Cuv <A<SC ) .

One observes, moreover, that the pictures of DC in-[211,812 haVe ﬁo'

holes, that is indeéd a%generalvfact (Kaneda -[121) :
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(4) supp D = (Aem | A<C) W, Cecrm,.

This was proved in response to

Ye's theorem [251. Let v € pX(I) and C c U; . 1f p = 2(h-1),

A

then {A €d | [Z;00) : Li(0)T#0) = (Ac m,lAzC YW

-There is:- yet another symmetry in the pattern DC . It was

discovered (Andersen-Kaneda [4]) in the process of studying the

PaN
structure of the injective hull of L{(C). Let v, n € pX(I) and

Y ,
AcC ﬂv , C c "n . Then weEW,

5(B) _ My
% 25 T 78,4 %079 2p

5(B) ‘
q QB,A QB,C ’

where & = (v=m)w-(v-n) and n, (v-n) = %d(A—, ATt ). In

(v-n)—(v—n)u
particular,

' n._(v-n)
(6) > qa(B)QBt c=a" 2 qa(B)QB c
_B §9 _B ?
B3y B>v
3. Inverse Kazhdan-Lusztig polynomials Q; c - By the
equation

Y

(-H¢AB)p A, Ced

Bed” ,

Auo,BuooC,B = CAc

- 23 -
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we can define polynomials Q; c € Z[ql, A, C € 47, called the inverse
Kazhdan-Lusztig polynomials for the affine Weyl group (Wp, Sp). Much
alike characterization of the Q'-polynomials as for Lusztig's

Q-polynomials are available by Andersen [11].
(3.1) Lusztig [211,Corollary 11.9 showed

(1) Q; c = QA c if A, C € 4 are sufficiently far from the

hyperplanes Ha o € A,

, 0
thus Lusztig's Q-polynomials are sometimes called the generic inverse
Kazhdan-Luztig polynomials. More precisely, we have (Kaneda

[131,(2.2))

1

Lacer

(2) Q=2 (-1) L@ g2 pP
’ weW

1)) v

u’
’ Q
A,Clpp

A, Ced .
s W

In characteristic 0 the Borel-Weil-Bott theorem (cf. [111,

(I1.5.5)) brings complete information about all HL(A) : VA €

X -p, we W, and i 2 0,

HO() if A € XX and i = L)

i _
(3) H™(x-u) = { 0 otherwise.

A similar result holds in our situation generically (cf.

[111,(¢I1.9.14)), but fails badly when X is close to an ¥ , o € A.

; «,0
Andersen [1] asks how the cancellation on the right hand side of (3)
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is related to the failure of the Borel-Weil-Bott theorem in positive

characteristic.

(3§35 With the Q -polynomials we can invert the Lusztig
conjecture VA, C e 4% with Oc‘satisfying the Jantzen condition

(1.5.2),

0 . - 0
(1 0+ LT = Qg gy (1)

On the other hand, we have (Humphreys [81, Jantzen,
Doty-Sullivan [61) VA, C € 47 with OC satisfying the

Jantzen condition,

o . _ L o . A
(2) [(H (OC) : L(OA)] = 2 (-1) {ZI(OC) : LI(OAI )1,
wewW v : o,w

s0 the inversion formula (1) for the G-module would follow from the

inversion formula for the G;T-modules via (3.1.3), i.e.,

(3) the GiT-Lusztig cinjecture (2.1.9) implies the Lusztig

conjecture (1.5).

For p >> 0 this was known before (Kato’[17]); The converse is also

known to hold if p is large enough that 0 _ should satisfy the
’ App
Jantzen condition (Kaneda [141]).

Can we show Jantzen's conjecture (2.5.3) is equivalent to the

GiT-Lusztig conjecture : _VC € 47 with OA € X, (),
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2 (—l)t(“)e(OA'u)

(4) S +(—1)d(A’C’PA oD uew s =

Aed ’ > (-1) e(0-w)
weEW
A ‘ T (1-e(-pot))
S (—1>d(A’C)PA c(12e0,) X€ER ?
Acd ~ , T, (1-e(-a))

a€R

N

4. Generic Kazhdan-Lusztig polynomials PA c - There are several
ways to define the generic Kazhdan-Lusztig polynomials for (Wp, Sp),‘

due to. Kato [17], one of which is-already given at (2.3.1).

(4.1) For ¥ € pZR choose & € pZR n X" such that Yy + £ € xxn?

and set

R

H

- -1
(1) Y - TY"'ETE ’

which can be shown to be well-defined. For w € Wp write w = ztr with

T € W and ¥ € pZR, and set

R

’s]

(2) = Tx TY .

Kato [17], Proposition 1.10 shows

(3 2 = U Z[q,q‘llTu ,

ew
WEW b
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~

(4) o~ A as #-modules via A w}l—— T, -

. . A A
Using the isomorphism he transfers the map @6 of (2.6) on # to define

A
an X-antilinear involution ¥ on # via

=qu(A w, A}z o (_l)d(A y,A W R _ I S
” Ay, Au?
A y<A uw

(5) ?(Tu )

Then the generic Kazhdan-Lusztig polynomials PA c are uniquely

determined as the polynomials that are'O unless A SVC, of degree <

A
%(d(A,C)-l) if A < C, and PC c = 1, satisfying

i_ N . - I ,
q 6(A)P = <S(A)9Y

(6 Ac =289 Buo,Au, 'B,C *

~ A A
In short, if we define an #-antilinear involution ¢6 : X — A via

(73 A : zB q-s(B) AlJo BUOB i

3 ! A Val
then 'C € 4, EC = EA PA c A € K :

(8)

A
vhere PA c € Z1q]l is 0 unless A < C, has degree < %(d(A,C)-l) if

Val
A < C, and P, =1 .

c,C
It follows that
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v

A -
(9) PA,C = PA,C if A, C € 4 are sufficiently far from H, ax € A,

, 0

, A
suggesting the name “generic" Kazhdan-Lusztig polynomial for PA c

More precisely, Kato [17],Corollary 4.3 shows

(4.2) We now turn to the extension problem in the G;T-module
category following Vogan [24] and Andersen [11].

The autdmorphism @ of G corresponding to the root system
automorphism ¢« — - o Va € R leaves G;T invariant, so we may define
the contravariant dual D# of each G;T-module 4 by the composition
¢,T % G,T — GL(*). We have (cf. [111,(I1.11.1)) ", n € X<I) and

i=0,

R

1: A ’ A i Fal Vay
(1) Extg p(Zi, DZi)) = Extg p(DZi), Zym))

K if x=nand i =0

« {

otherwise,

from which we get VA € X,

A i, i 7 i~ A
(2) ch Li(x) = > 2 (-1)“dim EXtC T(Ll(l), Zi(m)eh Z,(n),
neXIr) i20 1

so we can reformulate the G T-Lusztig conjecture (2.1.9) as

d(A,0)% s i ioa Ay
(3) (-1) PA,C(I) = 2 (-1)"dim EXtciT(LI(OC)’ ZI(OA))

A, C € 4.
i€N .
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It is even equivalent (cf. Kaneda [141, (4.12)) for p > h to

A _ i.. d(A,0)-21 % 2 v

120

A, C € 4.

The conjecture (3) has been verified for C = AT by
Andersen-Jantzen (cf. Kaneda {141, (4.6))

d(A,A Y -21 T ¥

A -
(5) 2 =S qdim H (By, 0,) A€ d,

AAY 20

putting together Kato [161,(1.8) with the determination of the

B,-cohomology by Andersen-Jantzen [31,(2.3) and (2.9) : for p > h

(6) H.(Bl, K) = S’(u*)tlj as graded B-algebras,
(7) VA € X(T) and i € N, as B-modules
1-L(w)
;. s 2 w™MMle py it a = 0-w+py for some
B (By, 0 =~ { | w € Wand ¥ € X(I) with i-£(w) even
0 otherwise,

where u is the Lie algebra of U and S'(u*) is the symmetric algebra
on u* with each Si(u*) given the degree 21i.

The cohomology of higher Frobenius kernel Br = ker(FIB)r, r>1,
is unknown. As usﬁal, their alternating sum is easy to find, however

(Kaneda-Shimada-Tezuka-Yagita [15]1,(2.5)) : for p > h
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&) Yn € X(I) and v >0, I -DidimHNB, K . =
i20 ™
3 S -»dim HY B, K
wewW 120 p (O-w+p(n-a))
XEX(T)

S -07aim #ITER k)
720

P
One suspects if H'(Br,'K) for » > 1 may also be described using

the generic Kazhdan-Lusztig polynomials. If r = 2, ch H.(BQ, K) is

available for SL, (Andersen-Jantzen [31,(2.4.2)) and for SlLg

(Kaneda-Shimada-Tezuka-Yagita [151,(5.11) for p > 3).

5. Some consequences of the Lusztig-conjecture. In this section
assume the G;7T-Lusztig conjecture. We will state some consequences.

(
A i
(5.1) As already suggested in (4.2.4), the P-polynomials seem tm

A
carry information on the structure of Z;(1x), X € X(I'). Indeed,
following Andersen [1], Gaber-Joseph [7] and Irving [9], it was

proved (Andersen-Kaneda [4],(6.3)) that the socle series and the
’ '/

N
radical series of each Z1(OC) coincide and that C c Hv,
) - ‘
E(d(A,C)-J) A A
(1) QA,C = Zj q [rad; Z1€0p = LI(OCuv)],

A .7 A j‘*‘l/\
where radj Z1(OA) = rad Zl(OA)/ rad Z1(OA) is the j-th level in

A
the radical series of Z1(OA)~

(56.2) From (5.1.1) it follows ([4]1,(6.5)) that
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A . A .
(1) Exth (L1(0g), Z1(0) = Exth r(Li(0g), Ly(0,)) YA < C.

G,T

On the other hand, from (4.2.4) one expects

A

A
(2) uCA, €) = dim EXtéLT(Ll(OC)’ Z,(0,)),

A

consequently,

A A
(3 u(A, €) = dim EXtélT(LI(OC)’ Ll(OA)) vA < C.

For A, C € 4 set

n(A, &> if A< C

~
(4) WA, C) = { w(C, A) otherwise,

and put W(A) = (B € 4 | W(A, B) # 0). Doty-Sullivan [5] conjectures

(5) for Acm_, ﬁ(A) should be the union of [/ -orbits of
v v,wU

(A | ceay, (Bed| B is adjacent to A },

(Bed't, | BCA 2WA c2®, dB,A odd }, and

pp
(Bedt, | A<B, £B) c £, d(A,B) odd },

where A% = Asa n if pn < <OA, V> < p(n+l). It has been verified in

[5]1 (cf. also Kaneda [141) that ﬁ(A) is [ -invariant and is

v,W
v

contained in the union of the prescribed orbits. Conversely, it is.
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easy to see that the first two sets in the list are contained in uCA)

For G of rank £ 2 one observes also

v

(6) T(A, B) = H(Aug, Bug) A, B € 4.

Does it hold in general ?
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