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Bivariate Thiele-type branched continued
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0. Introduction

The problems of interpolation and approximation by rational func-
tions raise in various fields and it is very inportant in appli_‘cation to
study them. In univariate case it is well-known that there is a close
relation between continued fraction and univariate interpolation or uni-
variate Padé approximation. The two latters can be obtained by trun-
cating their corresponding interpolating continued fraction [1][2]. The
generalization to the multivariate case has recently been considéfed [3]
Siemaszko,W. gives a bivariate Thiele-type branched continued fraction
(TBCF) interpolatihg formula on a iectangular subset of grid [4]. We
develop Siemaszko’s formula to a more general case, and show that this
interpolation will yield a general ‘order Padé approximation. The in-
terpolant of TBCF is one of the interpolant of TWO-STEP METHOD
which we introduce in section 3 and we give the proof of the convergence

theorem briefly.

1. TBCF interpolation

Let I = Uio{(2i,y;) : 0 < i< 85} be a given point set in z and y
complex plants where sg > s; > ... > s;, and f(z,y) a function whose
value is given on I. We consider th‘el problem of constructing a rational

function R(x, y) such that R(z,y) is a interpolant for f(z,y) on I.
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Let R(z,y) be a rational function which has following form:

Y — Yo Yy~ Y1
R(z,y) = Bo(z) + Bi(z) +--+ Bia)

where

) T —Ts.1
Bi(z) = b + 2250 T Ta1
() o+ " et bﬁj

0<y<t.
Now we seek for b (0 <4< s4,0< 7 <t)sothat R(z,y) is a interpolant
for f(z,y) on 3. It is clear that if such v (0 <1< 55,0 <5<t exist,
they are unique.

In order to construct R(z,y) we first introduce the partial inverted
difference and partial reciprocal difference [4]:

poolzi; Ykl = fik 5

Y — Y1
wo0lTi; Y] — woolzi;vi] ’

$o,1 [wi; Yk, yl] =

Por+1 [.’1:,'; Yaos+ s Yqr_1s Y& yl] =
Ye — U
‘pO,r[xi; Ygor+ - ayqr_nyk] - (Po,r[l'i; Yaor+ -+ 91 Ygr-1, yl] ’
» T; —T;
(PO,r[xi; Ygos+ -+ yqr] - <»00,1'[‘7:,1'; Ygor+ -+ er] ’

forr>1

901,1-["13:', Lj5sYaos -+ - 7yqr] =

‘Ps+1,r[xpo, cvesTp, 15 Tis Tj3Yggs - - 'aer] =
T, —Z;

‘PS,T[xpo: ceosTp, 1y Tis Ya0y -+ - 7yqr] - ‘ps,'r[xpm ce ey Tp, 19%53Ygor - er]

, fors>1

Po,o[xi;yk] = fi,k ’
Ye — Ui
poolzi; yx] — poolzi; ]

Poa [37:'; Yk, yl] =

Por41[Ti; Yo, - -+ Yra1] = Por-1[Zis Y1, . -5 Yr)

+ Yo — Yr41 . forr>1
PoslTis Yo, - - s Yr] = PorlTis Yis -+ s Yrya]
. | T; — T
pl"[z*’mj;yo""’y’] " porl®ii Yos- s Yol — Pos[TiiYor - U]
Pst1r[T0y vy Tot15Y0s -+ s Yr] = Ps—1,0[T1y. -+ T3 Y0y -+ > Yr)
Lo — Ts+1  fors>1

pa,r[xﬂa ceeyTs3Yoy-0 0, yr] - Ps,r[xh ceesTst15Y0y- - yr]
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If there exists a Qs r[Tpps- -+ > Lpyi Ygo -+ + > Ygy] OF & PorTpoy - -y Tp,;
Yaos - - -+ Yg, |, then this is called the (s, r)th partial inverted difference or

the (s, 7)th partial reciprocal difference for function f(z,y) respectively.

Like in the univariate case, the partial reciprocal difference is inde-
pendent of the order of z,,(i = 0,...,s) or y,,,(j = 0,...,7) and, for
¢ > 1 and ! > 1 there is the following relationship :

©0,[Z53 Yo, - - -y Y1] = poalxii Yo« -, Y1) — Pog—2[Zj; Yo, .-+ Yi-2] »

Soi,l[mm- cos T Y050 - - )yl] = pi,l[$07- - T4 Y0, - - '7yl] - pi—Z,l[mOw <3 Ti—2;Y0,- .- )yl] .

where py _1 = p_1; = 0.

Theorem 1. Forr = 0,...,t, if all the partial inverted differ-

ences Qs [Toy-..,TsiYo,---,Yr] for f(z,y), (0 < s < sp,), are well-
defined, then

Y —Yo Y~ Y Yy~ Y
x, = By(z + !
fo =B+ 58 | PRl B v
where
, T — o T — Tsj—1 L = Zs; )
Bizx = @o,; + —— : -, 0<y=t,
J() 0, p1; +eooot Ps;.i + Ps;+1,5 ‘
T — g T—Ts-1 T Ts4

Biii(z,y) = pot41 +
t+( ’ ) i+ (’Ol’t_‘_l +"" (psg,t-{-l + Sost+1yt+1

Here for j = 0,...,t, 1 = 0,...,8;, vij = @ij[®oy---,Zi;Y0,---,Y;],
Poj4l,j = Ps;41,[T0s-- > Ts;, T390, -+, Y5] and for © = 0,...,8, Yigp1 =
Piit1[T0y oy Ti3 Y0y oy Ytr Y]y Poptlthl = Pt 1441[T05 - -+ » Tsyy T3 Y0y« + 5 Yty Y]

Moreover, if Ry (z,y) denotes the (k,l)th convergent of BCF (1),
(k= (koy.... ki), (ko> k1 >---2>ki),0<k; <sj, 0<j <L), then

Rk,l(miayj):fi,j) 7:=0""7k1) .7:0,7[ (2)
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Proof: Following the definition of inverted difference we can soon

obtain the equation (1). For the proof of (2), since

: T—z T = Tgy— —
Rei(z,y) = [<P0,0+ 0 ko 1] + [ Y—Y% ] ,
P10 Tttt kg0 4 z=a T-zx o1
o ; ¥o,1 Y11 .o PR
[ Y— Y ]
4ot z_x oy ‘_1 ’
(‘00” + 11 ... 4 Pk

thus we have for 1 =0,...,k, 7=0,...,1,

Yi — Yo Y;i —Yj—1
<Po,1[$i; Yo, yl] +-t ‘PO,j[-Ti; Yoy - yj]
= woolzi;yi] = fi; - o

Ry i(z:,9;) = woolzi; yo] +

Thus R(z,y) is t‘he interpolant R(z,y) which we are looking for.
The degree of the numerator and the denominator of R(w,y) in y are
[3(t + 1)] and [3t] respectively, and the degree of the numerator and
the denominator of B;(z) are [5(s; + 1)] and [1s;], respectively. We call
R(z,y) a [[3(s + 1)]/[3s]; [3(¢ + 1)]/[4)] TBCF interpolant.

Here we add that if a subset of grid can be written as G = {UL (z4,y5);0 <
B < MU {Uf (x4, yp);0 < a < N} where it is not necessary that
Muy(a=0,...,N), Ng(B8=0,...,M) are on the decrease. Then we can

interpolate f on G, because by renumbering, G can be written as I .

Now to give the error formula, we define following functions:
for =0,...,tlet

T — 2z T — ;1 T —Ts;

K'(E = 1'+ :
i(z) ?01 pr; toot wsi t P
T =0 T Zo1 -
.7( ) QOO,] (PI;J +"°+ (p-’j’j : ’
P(z,y)
Q(z,y) = )’~



(o) = Fil®Y) Y = Yo Y—Yi-1
eV =5y RO YRR 4t K@)
Y—Yy; ‘ y Y1

+ Ljyi(z) +---+ Lt(a:) ’
®o(z,y) = Qo(w, ¥)Q(z,y)(To(z,y) — R(z,y)) ,
®;(z,y) = Qi(z,¥)Qj-1(z,y)(Ti(=,y) — Tj-1(z,y)) ,
P11z, y) = Qi(2,y)(f(z,y) — Ti(z,y)) ,

Vi(y) = H(y -u)

1=0

Wiz) = [[(z — =) -
=0
Theorem 2. If for the function f : D — R, f € Cf;”t, all the
respective partial inverted differences are well-defined, then for an arbi-

trary chosen (z,y) € D, 3¢,m; (j =0,...,t+1) such that

Wo(:v) 80+1
TR ey )

> V(y)W (:c) 51'*‘;.1 e
+.7"21'7'(S-7 + D)!Qj(z, y)Qj-1(z, y)D‘”y 2; (61’773)

Sf(z,y) — R(z,y) =

V; 1(y) 141
+(t + 1)‘*‘-Qn($ y)Dy+ Py, Met) - (3)

Proof: For j =0,...,t+1, let

Fjl(:z:,y,u) = ®;(z,u) — o, ;(z, y)ngg
Fi(2,,0) = 2,(0,9) ~ &(z,9) E g

Since for j = 0,...,t, K;(z:) = Lj(z;), (i = 0,...,s;), we have for
j=1,...,t, | -

E(x7yl)_q}—1(m,yl).=0, ' (l=0,...,j—1),

T_,y(muy)_ﬂ—l(xuy) =0 3 . (Z=Oa73]) .
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Therefore Fjl(a:,y,u) =0 at u=yop,...,yj-1,Y, and sz(f”,?/, v) = 0 at

v = Tg,...,Zs;, Z. From the Rolle theorem we conclude that 3¢;, n; such
that
Vi(y) pi Vi)Wi(T) 1si41.5
®i(z,y) = —’—j-!—D,’,‘I’j(w,m) = WDJ”‘I’J'(Q,W) :

Thus for y=1,...,1¢,

Vi(y)W;(=) ey
(s; + VIQ;i(z,y)Qj_1(z,y) =¥

Ti(z,y) — Tj-a(z,y) = 7 ®;(&5,m;) -

Similarly we obtain

: V;
f(z,y) — Ti(z,y) = t+ lt;é?:()x, Y) D;+1(I>t+l($> Ne+1) 5
Wo(z) +1
T - R = S0 .
O(w’ y) (x, y) (30 + 1)!Q0($,y)Q($,y)Dx ¢0(£0> y)
Using these above three equations we can prove theorem 2. O

2. General order Padé approximation

Let all points of I coincide at (Z,y). If the limit

yo,.lé,lgzleﬂ [xo,.ﬁ{cricléi Pk,l[-’L'Oa w1 Tk Yo, - - Y ] ]

exist and is finite then we denote this limit by px;(Z,7). Due to the
ralationship between ¢ ; and pi;, we can deduce that the limit ¢k ((Z, 7)
also exists. We can compute @i ;(Z, §) by using following scheme:

p-1,0 = pr-1 =0,

poo(Z,y) = poo(z,y) = f(z,9) ,
(3
xpi—1,o($, Y) ’
pio(x,y) = pi—a0(x,y) + vio(z,y) ,
04 (2,y) = : ~,
| DyDa:pi,j~1(x’ y)

pii(z,y) = pij-2(z,y) + pij(z,y) -

pio(z,y) = D
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Theorem 3. Let f(x, y) : D — R be analytic in the neighbourhood

of the point (xo, Yo) € A, and let all pii(z0,y0) exist, and gokl(asg,yo) #
0, (k=0,...,n,0l =0,....,mr +1). Let also R(z,y) be the (s,t)th
convergent of BCF (1) where all (z;,y;) coincide to (zo,%o), then ’

f(z,y) - R(z,y) = %dk,l(ﬂf — 20)*(y — o)’
'wheredkl—Ofork 0 sl, [=0,.

Proof: By reducing Tj(z,y) we obtain that for j=0,...,t,
Jj s+l

Qj(zo,y0) = (II(IT @r1(z0,40)))( H (H ©i1(T0,90))) # 0 .

=0 k=1 I=j+1 k=1

Therefore 1/Q;(z, y) can formally be written as i j>o0 ¢ j(€—20)*(y —y0)’
where ¢ # 0. The same is true for Q(z,y). Using the error formular

(3), we obtain the conclusion. O

For any m and n where 0 < m; < [1s;] (j = 0,...,£),0<n < [5¢],
let

t=2n t-n—1 y—1y —2n Y — Y1
R = B; B, . (2
(z,y) ]go( i (z) H(y yk)) + H (y— yk)[Bt_an(m) +---+ By(z) } )
where for j =0,...,1, ,
sj—2m; §j=2m;~1.
_ . _ $3j—2mj T— $3j—1
’BJ(II}) = g (b’ H(x :1:1)) + H (z -’ﬂl)[ bs,—2my41 +-oct bs, ] .

If all the nessasary suitable combinations of partial devided difference
and partial inverfed diiference exist, then let v be these combinations of
partial devided difference and partial inverted difference, R(z,y) is the
[=m. i=n] TBCF interpolant for f(z,y) on I. ‘

m’ n
In next section we introduce a two-step method and we can find that
the interpolant of TBCF is one of the interpolant of two-step method. '

7
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3. Two-step method for bivariate Hermite rational interpo-
lations

For two given families of complex numbers {X}, = {z¢, z1,...,2;}
and {Y} = {vo,y1,...,¥:}, we consider the direct product of them
{X}s x {Y}: = {z0,1,..., 25} X {Yo, 1, -.,%}(C C?), where we allow

that some of the z; coincide. Assume that the values of a function f(z,y)

are known on the points set {X}, x {Y}; and if z;, = 23, = --- = z;,,
then

%

For (@i 95) Osk<p-1
are given.

- Now we are going to seek for a rational function r(z,y) = p(z,y)/q(z,y),
such that r(z,y) is a Hermite ’interpola,ntifor f(z,y) on {X}, x {Y}.
There might be many different results of this problem depending on
the degrees of p and ¢q. Here we introduce a two-step method to construct
rational interplants, which is of practical use by using the computer
algebra system “Reduce”, and we remark that this interpolating rational

function is an extended bivariate Thiele-type interpolant.

Step 1. Let us search for ¢ + 1 univariate rational functions
fj[s’t][m](a:), (j =0,...,t), such that f}s’t];[m](m) is a Hermite interpolant
for f(z,y;) on {X},, where the index m indicates the degree of the
denominator and the degree of the numerator is not larger than s — m.

Step 2. After obtaining every f}s’t][m](m) in Step 1, regarding T
as a parameter, we seek for a rational function f [S’t][m’"](az, y) such that
Flodlmnl(z 4 is a interpolant for "™ (z), ™2y, . f#M(2) on
{Y'}: and has the denominator of degree n and the numerator of degree

< t — n with respect to y.
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Remark. If the interpolating function f][s’ﬂ[m](az) exists, then it
is unique because of the uniqueness of univariate rational interpolant.
As for f [S’t][m’"](a:, y), the uniqueness of its existence ié guaranteed also.
Furthermore, if flstmn] (z,y) exists and z;, = x;, = -+ = @;,, it holds
that

6" A ak 5 41l ak
@f[ Al ](mil,yj) = 5;7;12[ A ](mil?yj) = @f(iviu Yi)

for 0 < k < p — 1, which means that flsmnl(z y) is surely a Hermite
interpolant for f(z,y) on {X}s x {Y}: .
4. Convergence of interpolating rational functions

Let X and Y be the following two bounded triéngular interpolation

schemes in the x and y complex planes fespectively

0 0
Ly Yo
1 .1 1 .1
kR U
2 .9
1 T2 . Yo Y1 Ya

and X and ¥ the smallest closed ( hence compéct ) sets containing all
points of X and Y respectively. We denote the sets of all nomalized
positive Borel measures with their supports in X and Y by M I(X ) and
My (Y) respeétively and define the elementary measures {u,} and the

logarithmic potential u(z; ) as follows.
Definition 1. For a triangular interpolation scheme Z and for any
Borel set B, the associated elementary measures {u,} are defined by

1 L
pn(B) = mZX(Z? € B),

1=0

where x(P) = 1if P is true and 0 if P is false.
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A sequence of elementary measures {u,} will be called regular if there

exists a p € M(X) such that p, — p .

Definition 2. Let E be a compact subset of the complex plane
and p a measure of M(E). The logarithmic potential of u, u(z;p), is

the function

u(zu)= [ log—gdu(€) -

Now let X and Y be two bounded triangular interpolation schemes,
whose respective associated elementary measures {u,} and {v,} are
regular as fl, — pand v, — v. Let X, = {z € C : e *#) < p} and

= {y € C : e < p} for positive real numbers p and p. Then we

have following three lemmas.

Lemma 1. [5] Let Ty and T'y be cycles which contain the closure
of X U X, and Y u Y, respectively. For two compact subsets K; and
K, of X, and Y, respectively, we put y; = maz{e =¥ : z € K;} and
vy = maz{e~*®") : y € K,}. Then for any given €; and €3 > 0, there

ezist two positive numbers so and tg such that for s > sy and t > 1,

’ [s+1]
? %o N saiett | |
Eg—__;c_}[m<[121]+l for (z,¢) € Ky x Ty
and
[t+1] |
Y—% Y2 2
%—;—y% < [ 2 2]t+1 fgr (y,n) € K, x Itz’
where

(s = ) = (2= )z = f) (2 = 22)

Lemma 2. [6] Let Q(z,y) be a bivariate polynomial,

10
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Q(z,y) = do(y) + di(y)z + -+ + dyra(y)z™ ™ + 2™,
where the degrees of di(y) (i =0,...,M — 1) < P and there is a y,
such that Q(x,y) has M simple roots. Then for suitablely choosed two
bounded triangular‘intefpolation schemes X and Y where the points of

each row of Y do not coincide, there exist two positive real numbers P, 0

and M algebraic functions o;(y) (1 =1,...,M) Y, — X,, such that

- Qey) = (@ - o) - ax(y) - (= — am(y))
for all (z,y) € X, xY,, where X, and Y, are domains defined just after
definition 2 and o;(y) (i =1,..., M) are holomorphic in'Y, and any two
of {ai(y)} do not intersect in Y,.

Lemma 3. [6] Let Q(z,y) be a bivariate polynomial such that for
giwen X, Y, and for a xy € X,, Q(xo,y) has N simple rootsyi,...,yn in
Y,. Then for suitable neighbourhoods Us(xo) and U.(y;) (1 = 1,...,N)
there are ezact N functions Bi(z) : Us(zo) — U.(y:) (i =1,...,N) such
that ‘ |

Qz,B(x)) =0 =z €Us(zo) .

Let {g™(z,y)} be a sequence of holomorphic functions in X, x Y,
which uniformly converges to Q(z,y) on any compact subset of X, X Y,.
Then there exist ezact N holomorphic functions ﬂz(m)(:c) (t=1,...,N)
: Us(xo) — Uc(yi) such that

¢™(z,8M(z)) =0 =€ Us(zo)

and ﬁgm)(a:) — Bi(x) uniformly on any compact set of Us(x).

Now we are going to prove the convergence theorem. In the sequel, for

X and Y, we choose a Y with each row of distinct points and sufficient

large positive real number p and p such that X C X, and f’ CY,.

11
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theorem 4. Let X andY be two bounded triangular interpolation
schemes in the x and y complex planes respectively and, 1y and Q,
two domains such as X C X,, X, C Q, and Y ¢ Y, Y, C Q, Let
f(z,y) = g(z,y)/Q(z,y) be holomorphic on X x Y and meromorphic
on X, XY, , where Q(z,y) is a bivariate polynomial satisfying following
conditions: |
1) Q(z,y) = do(y) + dri(¥)z + -+ + du—a(y)a™ 1 + 2™,
where degrees of di(y) 1 =0,1...., M -1)< P,
2) Q(z,y) can be factorized as (x — a1(y)) - -+ (x — an(y)), where
a;i(y) (i =1,..., M) are holomorphic in Q,,, any two of {«;} do
not intersect each other in Q,, and U¥ {ai(y) : y € 0} C X,
and g(z,y) is holomorphic on Q, x Q,, such that g(z,y) # 0 for all
(2,9) € {(2,1) € % x 2y : Q(z,3) = O}. |
- If Q(xo,y) has N simple zero points y; (¢ = 1,...,N) in Y, for a
zo € X, and f [s9IMN] (g, ) is a Hermi'te interpolant for f(x,y) on X XY
in Step 2 of section 3, then there are neighbourhoods V () and U (i)
(i=1,...,N) of o and y; respectively such that |

lim [lim fl9MN (g )] = f(z,y)

3—00 "t—00

uniformly on V (zo)x K where K is any compact subset of Y,\UX ,U.(y;).

Proof. Let K; be a compact subset of X, x Y,\{(z,9) : Q(z,y) = 0}
such that X x ¥ C K;. First we prove that there are constants p' and

B; such that 0 < p’ < 1 and, for the (¢ + 1)th row of Y {y{,¢,..., 4!},
M) — f(z,y)| S Bup)yT for (z,u)) € Ka

where fj[s’t][M](':c) is a Hermite interpolant for f(z,y%) on the (s 4 1)th

row of X {z§,1,...,23}.

12
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Let K, be a compact subset of X, such that K, D XUUMl{az(y)
y €Y }U{z : (z,y}) € Ki,y: € Y}. We put
v M-1
¢(2,9) = Qz,9) + 3 ai(y)(z — ar(y))¥

k=0

where aj(y) (k=0,...,M — 1) are holomorphic in a domain 2, which
Y, CQ, CQyand (z—a1(y))H (k= 0,..., M—1) are the defined ones at
the last part of section 3. Then the function h*(z,y) = ¢*(z, y)g(z,y) is
holomorphic in 2, x €. Considering that y is a parameter, we construct
a polynomial interpolant 7°(x, y) with degree at most s for °(z, y) on the
points set {zf,...,z5}. Then by the integral representation of Hermite

interpolating polynomal, we have

e = (- G HC

where I'y is a cycle homologous to 0 in Q,, with winding number
n(z,I'1) =1 for all z € X,.

We show that it is possible to choose af(y) (0 < k < M — 1) so that

(z — al(y))FM] is a factor of 7°(z,y). Substituting o;(y) (i = 1, .. ., M)

into z in the above integral representation of 7°(z,y), we have

w*(ai(y),y) = Z[c,k(y)+c f(y)]ai_ 1(y)—c3‘”’(y)

where
(é — al(y))[’“ Ug(¢,y)
zk(y) 271'2 _ az(y) d€ 9
. (az(y) ) R (e (y))['c Ug(¢,y)
C?k(y) - —'27” I, (6 — 2z )[s+1 — az(y) | df’
33( )= (a(y) — )bt (€ - al(y))[M]g(f,y)
=5 r (€~ ap)etT] £~ aily)
It is clear that for all y € Y,, ’
ch(y) =0, | i<k

13
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cir(y) = (esy) — () Ng(aalw)y) £0, ik
We have ¢ = min{|ci,(y)| : y € Y,} > 0 (k =1,...,M). Hence the
matrix C(y) = (c}) is a regular triangular matrix for any y € T’;.
On the other ha,nd', for any given € > 0, by Lemma 1, we can find a

positive number sg, such that if s > sg, for all y € Y,

ehew)l < ; sos Tl Zeey™?

()] < og Tl ey
where |T'y| is the length of 'y, § = dzs(I‘l, K,) > 0, B = maz{maz{|({—
a(y)E-Ug(€,y)| : £ €T,y €Y,},1 < k< M} and 7, = max{e ")
z € Ky} < p. If we choose € such as 0 < € < %loge(-%), then there is a
real number p’ which satisfies the condition 0 < (-’%—ezf) <p <l

Hence we can find a positive number s; such that for all s > s;
min{|det[C*(y) + C* ()]l : y € T} = & >0,

where C?%(y) is a matrix (c¥). Thus, for sufficient large s, the linear

system

[c'w)+c*w)aw) - w =0

where a*(y) = (a§(y), .. .,a%_1(y))" and c*(y) = (F*(y), ..., 5 (¥)",
is solvable. Since the elements of C'(y),C?*(y),c* are holomorphic in
Q, and, for all y € Y,, det[C'(y) + C*(y)] # 0, then there is[a domain
Q0 such that Q, D @, D Y, and all elements of [Cl(y) + C*(y)]! are
holomorphic in €. Thus ai(y) (¢ = 0,...,M — 1) are holomorphic in
2, and therefore we can choose a’(y) so that ¢°(z,y) is holomorphic in
Q, x Q, and (z — a1 (y))M is a factor of 7%(z, y).

By using the estimate inequality of c3*(y), we get for (z,y) € Ky XY,

@) = (e + 0 @) < 22 gy

14
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and

-

@) - el < 3 1ai)] (o - oa(w)) < LEB BT s

=0

where 8, = min{|det{C'(y) + C*W)]| : y € Yo}, By = maz{lely(y) +
W) : y € Ty} and By = maz{|(z — ax(@)¥] : v € X0y € Yy =
0,...,M}.

Since K is a compact subset of X, x Y,\{(z,y) : Q(az, y) = 0}, there
is a positive real number 8, such that |Q(z,y)| > &, for all (z,y) € K,
and then, for sufficient large number s, ¢°(z,y) > 62/2 for all (z,y) € K;.
Put

P(z,y) = m*(2,9)/(z — aa(y))™ .
Then the degree of p°(z,y) in z is not larger than s—M by the above con-
sideration. Since 7°(z,y}) is an Hermite interpolant for ¢°(x,y%)g(x, v)
on zf,...,z5, ¢*(f,yt) # 0 and (z§ — ay(y2))M # 0, p*(z,9}) /¢ (x, )

is a Hermite interpolant for f(:n,yj) on zf,...,z5

? s*

Hence, when s is
sufficient large, there exists fj[s’t][M](a:) which can be expressed by
[\ _ p°(z,y})
L=
Let By = maz{|5= Jr, %xﬂﬂdﬂ : (z,y) € K1,k=0,...,M}. Then

P (-’17 y) _ !Ws(x,y)—qs(:v,y)g(w,y)] 9 M-1 . " ;
oy~ )= eae S gl W)+ 1B

and consequently, there exists a positive constant B; such that

|f}s’t][M]("’) — f(zy)| < B0y for all (z,y}) € K,

Now we prove the rest half part of the theorem‘. By Lemma 3, there
are N holomorphic functions f3;(z) (¢ = 1,..., N) such that Q(z, Bi(x)) =

15
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0 in a suitable neighbourhood Us(zy). In the above argument, we have

already proved that ¢°(z,y) uniformly convergs to Q(z,y) in K, X Y,

" Then by Lemma 3, ¢*(z,y) = 0 also decides N holomorphic functions

Bi(z) (i =1,...,N) and B{(z) — Bi(z) uniformly in any compact set

V(zo) C Us(zo).

We put

) = - B + X B - A,
where b'(z) is holomorphic in an open set V'(zo) which V() C
V'(zo) C Us(zo). Then ¢>*(z,y) is a polynomial of degree N with respect
to y. If we set g°(z,y) = p*(2,)(y — Bi(=))™/¢*(x, ), then g*(z,y) is
holomorphic in V'(zo) x Q.

Here regarding x as a parameter, we construct a polynomial inter-
polant 7**(z,y) with degree < t for ¢**(z,y)g°(z,y) at v,. .., yi.

Let K be a compact subset of Y,\ UX, U.(y;) where U.(y;) (i =
1,...,N) are neighbourhoods of y;. Discussing in the same way as
in previous, for sufficient large ¢, we can find constants p", Bs, Bs and
‘N holomorphic functions by'(y) (k = 1,...,N) so that 0 < p" < 1,
(y — B3(x))M is a factor of #%¢(z,y) and, for x € V(zo) and y € K

124 (y)| < Bs(p")™*!
and
lg**(z,y) — ¢*(z,y)| < Bg(p")"** .

Now we put

p*i(z,y) = (2, y)/(y — Bi(z))™M .

Then, finding a suitable constant B;, we have

"st k
p” (:c, y) gs(xa y) 41
‘ - <B z,y) € V(zg) X K .
e(z,y)  ¢(z,9) 7(p") _ (z,y) ( 0)

16



If we choose sufficient small & > 0 such that (V(zo) x UX,U. (1)) N
(X xY) = 0, for sufficient large s and ¢, fISAMN) (g ) surely exists, and

FEAMN (g vy = p**(z,y) /¢ (2, y) ,
AP ) — o, )] < Brlp)H + By

for (z,y) € V(zo) x K. Thus we complete the pfoof. 0
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