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Summary. In (4], we studied multivariate Padé-type and Padé

approximants by following similar wéys to those of Brezinski[2]

in univarlate case. Brezinski[2] polnted out the fundamental fact

that Padé-type approximants of f(t) can be derived by operating
the functional ¢ on an intérpolation polynomial of the generating
function of f(t). Sablonniérel[5] and Arioka[l] extended this

fact to the multivariate case by using thelr own functionals and

~generating functions. In this paper, we explain this fact from

our vléwpoint in [4]) and study the relatibns to [1) and [5].

§1. Introduction. In'[4]. we introduced multivariate Padé-type

approximants by the following ways. Let f(t)=f(t,,*-+,ty) be a formal

power series in N variables ty,***,ty with real coefficlents,

(l.l) f.(t‘)=c°+cl+02+ooc+Cl+l-o.. t=(tl."',t").

where c¢; Is a homogeneous polynomial of degree 1 in ty,-+-,ty with
real coefficlents. And let P(X) be a "formal Laurent serles" 1ln X
whose ‘coefficlents are polynomlals in t;,--:-,ty,

P(X)=anX"+an.,X“"+"'“»_ ajeRlty, -« ,tyl, Li=n,n+1,--« ,

where R[ty,*+-,ty] is the polynomial ring in t;,-«-,ty over the
real number field R and n is an integer which may be negative.
N\

Let j’ be the totality of the above "formal Laurent serlies”.

Then 3) 1s an integral domain and contains the polynomial in X

whose coefficients are polynomlals in t;,---,ty. The inverse
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element of a unit P(X) ofﬂP Is denoted by 1/P(X). For example,

~F;L__.= XM Moy ™2, ... .
X" (1-X)

1 _ 2,.,3
(1.2) 1—'_?- 1+Xfx +X;+ e

For (1.1), an operator c acting on PAis defined by
c(>2ajx')=>tajc; (with the convention that c;=0 for 1<0).
i Cod
This operator ¢ has the folloWing property:

For P(X),Q(X)e P and a,beR[ty, -, tyl,
(1.3)  c(aP(xX)+bQ(X) )= ac(P(X))+bc(Q(X) ).
We define the operator c¢™ by ¢™(P(x))=c(x"P(X)) for P(X)e P,

where n is an integer. Then c“” also has the same property as (1.3).

Operating c or CM) on the special element Xi of:P , we have

c(Xi)=ci and c¢
where c{=0 for i<0 and c,;=0 for n+1<0..

We have immediately the following lemma by (1.2).

m 1 _ i L - P
Lemma 1.1 ¢ "(3g) = £(t), t=(t;,~+-.ty), ( ns0 ).
Here 1/(1-X) is called a generating function of f(t).
The polynomial of }’ I1s called a g-polynomial if it is a homo-
geneous polynomial with respect to N+1 variables t;,---, ty,X.
A g-polynomial V(X) 1s expressed as follows,
(1.4) V(X) = buxq+bnflxq-l+.'.+bn{ixq-i+°"'+bn{'q’ ’ bll #0:
where b,;; is a homogeneous'polynomial of degree m+i in ty,---,ty.
Then, we call V(X) a g-polynomial of degree ¢ with shift m.
V(1)=by+byy+*+++byq (€R[ty,-+-,tyl) 1s called the reverse
polynomial of V(X) and denoted by v(t) for t=(tj,--, ty).

Multivarlate Padé—type approximants "with shift m" are défined
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as follows.

Definition 1.1. Let V(X) be a g-polynomial of degree q with

shift m and

. _ P'(]'l ;.:'
(1.5)  wie) = o(HELX VOO =ity oen ey,

where v(t) is the reverse-polynomialef V(X). Then the rational
function w(t)/v(t) is called the (p/q) Padé—type approximant with
shift m and denoted by (p/q)j(t). We call the g-polynomial V(X)

a generating polynomial of the Padé-type approximant’ (p/q):(t).

Theorem 1.1 (Th.2.1 in [4]) In Definition 1.1, v(t) and w(t)

are polynomials of degree m+q and m+p respectively. Moreover,

(1.6)  fyve)- wiry= P (I s omipr1), t=(ey.ee ey

Theorem 1.2 (Th.2.4 in [4]) Let W(t) be a function 1in t,***.ty,

V—J(t)? Cw—q'“(V(t])_:;é(X) L t=(ty. e ty).
R ()
(a? If p < q ., then (p/q)(t)= vit)
) — v w(t)
(b) If p 2 q , then (p/q),(t)= cyo+ +Cpoqt vit)"

§2. Relation between Padé—type approximation and polynomial
interpolation. Let Q be a function field which contains all
polynomials in t;,+++,ty (i.e. the rational functién field R(ty,-+-,ty)
or its extension field). Q[X] and Q(X) are the polynomial ring
and the rational function field in X over the field Q respec-
tively. In considering the 1hterpolat10n problem, since it is
algebraically meaningless to substitute an element of Q intd the
variable X of the formal infipite series g(X)=1+X+x2+...{ we need

regard the generating function g(X) as an element 1/(1-X) of Q(X).
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Let us now define the Hermite interpolation polynomial of

the generating function g(X)=1/(1-X).

Definition 2.1 Let a|,*++,as be s given distinct 'poinﬁs' of
Q. If the polynomial Pp(X) (eQIX1) of degree n in X satisfies

the following condition,
. . -8
(2.1) PW(aj)=g"(a;), o0sysk;-1, i=1,---,s, S kj=n+1, k;=1,
‘ i=]

where Pé”(X) and g(”(X) denote the j-th formal.algebraic deriva-

i j

tives iL:Pn(X) and 1LTQ(X) respectively, then the polynomial
dx! ax’

P,(X) 1is called the Hermite interpolation polynomial of g(X) at

the nodes ay,***,a;.

We can prove the uniqueness of such interpolating polynomial
in the same way as in the ordinary interpolation problem for
a real valued function. If there exists an element a (a function

in t;,---,ty) of Q such that P(a)=0€Q, then the function a 1is

' 1 () i (P(X)
called the zero of P(X). We denote u(t)c (P(X)) by c (u(t)

for the sake of convenience.

The following theorem gives the relation between polynomial

interpolation and Padé-type approximation.

Theorem 2.1 Let V(X)=b@ﬁ+bnﬂx¢1+-'~+bmw be a g-polynomial
of degree q with shift m. Suppose that s distinct functions (in
tp,eee,ty) ap,oc°,a; of Q are the zeros of multiplicity k;j of
. . s -

V(X), that is, V‘(X)=bn1_'{(x—ai)“1, Ki+e o+ +ke=q, k;=21.
1= .
{a) The case of p>g-1. Let P(X) be the Hermite interpolation

polynomial of degree p of the generating function 1/(1-X) at
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the nodes @y,**+,ag and 0 (with multiplicity p-g+l). Then
n
c(P(X))=(p/@)j(t), t=(t;,---,ty).

(b) The case of psq-1. Let P(X) be the Hermite interpolation

polynomial of degree g-1 of 1/(1-X) at the nodes a;,***,ag. Then
PN (B(x) )=(p/@t(t),  t=(ty, e e ety

In both cases, the denominator of the approximant is the reverse

. S . ;
polynomial of V(X) 1i.e. V(1)=v(t)=me¥(l—ai)h, E=(ty, . ty).
j=!

—yePatt
Proof. (a) Put F(X)-V(bth(l_xgx). Then, from the expression

bll+. .. +bn;q_bmxp']_'”. . _bm’qxp"q’l
P(X)= vt (1=X)

= 1 ceeaXP)+ ees .ol
= 57D {b,(1+x+ +XP) + +Dpyq (L+X+e+ o +X )},

it follows that P(X) 1s a polynomial'of degree P with respect
to X. We are going to show that the polynomial F(X) satisfies

the condition (2 1) for n=p. P(X) can be written as follows,

f%(x Dk

‘ p- a;

B(X)= 1 x lyxy 1 by i !
X=1x " viax) IX v I -X

where ag,;=0 and Kg, =p-q+1. Differentiating j times with respect

to X and substituting a; into X,

5t]
)”) b, II(X aj ) ()

vrer(— 1 - X ‘)k«‘f

(j) 1
(F(X))#d1=(j—y %
where 0x£jskj-1, i=1,+-" ,s+l1‘and %ki=q+(p-q+1)=p+1. As ’t‘he
last terms equal zero, the condition (2.1) holds. By the uniqueness
of the interpolation polynomiel, the polynomial P(X) colncides
with P(X). Oon the other hand,

_yh-etl
C(p(x)) v(t) (vtt)lx_ XV(X}):(p/g):(t),
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which implies the result of the case (a).

(b) Put $ K
TI(X-aj)"!
VIt)-V(X)_ 1 bp T

PX)= groT=x0" T=X ~ vty ~ I=X

Then, from the similar consideration to that of (a), it follows
that ?(X) is a polynomial of degree gq-1 with respect to X and
coincides with the Hermite interpolation polynomial of 1/(1-X)

at the nodes ay,**:,as. On the other hand, by Theorem 1.2 (a),

- 1 - t)-V(X

which proves the result of the case (b).

Example 2.1 The functions a,:Jt2+52 and azz—Jt2+s2 are the

zeros of a g-polynomial V(X)=X2—t2—52, t,seR. Let P{(X) be the
interpolation polynomial of first degrée of 1/(1-X) at the nodes
@), a; and Py(X) the Hermite interpolation polynomial of third
degree of 1/(1-X) at the nodes a,,aZ;O,O. Then

Xexle (1-t2-s)x+1-t2-s?

Pl(X)= —*—)E‘—;—l——z ’ ‘Pz(X)= 7 7
1-t*-s , 1-t*-s
and ’
. C1+l i
c(Pi(X))= —5— = (1/2)4(t,s), t,seR,
1-t*-s _
: c3+c2+(1—t2—sz)(cl+c0) ‘ ~
c(Py(X) )= —g— = (3/2);(t,s), t,seR,
: - 1-t°-s )
where

f(t.5)=2(zcjkt5 )=Zci. ci=>. cxt’s™, cCx,t,s €R.
i=0 ° jek=i i=0 jrk=1 »

Now let us consider the particular case in Theorem 2.1 such
that m=0, bg=1, aj=a(i)-t, i=1,-++,s, where a(i)=(af’, -+, o),

t=(ty,»,ty), a{”,tieR and *+ % denotes the scalar product in R,

Then, since the polynomial,
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V(X)={I}(X—ai)k‘=]_—{(X-a(i)-t)k‘, K+ e +Kg=q,
= i= .

is a homogeneous polynomial of degree q in ty,-+-,ty,X, that is,

a g-polynomial of degree q with shift O, we have the following

corollary.

Corollary 2.1 (a) The case of p>gq-1. Let P(X) be the Hermite
interpolation polynomial of degree p of the generating function
1/(1-X) at the p+1 nodes, a(l)-t, - .a(q%t,o,--,o. Then

c(P(X))=(p/a)f(t), t=(tj, -+, ty).

(b) The case of p<q-1. Let P(X) be the Hermite interpolation

polynomial of degree q—l of 1/(1-X) at the q nodes a(l)-t, =+ ,a(q)-t

Then
PP Py ) =(p/adft), b=y, eee Lty
In both cases, the denominator of the approximant is a polynomial

of degree q, I%(l—a(iht), where (a(i)) are not always distinct.
1=

In this corollary, the cases of p=q-N and p=gq-1 correspond to

[5] and llj respectively (See §3 in detail).

Remark 2.1 In one variable case in [2], the polynomial v(x)=
I}(x-ai) always . becomes a generating polynomial of a Padé—type
approximant for any given finite points [ai}. But in our case,
this fact does not hold. In order to be applied Theorem'z.l to
the given functions {ai}, it is necesséry that the polynomial
V(X)=ang(X—ai) is a g-polynomial. Let us give a simple counter
example. The polynomial in X; V(X)=(X-t2)(x—sz), t,seR, is not
a g-polynomial. Let P(X) be the Hermite 1nterpolat16n polynomial

2 2

of first degree of 1/(1-X) at the nodes t ,S . Then
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x+1-t?s? e+ (1-t’-shicg

c(P(X))=C( = , t,seR.
(1-t?) (1-s?) (1-t%) (1-s?)

On the other hand, as the denominator (l—tz)(l—sz) is the reverse
polynomial of the g-polynomial XL-U}+52)X2+t%¥ and the numerator

l .
has second degree, we have, by the definition,

x"(x‘—(t2+sz)x’+t252))

1 c(1~t2—52+t252 -

(2/4);(t,s)= ; 3
(1-t7) (1-s7)

¢2+Cl+(1‘t2—52)00 .

(1-t?) (1-s%)

1 2 2 2
= Ccll+X+X"~(t"+s%) )=
(1-t?) (1-sh) ( )

They are not coincideht.

Remark 2.2 Let P(X) be the polynomial such that c(P(X))=(p/q):(t),
t=(t;,*+-,ty) for any formal power series f(t), provided that the
denominator 1is fixed. We note that the polynomial P(X) 1s uniquely

determined fér p=29d-1, but for p<g-1, such polynomial is not unique.
In fact, putting PI(X)=§%%%%¥é§%. then CW“'”(PI(X))=(p/q)?(t) by

Xy -vien
Theorem 1.2(3). On the other hand, putting Py(X)= VO (=)

] ‘ Pty
then cwq”’hﬁ(X)):c(V(sgt¥(l_X§X) =(P/q)?(t) by the definition.

Here, P;(X) and P;(X) are different polynomials of degree g-1 in X.
We derived Theorem 2.1(b) by using the polynomial P;(X). By taking
Py(X), we can also get the different result from Theorem 2.1(b):
"In the case of p<£q-1, let P(X) be the Hermite interpolation
polynomial of degree g-1 of X'?!'/(1-X) at the nodes a;, -+, q.

Then ¢? ¥ (p(x) )=(p/)f(e). ™

By operating ¢ or CWWH) on the determinantal expression of
the Hermite interpolation polynomial P(X) in Theorem 2.1, we can

obtain the determinantal expression of Padé~type approximants
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by the zeros of the generating polynomial.

Theorem 2.2 Let a),:++,a, be the distinct zeros of a

g-polynomial V(X) of degree q with shift m, i.e V(X)=bnf%(x—ai),
1=

b,#0. Then
—W(t) p‘ s s e .' q_l
(p/e);(V)=Try= écl Cp-grt Cp-gr2° 7 G Loay--a
— 1. . oo q—l L4 L) . [
ey : 917 L e ¥
: . . : U
IR S e gl¥l
1—aq 1 2q g

S -
where v(t):V(1)=me‘{(l—ai)k‘. t=(t;,++,ty) and pzg,ci=o for p-g<oO.
i= i=0

Proof. Let g(X) be the generating function 1/{(1-X).
. (a) For p<gq, the interpolation polynomial in Theorem 2.1(b) is

‘expressed by the determinant as follows,

px)=l 0o 1 x ... XV 1 a oo V!
-gla))l a **° a V! - :
T B VAN R A
- cee @
g(aq)l Qg aq

Operating CWﬂﬂ) on P(X), the result immediately follows.

(b) For p=q, P(X) in Theorem 2.1(a) is written by

0 1 X XEeoo xPU %P 1 0 0+++ O s 0

=1 1 00¢+++ 0 +++0 0110 ++ 0 +++0

| -1 o uOo--+ 0 -:--0 oozz--o ehe0

P(X)=| -2} 002 -+ 0 20 ., : M

. - . - . : : 000.-.(pq)| "O

~(p-gq¥ 0 0 O +++(p-q)} ++0 1oap +o- lpq ..a]p

~glap)l ap s+ afteeia)f e : :

Dol . X Ly v a? ey

Do I : X Lo g aq
_g(aq)l ) aqpq".aqp

Taking account of 1—g(ai)=—aig(ai), we get
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p- i i )
P(X)= ;%}Q XVUL 02 L, 1 ap e oa)V!
1= - . . .
~gla)) 1 TR Y A PR :
hand s & » q-l

Operating c on P(X), we obtain the result.

§3. Relation to [1] and [5].
‘ As an interpolating polyhomial in many variables, Sablonniére[S]
and Ariokall] take up the Hakoplan interpolation polynomial and
the Kergin one respectively. We are going to study the relation

between these polynomials and the polynomial P(X) in §2.

(A) The relation to [1]. Let f(t) be a formal power series,
(3.1) fuJ=E§FFEﬁﬁ, t=(ty, -+, ty) eR', i=(1;,--+,1 en",
- R0}il=n .

where lil=i|+--++iy. He defines the functional C by‘E(xl)=Ei/(?).
. B ! ,
x=(Xy;,***,Xy), n=11! and shows that f(t)=c(I:§7E), where x-t=

Xyty+e e+ +xyty, that is, the generating function in (1] is 1/(1-x-t).

Then it holds that

C(X">=cn=5§:E¢ti=E(tx-t)“). X= (X, + o0, xy), =ty oo, ty),
1{=n

which implies that to obtain the expression in [1], it 1s sufficient

— 1 —f -1
to change ¢ into ¢ after putting X=x-t. For example, C(l—x):c(l—x-t)'
Now, applying Corollary 2.1 for p=d-1 and g distinct points

af{l),«*+,a(g) of RN, and putting X=x+t, we have

(q-1/q@)§(t)=c(P(X) )=g(P(x-t) ), x=(xp,=++,xy), t=(t],+--,ty),
where ‘ - , .
_ v(t)-V(X) T . — T (1—rre .=y .
P(X)= VO (1=x)" VV(X)-I;II(X aij), v(t) ]if{(l ai), aj=a(l)-t.
Here, P(x-t) is a polynomial of degree g-1 in x because P(X) 1is

one of dégree g-1 in X. Moreover the condition of the interpolation,
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P(ai)-"—“ 1=a:’ i=1,...,q,
1

means the condition with respect to x,

Pla(i):t)= 1—_(1—%?)—7{, i:l,-..,q’

that is, the polynomial P(x-t) is the interpolating polynomial of
degree g-1 in x of 1/(1-x+t) at the nodes a(l),*++,alq) of RN
and it is nothing else but the Kergin interpolation polynomial

K(x)‘of 1/(1-x-t). In fact, from the expression of K(x) (in the

proof of Theorem 4.3 in {1]), we have

f&(x-t—a(i)-t)
(o el )_ v(t)-V(X)

1
i , )= =P (x-t).
1- x-t( v(t)(l—X)l-.
CTT(1-a(i)-t) Kot

K(x)=

(B) The relation to [5]. For a formal power series (3.1),

n+N 1 . |
Sablonnierel[5] defines the functional T by Ci= ( (i)c(x ),

N), that is,

lil=n, X=(X{,***,Xy) and shows that f(t)-c(
(1-x-t)

the function 1/(1—-x't)N is the generating function in [5). Thus

there is the following relation between our operation c and ¢.

o (") =ep= =it tiss ("N 0"
{if=n

“) (n+N l) . we have

Taking account of the fact'that o Nl((N 1).

. . N-1 (N-1)
(3.2) c(X"y= E((WXZI—)—!—)(")IX:P[)

where (‘..)mq) denotes the (N-1)th derivative with respect to X.
By (3.2) we can obtain the expression in [5]. For examples,
WI
0 __ xh N-1)
c(X")==¢
55 (((N 177 Mth)

Ms

(3.3)  cpx)=

1]
[~2

]

Sl Bl )= sl )= sl
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Moreover, (3.2) holds also for n sucﬁ that 1-N<n<0 since the

both sides equal zero. Thus we have

(3.4) C(P(X))z E(( xN! P(X)hml))= E(( P(X) )mq))

(N-1)! IS (N-1)T Ikpt
where P(X) is a polynomial in X.
Now let us apply Corollary 2.1 for g=r+1, p=r-N+1 and a(i+l)=

x(i) (i=0,1,++-,r). Then,

(r—N+1/r+1)f(t)=cbm”(P(X))=c(P2§R), t=(t), ¢, ty),
X

S )y o,

Ith
where
_ V() -V(X) L =TT (1-%(1)-
P(X)= v (1=xX)" V(X)—%}(X x(i)-t), V(t)—%}(l x(i)-t).

Put p(x,t)= Tgé%%T)ﬂil' Then it is a polynomial of degree r-N+1
In x because P(X) is one of degree r in X. We are going to show
that this polynomial p(x,t) is nothing else but the Hakopian
interpolation polynomial in [5]. From the expression
) Zfi(x—x(i)-t)
P(X)= 3% ~ g7y~ —TX '

we have
II(X X(1)-t) -1

1-X )Ikrl

1 (N-1) 1
(3.5) p(x,t)= N-= 1)0(1 Xhth- (N- l)'V(t)(

_ _ 1 gD
=9(X,t)- RoTyiveey U (Xt

where r
) TIL(X-x(1)-t)
l:
g(x,t)= ————— and U(X)= -
(l-x-t)N 1-X

We prepare some notations. Let i=(ig,ij,*+*,1y.;) be a subset of
{0,1,~--,r} and Xi={x(10),x(i|).---,x(iw{)} a subset of points
(x(0),x(1),+++,x(r)} in R'. For a function h(x), h(X;} is defined by
(3.6)  h{x;)=(n-1)t] N_lh(/lgx(ig)+'"+AN-1X(1N-,))d/\.

Q
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N-1 - L
where Q ={(/\l,"' ,An-l)GRNI; /\1"'"""/\"-1_5_1, /1120}, /\0=l"2/\i and
L : : i=l ,
dA=dA;---dAy,. Now let us prove that p(x,t) satisfies the condi-

tion of the Hakoplan interpolation, i.e.

(3.7) p({xi}.t)=g({xi},t) for'every multi-index i=(ig,ij,*-*,iy).

From the expression (3.5) and the definition (3.6), we obtain that

p({xi).t)=g({x;}.t)- V%%TEQ"* UMD (XX (1g) #+ + + + A0 x (1y) } - £)dA

=g {X;}.t)- V%ETXQWILﬂ*”(xo{x(io)-t}+.-.+Auq{x(1nq)-t})dA.

by the Hermite-Gennochi formula,

. ST _ ,
=g({X;i}.t)- S Ulxp)-t. oo xiyg)-t],

where U[X(ig)'t, cee ,X(iw,)-t] denotes the divided difference
of U at x(ip)-t, *++ ,x(iyg)*t. In the last expression, the second
term in the right hand side is vanished by the fact U(x(i)-t])=0

(i=0,1,+++,r), which implies the result.
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