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A generalized Pohozaev identity

and its applications

Miyazaki Univ. Shoji YOTSUTANI

(X - T mHys &)

$1. Introduction.

This is a joint work with Nichiro Kawano (Miyazaki Univ.)
and Wei-Ming Ni (Univ. of Minnesota).
In this paper we establish a generalized Pohozaev identity

and its variant for the following qua§ilinear elliptic equation,
(1.1>  div(A(IDubDW + £Cxl,w = 0

in Rn, where Du is the gradient of u, f(lxl,u) and A(p)

are given functions. The Pohozaev identity is useful to investigate
the existence and non—existenge of the ground state of (1.15. ﬁy

a ground state we mean a positive solution u in Rn, which tends
to zero at =,

The Pohozaev identity was used by Pohozaev [15] in 1965 to show
the non-existence of non-trivial solutions of non-linear eigenvalue
problems for semi-linear elliptic equations. This kind of
identities was first discovered by Rellichv[17}'in 1940 in his
study of the first eigenvalue of A, and by Nehari [5] in 1963.

The idea was applied to investigate the properties of solutions

for non-linear elliptic equations (see, e.g., [1], [2]1, [3],
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[41, (61, 171, (81, (91, (103, [111, [121, [131, [141, [161).
Especially, Ding and Ni [2] found that the Pohozaev-type
identity is useful to get the non-existence theorems for the
ground state in the anomalous case, fu(lxl,O) = 0, by employing
suitable change of variableé. Recently, Ni and Serrin [9, 10,
11] established some generalized Pohozaev identies and used them

to investigate the solutions of the quasilinear elliptic equations,
(1.2) div(A(IDul)dDu) + f(u) = 0.

They extend the argument employed by Ding and Ni to the quasilinear
case. Their results are sharp, however their arguments are tricky
and difficult. Our aim is to simplify, unify and generalize the
method. We have found that the essence of the argument is clarified
by rearranging the Pohozaev-type identity combined with the given

equation (see, e.g. [181).

$2. Main theorems.

We consider the radial solutions of (1.1). Let u = u(r)

be a radial solution of (1.1), then u satisfies the equation

2.1) 170D

ladiutuny o+ f(r,u) = 0, r> o0,

where n 1is a positive integer, and u' = u'(r) = du(r)/dr.

Theorem 2.1. Suppose that A(p) €~C1((0,-)), PA(p) - O

as p -~ 0, and f(r,uw, fr(r,u) € C((0,=)X(~=,=)). Let ulr)

nN

€ C([0,=)) N C"((0,=)) satisfy (2.1),
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la' (r) |
(2.2) limr j pE(p) do = 0,
r-0 0

2.3 1lim r™ fAaclw (myDHu(ry = o0,
r-0 .

and

(2.4) lim r"F(r,u(r)) = 0.
r-0

Then the following generalized Pohozaev identity holds:

n Jlu’(R)l

R { oE(p) do + F(R,u(R)) + aR—lA(Iu'(R)I)u'(R)u(R)}
: 0
(PI)
R flutl 2
= J {nj 2E(p) do + (a + 1 - m)A(lu'DIu'l
0 0
+ nF(r,u) + rfF_(r,u) - auf(r,w)r" lar
for all R > 0, where a is an arbitrary constant,

u
F(r,u) = J f(r,&) dg
0

1]
=]
Q.

E(p) = A + p 94222, p > 0.

Remark 2.1. It hold that
1% P 2 P
(2.5) J oE(p) dso = J n(aA(o))pdp =. Ap~ - J pA(p) do,
0 0 0
since pA(p) » 0 as p -» 0. Define

PA(p), p > O,

0, p =0,
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and

pzA(p) - fgnA(p) de, p > O,
v(p) =

For the sake of convenience, we simply denote ¢(p) and v(p)
by pA(p) and fng(p) do, respectively.

Remark 2.2. The equation (2.1) is equivalent to

n-1

(2.6) EClu')u" + AClu'i)ur + f(r,u) = 0
for all r > 0 with u' = 0.

Remark 2.3. This identity is a variant of Theorem 2.1 in Ni

and Serrin [9].
The following result is our main theorem.

Theorem 2.2. Under the assumptions of Theorem 2.1, the

following idenity holds:

n-2¢-2

a(a+1) {(m-DACIw' (R)I) - EClu'(R)I1)IR w(R)2

+ (- R2w"(R)W(R) + 2¢Rw' (R)W(R)} (ECIu' (R)1) - AClu’(R)1))}RP 72772

+ (- REw"(RIW(R) + (%(%%%—2(1-c)a) - (n-=1) + 20)Rw' (RIW(R)

n-2o0-2

+ %(l-c)sz'(R)z)R ACIu' (R) 1)

A on 2 fu' (R |
e R {cAClu' (RO Iu* (ROI1° -~ J pA(0) do)
. 0
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+4Rn{% F(R,u(R)) - u(RYf(R,u(R))}

(PID)
5 JR(nF(r W + rF_(r,u) _ nek wf(r,u) + “EHO=8), vy g2
cJy 4 r°? g+l ! m(g+l) tu u
' la'i
+ n(% AClu' D iurl1? - J pA(o) dodyr® Ldr
. 0

for all R > 0 with wu'(R) = 0, where

w(r) = rau(r),
- I+k - (m=1)(n+k)(1-8)+{(m-1)n+m+mk} 0
q+l-m: "’ a n-m ’

N c(q+1)8

= Cclq+lr-(1-8) °*

and m, k, 8, ¢ are arbitrary constants such that 1 < m < n,

k>-m 0s 8 51, ¢c>0, cmz21-298.

Remark 2.4. In fact, the above theorem holds for any choice
of the constants m, k, 8, ¢ as long as the other cohstants a,
q, 2 are well-defined. However, applications to partial

differential equations usually occur in the ranges restricted

above.
Remark 2.5. We should note that
(m-1)A(p) - E(p) - O as - p » 0.
in the following important exémp;es by choosing suitable m.

(i) The generalized Laplacian : A(p) = p"n2

Take m = u, then (m-1)A - E = O.
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(ii) The generalized mean curvature operator : A(p) = (1+p2)“/2_1.

Take m = 2, then (m-1)A - E = (2—u)(1+p2)u/2_2p2 - 0.

2

R""29°2,(ry2  in (PII) vanishes

Therefore the coefficient of
as u'(R) » 0. Actually we shall adjust a so as to eliminate
this coefficient (as p » 0). The arrangement of the left-hand

side of (PII) is closely related to Lemmas 4.1 and 4.2, which

will appear later.

Remark 2.6. The case 6 =1 and ¢ = 1/m 1is most important.

In this situation q = ((m-l)n+m+mk)/(n—m), ¢ = (n-m)/m and a = 1.

Remark 2.7. This theorem is very useful to obtain the
non-existence theorems of the ground state in the ahomalous case.
The arguments employed in Ding and Ni [2, Theorem 5.13] and
their generalizations to quasilinear equations in Ni and serrin
[10, Theorems 4.1, 4.2, 5.3, 5.4, 6.5, 6.6]1 are considerably
simplified by using the identfty (PII). Furthermore we can naturally
understand the meaning and sharpness of the assumptions in those

papers. We shall see these facts in the subsequent sections.

$§3. Applications to the generalized Laplace equation.

In this section we state some results obtained by virtue of

generalized Pohozaev identity (PI) and (PII).

We shall treat the following generalized Laplace equation

(3.1) div(IDpui™?pu) + £CIxl,u) = o0, x ¢ R"



where m 1is a constant. This equation corresponds to the case

(3.2) A(p) = p™ 2

in the eguation (1.1). We are only interested in the positive
radial solutions of (3.1). Thus we coﬁsider the ordinéry

differential equation

p1TR Py ™2y,

r
(F ) {
a
u(0) = « > 0,

where vt o= max{u, 0}. We shall assume that

y' + f(r,u’) = 0, r> o0,

1 <m«< n.

We now collect the hypotheses which will be assumed under
various circumstances {(but not simultaneously). Concerning

the equation (Fa), we introduce

f(r,u) € C((0,«)X[0,=)); and
(F.1) for every M, R > 0,

sup{r “lf(r,u)l: 0K r s R, 0 s usM)} < =,
(F.2) f(r,u) 2 0 on (0,«)X[0,<),

if m > 2, then for every L, M, R > 0,
(F.3) {

inf{r “f(r,u): 0 <r sR, L susM)>O0,

for every L, M, R > 0,
(F.4) {

sup (r™"1f (r,wi: 0 {rsR LsusM)<e,
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(F.5) fr(r,u) € C((0,=)X[0,=))

(F.6) nF(r,w + rF (r,w) s =8 uf(r,w) for all u >0, r >0,
(F.7) f(r,u) 2 Pos. Const. rkuq for all u > 0 and sufficiently
large r > 0, where k and gq are constants satisfying k 2 - m

and q #m - 1,

(F.8) nF(r,u) + rF_(r,u) 2 ﬂﬁm uf(r,u) for all u > 0, T > O

with the strict inequality holds for some sequence of values u

tending to zero and all sufficiently large r > 0,

(F.9) uf(r,u) 2 mF(r,u) for all sufficiently small u > 0 and

sufficiently large r > 0,

r there exists aq > 0 such that f(r,u) < 0 (resp.

f(r,u) > 0) for all u > a, (resp. u < «,) and
(F.2)* 0 0

sufficiently small r > 0; and

- f(r,ao) = 0 for all sufficiently small r > 0O,

'

(F.7)* f(r,u) 2 Pos. Const. rkuq for sufficiently small u > O
and sufficiently large r > 0, where k and g are constants
satisfying k 2 - m and q #m - 1,

<

where v is a constant satisfying v > - m, and

u +
F(r,u) = J f(r,& ) d¢&.
0 .

We state our results.



Theorem 3.1. Suppose that (F.1)-(F.5) hold. Then there
exists a unigue solution u(r;a) € C([0,=)) N CZ((O,w)) f (F»>,

——— o

and u(r) = u(r;e«) satisfies the generalized Pohozaev-type

identities,

lw' (R 1™ + F(R,u(R))

n-m -1, ., m-2_,
(3.3) * - R Tl (R “u' (R)u(R))

R
= J (nF(r,u(r)) + rF (r,u(r)) - ﬂiﬂ wryfcr,ut et ar

0

[
=
o,

n=20-2 )4 (r) | ™2

(m - 2){- R®W"(R)W(R) + 2¢Rw' (R)W(R)IR
+ (- RPW"(RIW(R) + (4o-2mo-m+1)RW' (R)W(R)
+ m-DRZw (21 RD292 |y (py | ™2
+ RM(mF(R,u(R)) - u(RY£(R,u (R))}
(3.4)

n-m -1

R
= m J {(nF(r,u(r)) + rF_(r,u(r) - &8 w(r)f(r,u rnr®t ar

0

where R is an arbitrary positive number, w(r) = r’u(r) and

¢ = (n-m)/m.

We shall investigate the properties of solutions of (Fd). The

following theorem gives a sufficient condition for the existence of

ground states.

269



270

Theorem 3.2. ‘Suppose that (F.1)-(F.5) and (F.6) hold. Then,

for every « > 0, u(r;e) 1is positive o [0,=).

Moreover if (F.7) with q >m - 1 holds, then u(r;«) =» 0

We shall also give some sufficient conditions for the solutions

of the equation (Fa) having a zero.

Theorem 3.3. Suppose that (F.1)-(F.5), (F.7) with q =

({(m=-1)n+m+mk)/(n-m), (F.8) and (F.9) hold. Then, for every « > 0,

u{r;«) has a finite zero on [0,=).

Remark 3.1. Theorems 3.2 and 3.3 are closely related to

Theorems 3.2 and 4.1 in Ni and Serrin [10].

We now explain the meaning of the above theorems. Consider the

equation,
(3.5) rl_n(rn_llu'lm—zu’)’ + rk(u+)q = 0, u(0) = « > 0,

where 1 < m<n, kX >-m, and q > m - 1. For every « > 0, (3.5)
has a unique solution u = u{r;e«) € C([0,=)) n'cz((o,,)) by
Theorem 3.1. In view of Theorems 3.2 and 3.3, the structure of

solutions are as follows;

(i) If q 2 ((m-1d)n+m+mk)/(n-m), then u(r;e«) 1is positive

<

on [0,=) and tends to zero as r -» « for every a« > 0.

(i1) If g < ((m-1)d)n+m+mk)/(n-m), then u(r;e«) has a finite

zero on [0,=) for every « > O.
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The case f£(r,uw) = rXg((M-1In+m+mk)/(n-m) .5 on the borderline

of the existence and non-existence. Here small perturbations can

seriously affect the situation. if

f(r,u) = K(r)u((m'l)n+m+mk)/(n—m),

where K(r) = @(rr¥, @ ¢ ¢1(10,=)), Q(r) >0 and Q'(r) s 0,
then u(r;«) is positive on [0,=) and tends to zero as r = =

for every « > 0. On the other hand, if

£(r,u) = K(r)u(('m-l)n+m+mk)/(n—rn)’

vhere K(r) = @r¥, @ e cl(10,=)), @ >0, @' (r) 2 0 and
a'(r) £ 0, then bu(r;a) has a zero on [0,=) for any « > 0.
These are obtained by appiying Theorems 3.2 and 3.3.

We consider a different kind of perturbations to the

nonlinearity £(r,u) = rku((m—l)n+m+mk)/(n-m). If

f(r,n = rKg(MDn+m+mi)/(n-m) | koa'

where ¢ > 0, kX > - m and q' > ((m-1)n+m+mk)/(n-m), then
u(r;e«) 1is positive on [0,) and tends to zero as r -» = for

every e > 0 by Theorem 3.2 On the other hand, if

f(r,0) = rKg(M-Dn+memk)/ (n-m) k. q'

¢r u- o,

where ¢ > 0, kK > - m and q' > ((m-1)n+m+mk)/(n-m), then (Fa)

has no ground state in the class C([0,=)) N Cz((O,w)) by

the following result.
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Theorem 3.4. Suppose that (F.1), (F.Z)*, (F.5), (F.?)* with

q < ((m—l)n¥m+mk)/(n-m), (F.8) and (F.9) hold. Then (Fa) does not

admit any positive solution in C([0,=)) N C2((O,o)) ‘which tends .

o zero as r - =.

References

[11 H. Berestycki and P. L. Lions, Nonlinear scalar field
equations, I. Existence of ground states, Arch. Rational

Mech. Anal., 82(1983), 313-345.

[2] W.-Y. Ding and W.-M. Ni, On the elliptic equation

(n+2)/(n-2)

au + Ku = 0 and related topics, Duke Math. J.,

52(1985), 486-506.

[3] T. Kusano and M. Naito, Oscillation theory of entire
solutions of second order superlinear elliptic equations,

Funckcial. Ekvac., 30(1987), 269-282.

[4] N. Kawano, J. Satsuma and S. Yotsutani, Existence of positive
entire solutions of an Emden-type elliptic equation,

Funckcial. Ekvac., 31(1988), 121-145.

[51] Z. Nehari, On a class of nonlinear second-order differential

equations, Trans. Amer. Math. Soc., 95(1960), 101-123.

(61 W.-M. Ni, On the elliptic equation au + Kou M2/ (=2 _

its generalization, and applications in geometry, Indiana

Univ. Math. J., 31(1982), 493-529.



(73

[8l

[91

[101

[111]

[121]

[131

W.-M. Ni, Uniqueness, nonuniqueness and related questions
of nonlinear elliptic and parabolic equations, Proc. Symp.

Pure Math., 45(1986), 229-241.

W.-M. Ni, Some Aspects of Semilinear Elliptic Equations,

Lecture Note, National Tsing Hua University, Taiwan, 1987.

W.-M. Ni and J. Serrin, Non-existence theorems for quasilinear
partial differential equations, Rend. Circ. Mat. Palermo,

Centenary, Supplement, 8(1985), 171-185.

W.~-M. Ni and J. Serrin, Existence and non-existence theorems
for ground states for quasilinear partial differential

equatins, Accad. Naz. dei Lincei, 77(1985), 231-257.

W.-M. Ni and J. Serrin, Nonexistence theorems for singular
solutions of quasilinear partial differential equations,

Comm. Pure Appl. Math., 39(1986), 379-399.

W.-M. Ni and S. Yotsutani, On the Matukuma's equation and
related topics, Proc. Japan Acad. Ser. A, 62(1986),

260-263.

W.-M. Ni and S. Yotsutani, Semilinear elliptic equations of

Matukuma-type and related topics, Japan J. Appl. Math

5(1988), 1-32.



274

[14]

[15]
[161]
[171

[181

M. Otani, Existence and nonexistence of nontrivial solutions
of some nonlinear degenerate elliptic equations, J. Funct.

Anal., 76(1988), 140-159.

S. I. Pohozaev, Eigenfunctions of the equations au + af(u)

0, Soviet Math. Dokl., 5(1965), 1408-~-1411,

P. Pucci and J. Serrin, A general variational identity,

Indiana Univ. Math. J., 35(1986), 682-703.

H. Rellich, Darstellung der eigenwerte von au + au = 0

darch ein randintegral, Math. Z., 46(1940), 635-636.

N. Kawano, W.-M. Ni and S. Yotsutani, A generalized

Pohozaev identity and its applications, preprint.



