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In this expository paper I wish to describe some recent
progress in semilinear elliptic eﬁuations. I shall
concentrate on such equations on the entire Euclidean spaces,
as well as on bounded domains with homogeneous Neumann
boundary conditions.

This paper consists of three parts. In Part I, I shall
discuss the conformal Gaussian curvature equation in Rz
(with the canonical metric). In particular, some very recent
results obtained in a current joint project of K.-S. Cheng and
myself which give cdmpletg classifications of all possible
solutions of this equafibnyin various cases will be included
and the proofs will be sketched. 1In Part II, I shall survey
the Matukuma equation, Eddington equation, the conformal’
scalar curvature equation in R" , n 2 3, and related
equations. Since this part is closely related to my recent
survey article [N1] and Professor T. Kusano's lecture, I shall
be brief to avoid unnecessary repetitions. In fact, both Part
I and Part II should be considered as an update of Section 1 ~
Section 3 in [N1]. Finally in Part III, I shall report some
recent results on‘a semilinear Neumann problem arising in
pattern formation in mathematical biology. Here we shall use
two different variational approaches: the well-known

Mountain-Pass Lemma (a minimax theorem) and a constrained

minimization technique first devised by Z. Nehari for a
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two-point boundary value problem of an ordinary differential
equation in early 1960's. We shall show that the solution
given by the Mountain-Pass Lemma is in fact the global
minimizer of the Nehari’'s minimization problem. This fact,
first noted by W.~-Y. Ding and myself in 1985 after we
completed our joint papers [DN1,2], was déscribed in public by
myself in the 22nd Midwest PDE Conference held at the
University of Chicago in 1987 as well as in my course "Topics
in PDE” given in the Fall of 1987 at the University of
Minnesota with complete pfoof. and is published hgre.for the
first time in the literature.

This péper is essentially a collection of the notes of
various lectures 1 gafe at Tokyo and Kyoto in the summer of
1988. I wish to thank Professors Takashi Suzuki and Shoji
Yotsutani for the invitations, and the Japan Association for
Mathematical Sciences for the financial support which made my
visit to Japan possible. Part of this paper.was‘written while
I was visiting the Univérsity of Tokyo and Miyazaki
University, and I wish to thank the staff of those

institutions for their warm hospitality.
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art 1. e Conforma aussian Curvature Equation on Rz.

We intend to give a brief survey of recent progress on

the equation

2u

(I.1) Au + Ke =0
2 2 8 |
in R™ , where A = 3 - and K 1is a given smooth
i=1 axi

function on Rz

Equation (I.1) arises in Riemannian geometry and is known
as the conformal Gaussian curvature equation. . The readefs are
referred to a recent survey article [N1; Section 2] for the
background and the long history of this equation. However., to
motivate this present uﬁdate on (I.1) a few important results
reported in [N1; Section 2] are collected here.

2

Theorem I.A. (Sattinger) If K ¢ O in R and K ¢ —Clx]'_2

© , then equation (I.1) does not possess any solution on

Elﬁ’
N et

Theorem I.B. (Ni [N2]) If K <O and # 0 in R with

K(x) 2 -Clxl—e at o« for some constant &€ > 2 , then for

every sufficiently small a > O , equation (I.1) possesses a

solution u in Rz such that



(1.2) uh(x) = a log |x| + O(1) ear ©®
Observe that as far as existence is cbncerned. Theorem
1.B already complements Theorem I.A. Nevertheless, Theoren

1.B was improved by McOwen [M] as follows.

Theorem I.C. Under the same hypotheses of Theorem I.B

(assuming that K(O) < O0), we have that for every

0 Ca < (£-2)72 , there exists a solution u, of (I.1) on RZ

such that (I.2) holds. If in addition that K ¢ —ClxI—e at
@ , then equation (I.1) admits no solution in Rz satisfying

(I.2) with a ) (&-2)/2

It turns out that Theorem I.C is still not sharp, even in
the special casé K ~ —le_e at ®© for some & > 2 . As we
shall see soon that Theorem I.E below gives complete knowledge

of all possible solutions of equation (I.1) on m2 in this

(1]

case. (In this paper we use the notation "f ~ g at = to
denote that "there exist two positive constants Cl,Cz' such
that le 2 g 2 sz at o« ".)

¥hat happens if K ¢ O decays at ® faster than any
~polynomial decay? It was already noticed by Ni [N2] that if

K ¢ o in R2 and K ~ —exp(—2|x|2) at ® , then, besides

the solutions given by Theorem I.B and I.C (which have

logarithmic growth at ® ), equation (I.1) actually has a




solution U ~ lx|2» at ® . In fact, to understand the
relation between these two kinds of solutions was one of the
motivations of my current joint work with K.-S. Cheng [CN}].

We shall see that (Proposition I.H below) the solution U is
2

the maximal solution of (I.1) in R

Our aim in [CN1] is to investigate the structure of the

set of all possible solutions of equation (I.1), and, our main

results are as follois. (The function K will be assumed to

be lobally Holder continuous in R2 throughout the entire

paper.)

Theorem I.D. Suppose that

(i) K < 0 in R2 and there exists a sequence of bounded

smooth simply-connected domains {Di} such that

© .
R = g‘Qi‘. Qi c Qi+1 ., and K <O on ani ,
i=1,2,... , and

(ii) equation (I.1) possesses a solution v on Rz Then

the function

(1.3) | U(x) = sup{u(x)] u 4is a solution of (I.1) on Rz}

is well-defined everywhere ‘in m2 and is a solution of (I.1)

on R>




Note that hypothesis (1) in Theorem I1.D holds if K < O

2

in R® and K (0 at o . The function U given by'(IJB)ﬁ

is the maximal solution of (I.1).
Theorem I.E. Suppose that K ( O and # 0 in Rg
"% at @ for some ¢ > 2

» and that
K~ -|x
(1) For each a € (0,(2-2)/2) , (I.1) possesses a unique

solution u, satisfying (I.2).

(i1) Let u be a solution of (I.1) on R2 . Then either

u = U where U is given by (I.3) or u = u, for some

a € (0,(2-2)/2) where u, 1is given by (i) above.

(iii) The asymptotic behaviof of U .gﬁ © ‘isbgiven by

(1.4)  U(x) = 52 log|x| - logloglx| + O(1) at « .

Theorem I.F. Suppose that K < O and # O in R® , and that

2

K has compact support in R Then

(i) for every harmonic function h and every constant

a > 0, there exists a unique solution u of (I.1) with

(1.5) u(x) = h(x) + a log|x| + 0(1) at ® ;

(ii) for every solution u of (I.1) on R2 . there exist a

harmonic function h and a constant a > O such that

(I.5) holds.



Theorem I.F says that in case K ( O, # O , on R2 and

has compact support, the "solution set” of (I.1) may be
indexed by ’h and a with h being harmonic and a > O ,
and is therefore completely understood. This in particular
indicates that in this case equation (I.1) does not possess a

2

maximal solution on the entire R The case K. ¢ 0O , # O ,

in R2 with K ~ —|x|—e at o for some & > 2 , Theorem I.E
asserts that the "solution set” of (I.1) can be indexed by

a € (0,(2-2)/2) with only one exception (namely, the maximal
solution U), thus is also completely understood. Moreover,
as a consequence of this result and some further arguments we
are able to obtain the following curious conclusion concerning

the symmetry of solutions.

Corollary I.G; Under the hjpothesés of Theorem I.E, if in

addition we assume that K Vis radially symmetric, then all

solutions of (I.1) on R2 are radially symmetric.

Note that no other condifions on K (such as the
monotonicity assumption) are imposed in Coreollary I.G.
{Compare e.g. results in [GNN2] and [LN1].) Furthermore,
combining Corollary I.G and Theorem I.E, we see that Theorem

I1.C is not'shérp even for radial K’'s



Remark. Geometrically, for a given’(arbitrary) smoo;h

2

function K on R™ , a theorem of Kazdan and Warner ([KW],

p. 210, Corollary 3.3) guarantees the existence of a metric g

on R2 of which the Gaussian curvature is K . Of course g

2

may not be conformal to the standard metric on R For

instance, if K satisfies the hypotheses of Theorem I.A, then
the corresponding g cannot possibly be conformal to the

2 The geometric significance of

standard metric on R
Theorem I1.E is that under suitable conditions on K it gives

a complete classification (and understanidng) of all metrics

on R2 which realize K s their Gaussian curvature and are

conformal fo the standard one. Theorem I.F admits the same
geometric interpretation although the asymptotic behaviors of
those (conformal) metrics are not quite as clear.

In the case where K decays éxponentially at o ,
although a complete classification of all the possible
solutions of equation (I.1) is yet to be obtained, we do have

the following

2

Proposition I.H. Suppose that K ( O in R and that
K~ - exp(-2|x12) at x = © . Then the maximal solution U

of equation (I.1) has the following property

U(x) = [x|2+0(1) at x = =



[ P
1

In fact, we do have some further information.concerning
the strucfhre of the solution set of equation (I.1) in this
case. We refer the interested readers to [CN1] for details.

I wish to.devote the rest of this section to a very brief
description of some of the ideas used in the proofs of
Theorems I.D and I.E.

The key observation in proving Theorem I.D is that the

boundary value'problem

Au + Ke2u = 0 1in Qi .

u = ® on ani .
has a solution u, with the property u,y > u, > ... u, >
Ui > ... >v . Then it is not hard to show that u,

converges to U (defined by (I1.3)).
In deriving asymptotic behaviors of maximal solutions,

the following properties of maximal solutions are often

useful:

(1) (Monotonicity) Suppose that O 2 K ? K on R2 and
that the hypotheses of Theorem I.D hold. Let U
(ﬁ resp.) be the maximal solution of Au + Ke2u =0
(Au + Re2" = 0 resp.) in R Then U 2 U

(ii) If K 1is radially symmetric, then so is the
corresponding maximal solution U

(iii) Let u be a solution of (I.1) and U be the maximal



solution. Then either u ( U everywhere in Rz or

u =U in R2 .
From the monotonicity property above it is easy to see
that part (iii) of Theorem I.E is reduced to the special case

(1.6) Au + Ke2" = 0

in R2 where K is radial and ﬁ(x) = _le-g at ®« , say,
for |x| > R . The advantage of dealing with (I.6) instead is

that K is explicit. Thus, setting s = loglxl and

-2

w(s) = U(x) - == loglx| .

we obtain w = Cezw in s > log R . Now it is not hard to

ss
show that w(s) = -log s + O0(1) at s = © . Thus (I.4)
hdlds.
The existence part of Theorem I.E (i) is due to McOwen
[M] while the uniqueness part follows from the classical
Liouville Theorem on bounded subharmonic fuhctions on R2
It remains to show part (ii) of Theorem I.E. Let u be
a solution of (I.1) on R2 and u.i U. To sﬁow that u = u,

for some a € (0,(£-2/2) , the crucial step is to establish

the foilowing estimate: there exists € > O such that

(1.7) u(x) ¢ (E%Z - e)log|x| at =

10



Assuming this, we proceed as follows. First observe that

(I.7) guarantees that the function

v(x) = 55 f;[—x(y)ez“"’llozIx—yldy
R

is well-defined on R2 and that

(1.8)  v(x) = {55 jz[-x(y)e2u(y)]dy}.1og|x| + 0(1)
R

at ® . Moreover, A(u-v) = 0 and u-v = O(logl|x]) at =

Thus we have u-v = constant, and therefore
u(x) = a log|x| + 0(1)

at o , for some a > O (given by (I.8)). The fact that

a < (€-2)/72 follows from the non-existence part of Theorem
We still have to prove (I.7). It is easy to see that
¥ = U-u cannot be a constant. Since Ay > 0, it follows

that ¥(r) > e. log r at o for some € > O . Thus

(1.9) u(r) < U(r) - e logr ¢ (i%g - e)log r

11



for r large. (Here v.u and U denote the spherical mean

of Yv.u and U respectively.) Defining

u*(r) = max u(x) . u (r) = min u(x) ,
X|=r x|=r
by a theorem of Hayman [H] we see that there exists a constant

C such that
(I.10) u(r) S u (r) +C

holds for all r large except for a "small” set of r’s since
u 1is subharmonic and has "slow"” growth at ® (i.e. u(x) =
O(log|x|) at ®) . 1In particular, this implies that there

exists a sequence Ty 2 °® such that

f * L e-2 | |
(I.11) u (rk) < (—5— - €)log r, * C
in view of (I.9). Since u* is also subharmonic (i.e.

satisfies the mean-value inequality), the maximum principle

guarantees that (I.11) holds for all r 2 ry - This completes
the proof. |
Remark. In fact, as an intermediate step in the proof of

(I.10), Hayman actually established the following inequality

12



u*(r) < u(r) + o(1)
for all r npear o ((2.10), p. 79 in [H]). Then (I.7)
follows from this and (I.9) immediately.

In a number of cases above we could use the weighted
Sobolev space approach instead. However, the maximum
principle approach adopted here not only seems simpler but
also gives us a unified treatment to our results. Moreover,
the techniques and methods used in this paper also apply to

the conformal scalar curvature equation

n+2
Au + Kun_2 =0
in R®™ ., n > 3 . We refer the interested readers to [CN2] for

further details.

13



art . !atﬁkuma Equation, Eddington Equation and the
Conformal Scalar Curvature Eguation.
1. Matukuma Equation and Eddington Equation.

In 1930, Matukuma, a Japanese astrophysicist, proposed
the following mathematical model to describe the dynamics of a

globular cluster of stars

(I1.1) Au + é—l——§ Ww=0, xc¢€ R3 .
1+ x|
wvhere p > 1 . His aim was to improve an earlier model in
1915 of Eddington
(11.2) bu+ —L e -0, xR’
14]x]|

Due to their physical background, positive radial entire
solutions of (II.1) and (II.2) are of particular interests.
Again, we refer the readers to [le Section 3] for a more
detailed description éf,the background of (II.1), (II.2) and
the first mathematical results of Ni and Yotsutani [NY] and Li
and Ni [LN1]. Here we wish to describe some further progress
made by Li and Ni [LN1] very recently concerning the symmetry
of finite total mass solutions of (II.1). |

3

A positive solution u of (II.1) in R is said to have

finite total mass if

14



I' ———l—i-up(x)dx (o,
r3 1+ x|

Our main results are as follows.
Theorem II.A. Let 2 < p ¢ 5. hen_every bounded positive

entire solution u of (II.1) with finite total mass is

radially symmetric about the origin and u <0 in r > O

Furthermore,

lim ru(r) =k > O
-0

Theorem II.B. Let p 2 5 . Then every bounded positive

entire solution of (II.1) has infinite total mass.

Needléss to say, the above results extend to R" ., n 2 3
and to more general equations than (II.1).

The method of proéf consists of two parts. First, we
shoﬁ fhat for'any p>1, a boﬁnded positive entire solution
of (II.1) must decay at © like le--1 (or |x|2“n for
general n 2'3). Thebsecond ingredient is a refinement of a

symmetry result in [GNN2] (Theorem 1", p. 380). As an easy

corollary of this, we have

15 .
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Theorem 11.C. Every bounded positive solution u gof the

equation

Au + K(|x|)f(u) =0

in R" ., where f 2 0 is nondecreasing in u > 0, K 2 0 is

strictly decreasing in r 2 O and K(r) ¢ r’ at r =« ywith

T ¢ -(n+1) , must be radially symmetric.

The novelty here seems to be that no decay rate on

solutions is imposed. In fact, u does not even have to tend

to zero at © . Naturally, it is the decay of the coefficient

K which makes this possible.

2. The Conformal Scalar Curvature Equatidn.

The following equation

n+2
(11.3) ' Au + Ku® 2 - 0
in R" ., n 23, is known as the conformal scalar curvature
equation in R" . Due to its geometric application, we are

only interested in positie solutions of (II.3). Although
equation (II.3) also has a long history, it only became a

subject of intensive study in early 1980°'s since the

16



publication of [N3].‘ In&eed. thefe have been enormous work
done in connection with (II.3) in the literature by many
mathematicians including several Japanese analysts, Kusano,
Naito, Kawano. Satsuma, Yotsutani, and iheir colleagues. Once
again, we only intend to give an update on the progress made
~after the survey [N1; Sectionvl] was written.

In the so-called "fast-decay” case, that is,
-2
(11.4) IK(x)| < clx| at ®

for sdme € > 2 , we now have a good understanding of (II.3).
It has been éstablished by Ni, Kawano. Naito that under

condition (II.4), for every small constant ¢ > O , equation
(I1.3) possesses a positive gntire solution u, which tends
to ¢ at © . This leads to a natural question: Does (II.3)

possess a positive entire solution which tends to zero under

condition (II.4)? This question has been studied by P.-L.
Lions as well as many Japanésevmathematicians (see Kusano’s
article [K]). A good progress was made by Kawano, Satsuma and
Yotsutani [KSY] recently. In [KSY]. a nice sufficient .
condition was found under the additional hypothesis that K

is radial, locally Holder continuous and K(0) = O . On the

other hand, in [LN2], the following result was proved.

Theorem II.D. Suppose that (II.4) holds and that the function

17



x*vK(x) never changes sign in Rn,. Then equation (II.3)

es not ssess _any bounde sitive solution u in r"

with lim inf u = 0 .
X0

The proof contains two main ingredients. The first one
is an estimate which guarantees that any such solution will
|2-n

have to actually tend to zero at ® like ‘lx Then we

apply a generalized Rellich~Pohozaev identity to the solution
‘and use the estimate above to control the "boundery terms" to
obtain a contradiction. YWe should point out that Theerem‘II.D
above is an extension of Theorem 1.9 in [Nlj. and that all the

theorems mentioned in this section admit extensions to more

general equations.

18
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Part I11. VYariational Methods in a Semilinear Neumann
Problem.

We shall consider the following Neumann problem

dAu ~u +uP =0 in Q .

(III.1) u>0 in 'Q ,
gu =0 on 80 ,
dv ,

where d > O , p > lu are constants,  is a bounded smooth
domain in R" and v 1is the unit outer normal to 3d0 .
Problem‘(III.l) is (mathematically) equivalent to an
(elliﬁtic) chemotaxis system (the Keller-Segal model);
moreover, it also arises naturally in an activator-inh&bitor
system due to Gierer and Meinhardt. For these biclogical
applications, we are interested in solutions of (III.1) which
exhibit "spiky"” patterns. For the details of the background
of (III.1), the readers are referred to [LNT] and the
references therein.‘

It turns out that (III.1) is very different from its

Dirichlet counterpart

dAu - u +uP =0 in 0,
(II1.2) u>0 in Q ,
u=2~0 on 4an

While the Dirichlet problem (III.2) has long been studied and

19



we have had a good understanding about it, significant

progress on the Neumann problem (III.1) was not made until the

recent papers [NT], [LNT] and [LnN] were published. In this
section, we would like to describe some of the results in
those‘papers as well as in the current joint project of I.
Takagi and myself.

Main results on (III.1) may be summarized as follows.

Theorem III.A. Let p < n=9 - Then (III.1) possesses only

trivial solution u =1 if d 1is sufficiently large.

Theorem II1I.B. Let p < == . Then for each d > O there

exists a solution u, of (III.1) with the following
properties:

(1) uy - O in measure as d - 0 ;

(ii) there exists a constant C , independent of d é o,

such that

L ¢ lugh o < C

for all d > O ;

(ii1i) for each q € [1,) , there exist constants Ci(q) ,

i =1,2 , independent of d > 0 , such that

20
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< [ud < cpraran?

Q

C,(q)d

for all d > O ;
(iv) Al(ud) < 0¢ Az(ud) for all d > O, where AJ(ud) is

the j-th eigenvalue of (III.1) linearized at uy i i.e.

-1 )
(dA - 1 + pug )¢ + A(ug)e =0 in 0.
%‘l}’l=o , on Jd0 ;

(v) uy #1 if d < (p-l)/)\2 where A2 is the second
eigenvalue of A on 2 with zero Neumann boundary data;:

(vi) for any 7n > O , set 11 = (x€Q | ud(x) > n} . Then

n.d
there exists a positive integer m which depends only

on Q2,p and 7 (but independent of d) such that Qﬂ d

may be covered by at most m balls of radius Vd ;

(vii)'therg exist positive constants € . 7 ., independent of

d > O, such that

inf u, < C exp(-+/Vvd)
Q

for all d > 0 .

The proof of Theorem III.A is in [LNT] and will be

omitted here. The proof of Theorem III.B may be found in

21



[LNT] and [LnN]. However, we would like to describe a new
proof of (iv) above which makes use of Nehari's variational

approach, and is more transparent than the original proof in

[LnN]. To describe the proof, we need to sketch the original

existence proof of uy -
The existence proof is based on the well-known
Mountain-Pass Lemma of Ambrosetti and Rabinowitz [AR]. To

simplify our notations, we first set

f(u) =
o if u<O0,
u
and F(u) = If(t)dt . Then, in Hl(ﬂ) , we define the
0

variational functional

Jd(u) = % I|VU|2 + % J u? - I F(u) .
Q 1] Q

and we look for the critical points of Jd . It is standard

to show that the value cq defined by'

(I11.3) cq = inf max Jd(h(t))
’ h€r t€[0,1]

wvhere T 1is the class of all continuous paths connecting O

22
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and e 1in Hl(ﬂ) (here e 1is an arbitrary but fixed
positive fﬁnction with Jd(te) € 0, for all t 21, in
Hl(ﬂ)) , is a positive critical value of Jd ., and thus gives
a positivevsolﬁtion uy of (1.1). Since (1.1) always has a
constant solution, namely, u = 1 , and we know that it is the
only solution of (1.1) if d is sufficiently large, we
conclude easily that the "Mountain-Pass solution” uy =1 for
d large. To show that uy 1 fof d small, we first
observe that Jd(l) = (% - ;%T)lﬂl which is independent of

d . Then we estimate the value cq - Xe show that

(1I1.4) | cy ~ a™?

for d > O small. This is the first crucial estimate in the

proof.
We now turn to Nehari’s approach [Ne]. In HI(Q) we

define

gy(u) = f[dlvul2 + u? - uf(u)]dx
Q2

and the "solution manifold”

My = {u € H (2) ] u>0 in 0 and gq(u) = 0}

23 .
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It is routine to check that g4 is a Cl-functional.

Theorem II11.C. The number

(I11.5) m., = Inf J,(u)
d ueld d

is assumed on Hd (i.e. a2 global minimizer exists) and the

minimizer is a solution of (III.1). In fact
my, = Jd(ud) =cq > i.e. the "Mountain-Pass solution"” u,y is a

global minimizer on Hd

Thebproof consists of several steps.

Lemma 1. Suppose that my defined in (III.5) is assumed at

v €M, then Ji(v) =0.
Proof. It is easy to see that therebexists p € R such that
Jij(v)e = pgi(v)e for all ¢ € H (0) .

that is, we have, for #ll ¢ € HI(Q)
I[dVV‘V¢+V¢”f(V)¢] =n I[2(VV°V¢+V¢)—(f(y)Q+vf'(v)¢)]
, 0 . .

0

24
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Choosing ¢ = v , we obtain

0 = [talvvIZev?ve(n)] = nfr2lvv|2ev®)-(ve(v)#v2E " (v))]
0 0 '

" I[2vf(v)—vf(v)—v2f'(v)]

Q
- uj§2[£§!l - (v)1<0
Y]
since v € M and f 1is convex in R* . Thus u =0 .

Lemma 2. For each ¢ > O in 0, the function a(t) = Jd(t¢).

t 20, has a unique positive maximum; and, a(to) = max aft)
‘ t20

if and only if tow €M Furthermore, every such ray

d
{t¢ | t > 0O} intersects Hd at exactly one point.

2
Proof. a(t) £§ I(dIle2 + wz) - IF(tv) ,
) 9] 0

¢ i(dlvwlz v ¢2) - iwf(tv)

a’'(t)

Thus, a'(to) = 0 if and only if

(111.5). I[dlv(to¢)|2 + (tow)z] = Jto¢f(to¢)
0 - Q

25



i.e. E(t°¢) = 0 . That is, a‘(to) = 0 1is equivalent to
to¢ € "d . Next, we observe that such a to is unique. For,

if we divide both sides of (III1.6) by ti . we have

IWz £(t v)

[alvel? + o?) = 2
0 [ o]

Q

and the right-hand side is strictly increasing in to >0
(since f(t)/t 1is strictly increasing in t > O ) while the
left-hand side is a constant. Since it is clear that

a(t) > 0 for t > 0 small, and that a(t) - - as t - o ,

our assertions follow.

Lemma 3. The critical value c, defined by (III.3) is

independent of the choice of e (as long as e > O in Q

and Jd(te) ¢ 0O for all t 2 1) . Furthermore, there exists

a path h € ' such that

cq = max Jd(h(t))

Proof,_ Let e .y both be positive in 0 and Jd(tei) <0
for all t >0, and i = 1,2 . Define .
I, = {h € C([0.1].H;()) | h(0) = 0 . h(1) = e} . i = 1,2

and
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c; = inf max Jd(h(f)) . 1 =1,2
heri t€[0,1]

Consider the set V' = {alel + age, | a .a, 2 0} and the
two-dimensional subspace V of HI(Q) spanned by e, e,
Let S be a circle on V with fadius R so large that
R > max{“elﬂ.ﬂezu) and Jd €0 on SN v? (this follows
from the fact that for any O # e in vt J(te) < O for
sufficiently large t > O and a standard compactness
argument) where ’"°H denotes the norm in HI(Q) . Now, let
v be an arbitrary path in Fl connecting O and €,
Define 7 to be the path that consists of <7 , the line
segment with endpoints € and Rellﬂelﬂ , the circular arc

snvt ,and the line segment with endpoints Re2/He and

2"

e, Then it is\easy to see that ¥ € T2 , and since Jq 1s
positive on {uGHI(Q)IHuH = 6} for small & > O, it follows
that \

max J.(u) = max J,(u)
u€vy d u€y d

This implies c; 2 cg . Similar arguments show that

cg 2 cé , and our first assertion is established; From the
above arguments, it is c}ear that we can now choose \e to be
Tud where u, is a "mountain-p#ss solution” (thus uy >0

by the maximum principle, see [LNT] for a detailed proof) and

27



9

T 1s chosen so that Jd(tud) € 0 for all t 2 T . And, the
"minimizing"” path <+ may be chosen to be the line segment

with endpoints O and Tud

Lemma 4. cq = Jd(ud) = my

Proof. Since uy is a solution of (III.1), uy € Md . Thus

m < €4 ='Jd(ud) . Suppose that L < cq - Then there exists
v € Md such that Jd(v) < cq - By Lemma. 2 above Jd(v) =
max Ja(tv) . By Lemma 3 we may choose e ' to be Tv where

t>0
T >0 1is so large that Jd(tv) ¢ 0 for all t 2 T . Thus,

choosing 1~ to be the line segment connecting O and Tv ,

we obtain

c, ¢ max J.,(u) = max J,(tv) = J. (v) C c, .,
d uen d £50 d d d

a contradictibn. This completes the proof of Theorem III.C.

Remark. The afguments used in Lemma 3 above were first

used by Ding and Ni [DN1; p. 288, Proposition 2.14].
Using Theorem III.C, we can give an easy and conceptually

transparent proof of part (iv) of Theorem II1II1I.B. The first

inequality Al(ud) < 0 1is easy to see. To prove that
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Az(ud) 2 O , we use the following variational characterization

of Az(ud) :

f [dlov|?+v®-v2£  (uy)]
kz(ud) = sup inf L Ofveﬂl(ﬂ). I;w =0
weH, (Q) I v2 0 ‘

0

Since Jd(ud) is the global minimum of Jd on Hd , it is

natural to choose w to be the normal of Md at u, which
is g&(ud) since Md is a level surface of the functional
gq - Let T be the tangent space of Md at uy; - i.e.

T = {¢ € Hl(ﬂ) | gé(ud)¢ = 0} , then for a fixed ¢ € T ,
setting pB(t) = Jd(ud+t¢) for t 2 O, we have B'(0) = O

and B"(0) 2 O since Jd attains its minimum on Md at

uy We now compute,
B(e) = 5 [Lalvtugren)|? + (ugre)?] - [Flagree) .
k Q0 Q
B'(t) = I[dv(ud+t¢)°V¢ + (ud+t¢)¢] - If(ud+t¢)¢ .
Q B Y]
B (6) = [(alvel? + ) - [o26" (ugree)
0 1]

Thus
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0 < B"(0) = [(alvel® + ¥*) - [o2r (uy) -
0 9]

Since ¢ € T 1{is arbitrary, we conclude that

[ ralvel2es®-1" (ug)e?
£ Q

J

Q

| O£ €Ty 20.

in

This implies that Az(ud) 2 0

The element w = gé(ud) may be computed as follows.

r

ga(ugle = [{2(dvuyeve + uge) - [fug)e + uyf’(uyg)el)
Q‘
- [t2rugre - £ugde - ugr (uy)el
o0
A
= ~[f(ud)—udf.(ud)]¢
0

where the second equality follows from the fact that
B'(0) =0 . Thus w = f(ud)—udf'(ud)
Part (iv) is a useful result, for instance, part (v) is

an easy consequence of it. However, we shall not repeat the

proof here.

Remarks
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(1) It is easy to see, from integrating the equation
(III1.1) directly, that the set {x€ | ud(x) > 1} is
non-empty for d small (since uy #1 for ¢ small).

This, together with (i) in Theorem III.B, imply that the c!

norm of u; cannot possibly be bounded independent of d .
for d small. Nevertheless the L® norm of hd is bounded
independent of d as is guaranteed by (ii). This indicates

that should have "peaks"” of finite amplitude when d is

Ya
sufficiently small and thus exhibits "spiky” pattern.

(2) Since p > 1 in (III.1), no nontrivial solution of

{III.1) can be stable (although we do expect the
Gierer-Meinhardt system and Keller-Segal system to have stable
nontrivial solutions). In particular, u, 1is unstable (which
is equivalent to kl(ud) < O , guaranteed by (iv)). However,
P#rt (iv) of Theorem III.B says that Az(ud) 2 0 which, in

some sense, seems to suggest that uy - although unstable, is

the "most stable” nontrivial solution of (III.1). This
implies that the unstable manifold of uy is of dimension one

only. Since there is one conserved quantity in the

(parabolic) Keller-Segal system, u, seems to give rise to a

stationary solution of the Keller-Segal system which is likely

to be stable.
(3) The estimate given by (v) in Theorem III.B is, in
general, best possible. This follows from Theorem 4, p.. 218

in [T].
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(4) (vi) is actually very useful in determining the

"shape” of u, in the radial case. First we remark that

Theorem III.B holds true without any change if 0 1is a ball

and if we restrict ourselves to the class of radial functions.

If we examine all the possible radial solutions of (III.1) in

a ball, it is not hard to see that they may be categorized as

follows (see [N4], [LnN]):

u 4
(A)
VO
|
|
(B)
o s 00 1" o _—"‘—‘/:i
i
>r l—
1
\A‘F
! ]
(C) * ; |
1’- ------ ; 1>_--- . T I ® . 1-_ - — - J
i
. 1ﬁr > 1 > K T >

Note that only (A) exhibits a spiky pattern, and the others

exhibit either boundary layer phenomena or combinations of

spikes and boundary layers. It is easy to see from Part (vi)

of Theorem III.B that u, in this case must be (A).
However, if we do not restrict ourselves to only radial
functions in case 1 is a ball, the solution uy of.(III.l)

guaranteed by Mountain-Pass Lemma (corresponding to the
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critical value ca) which minimizes the "generalized energy”
Jq - must be non-radial if d {is sufficiently small. This
indicates a fundamental difference between Neumann problems
and Dirichlet problems. (Recall that a (any) solution of the
Dirichlet problem (III.2) must be radial ([GNN1]).) This
result may be found in a current joint project of Ni and
Takagi which will appear soon.

(5) In case 0 is an annulus, we claim that uy; fis
also non~-radial if d is sufficiently small. For, again if
we restrict ourselves to radial functions in Hl(ﬂ) ., then the
same arguments in proving Theorem III.B may be carried through
without change except now we have n =1 . In particular, the
estimate (III.4) now reads c: ~ dll2 ., where c: is the
critical value of Jd given by the Mountain-Pass Lemma when
restricted to‘the class of radial functions in HI(Q) . Thus,
for d small, cq # c:'/and the corresponding critical points
must also be different. Therefore uy; cannot be radial.
Notice that this observation appliés equally well to the
Dirichlet problem (III.2). However, the existence of
non-radial solutions to (III.2) (i.e. the Dirichlet problem),
in case 1 1is an annulus, was established earlier by C.V.
Coffman [C].

(6) In the "super-~critical” case p > (n+2)/(n-2) . our
progress is rather limited. However, we do know that in the

radial case (1 is either a ball or an annulus) (III.1)
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possesses a nontrivial‘radial solution if d 1is sufficiently
small, and that (III.1) has no nbnconstant radial solution if
d is sufficiently large. This part seems to agree with the

"sub-critical” case p < (n+2)/(n-2) . We would also like to
give some partial results just to indicate the difference

between these two cases.

Let N be the unit ball. After a change of scale, a

radial solution of (III.1) satisfies

"+ 22y - u+ WP =0 . p > (n+t2)/(n-2) ,

lu'(0) = u'(1/vd) = 0 .

It is not difficult to show that there exists a positive

constant a , independent of d > O , such that

inf u 2 a
Q

for all radial solutions u of (III.1) with u(O0) > 1 . This
marks a basic difference between the behavior of solutions of

these two cases p <{ n* and p > n* . It eliminates the

possibility of the existence of a radial spiky solution which

approaches zero in measure as d approaches zero in the

super—-critical case p > n¥

The critical case p = (n+2)/(n-2) 1is a bit more
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delicate. Some:of our mgthods do carry over to this case;
however, ie;shall not discuss this case here.

(7) Equation (III.1) may be viewed as a singular
perturbation problem when d 1is sufficiently small. .Methods
and techniques developed in that field could be helpful here
in locating the spikes of a particular solution of (III.1) for
general domain . However, we are not able to do this using
singular perturbation techniques, even in the radial case
(wvhen 2 1is the unit ball) which we already know from
Theorem III.B (vi) (see Remark (4) above) that (III.1)
possesses a solution which has only one spike and it is

located at the origin.
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