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Notations and definitions

Let X,Y,{x,ydc\VW(G), f€E(G) and X“Y=ﬂ5. Ue often denote {x)
by x. V(f) denotes the set of end vertices of f. We denote by
3(X,Y;6) the set of edges with one end in X and the other in Y,
and set 3(Xi6):1=3(X,V(6)-X16), e(X,Y16)1=13(X,Y;6)| and
e(X36)1=18(X,V(6)-X;6) . 1(x,y;G) denotes the maximal number
of edge—disjoint patﬂs between x andv&. Ue‘set R:=V(G)—X,
N(x:G):1=(aeV(G)—x | e(a,x5>0), N(X;G):= U N(x3G), and
MNG,k):={ZcV(G) | for each a,beZ, l(a,b;G§§i). In all notations,
we often omit -G. FG/deenotes the graph obtained from G by
contracting X, and for a€X, we denotes the corresponding vertex
in G/X by @. A path P=P[x,y] denotes a path between x and y,
and for a;bGV(P). P(a,b) denotes a subpath of P betwéén a and
b. We call XeV(G) a k-set if IX1>2, IX|>2 and e(X)=k, and a
k-set X is called minimum if for each YgX with |Y|>2, e(Y)>k+1.
For a,beN(x) with a#b, fed(x,a) and ged(x,b), 62'° denotes the

graph (V(G),(E(GIYVh)-{(f,g)), where h is a new edge betueen a

and b and is called a lifting of G at x arising from the
l1ifting of f and g at x. We call Gi’b admissible if for each
y,2eV(G)-x with y#z, Uy,z162'P)=1(y,216).

2. Preliminaries

In this section we assume that k>»1 is an integer and G is a

graph.

Lemma 2.1 ( Mader [3] and [51). If k22, 1(G)>k, seV(G),
and (Fl,Fz)Ca(s). then there exists a cycle C such that

(Fl,Fz)CE(C) and A(G-E(C))2k-2.

f

.

3
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Lemma 2.2 (Mader [21). If xeV(G), e(x)24, IN(x)1>2 and x
is not a cut-vertex, then there exists an admissible 1ifting of

G at x.

Lemma 2.3 (L[8,Lemma 31). If k23, V(G)=,VW,, W, W,=p,
W el'(G,k) and each xeW, has even degree, then we can obtain a
k-edge-connected graph G(W,,k) from G such that W,c V(G(W,,k))

by sequences of vertex-deletions and edge-liftings.

Lemma 2.4 ([81). If k24 is even , l(G)Zk}and‘s,t,aGV(G)
(s=t. or. s#t), then there exists a path Pls,t] such that aeV(P)

“and A(G-E(P))>k-2.

Lemma 2.5. If XeV(G), e(X)=k,and A(G/X)=1(G/X)=k, then
A(6)=k.

Lemma 2.6. If 2(G)Yk, X,YeV(G), X-Y, Y-X, XNY, and XYY are
not empty, and e(X)=e(Y)=k, then k 18 even and
e(X-Y)=e(Y-X)=e(XNY)=k, ' |

- Proof. By simple counting we have
e (X-Y)+e (Y=X)=e(X)+e(Y)-2e(XNY,XUY),

e(XNY)+e(XVY)=e(X)+e(Y)-2e(X~-Y,Y=-X).
Thus e(X-Y)=e(Y-X)=e(XNY)=k, and k=e(X)=e(X-Y)+e(XNY)=0 (mod 2).
Lemma 2.7. Suppose that 2(G)=k>3 and |V(G)I>4. Then
(1) If k is odd, G is k-regu]ar,and xe€V(G), then |N(x)|23{

(2) if k is even, {(x,y)<V(G), e(x)=k,and e(y){k+l, then

e(x,y)<k/2.

Proof. (1) If IN(x)|<2, then for some yeN(x),



el(x,y)2(k+1)/2 and e({x,y})<{k-1.

(2) If e(x,y)dk/2+1, then e({x,y))=e(x)+te(y)-2(k/2+1)<k-1.

3. Proof of Theorem 2

If V(f)=(s,td, tHen By Lemma 2.1, for a ged(s)-f, G has a
cycle C such that (f,g)<E(C) and A(G-E(C))>k-2, and the result
holds. If V(f)=(a,s) and a#t, then by Theorem 1(1) in
(51 G has a path PLa,t] such that £€E(P) and 1(G-E(P))>k-2.

Thus let V(F)”(s.t)=§§, and set T:=V(f)VU{(s,t). We may assume

(see the proof of Theorem 2 and Figures 2,3 in [81)
(3.2) For each xeT, e(x)=k, and for each xeV(GB), e(x)=k or k+i.

We proceed by induction on |E(G)|. We assume that the result

does not»hold in G. Then
(3.3) e(s,t)=0.
(3.4) V(G)-Tva;é.

Proof. Assume V(G)=T. Let V(f)={a,b). Then

2e(s,t)=e(s)te(t)-e({s,t))=e(a)te(b)-e({a,b))=2e(a,b)>0.
(3.5) If XeV(G)-T and |X|>2, then e(X)>k+1.

Proof. Assume e(Xj=k and x€X. By induction G/X has a
required path PCs,tl. If X¢V(P), then P is a required path for
G, thus let %eV(P) and E(P)”BU%;G/X)=(91,92). By Lemma 2.1 G/X
has a cycle C such that (g,,9,)<E(C) and A(B/R-E(C))=k-2. By
combining P and C in G, we get a required path for G (see Lemma

2.3).
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(3.6) If xeV(G)-T, then e(x)=k+l.

VProoﬁ Assume e(x)=k . ay Lemma 2.2 there is an admissible

lifting Gx of G at x. Set G1?=GX(V(GX)‘Xok) (see Lemma 2.3),
Then l(Gl)=k, and by induction Gl has a required path PCs,t].

Let Pl be the corresponding path in G, and let P2 be a simple

subpath of Pl between s and t. Them P2 is a required path for G

(3.7) If (x,y)<V(G)-T and g€d(x,y), then A (G ~%)< *.

(3.8) If XcV(G) is a minimum k-set and (x,y)eX-T, then

el(x,y)=0.

Proof. Assume e(x,y)>0. By (3.7) there is a k—-set Y such

that [YN{x,y)l=1. Then Y—X#¢‘#X—Y. since X is minimum. Then

by Lemma 2.6 e(XNY)=k, Thus XNY={(x)or {y} » contrary to (3,6),
(3.9) If XeV(G) is a k-set, then [IXNT|=2.

Proof. Let X1CX be a minimum k-set (X1 might equal X). By

(3.5) |X1"T|21. Assume X nT=(a). By (3.1).(3.2),and (3.6)

1
IX;-al>2. Let xeX,-a, yeii, and set Glz=G/§1. Then V(G124
and by (3.8) N(xgsl)c{a,?ﬁ. By Lemma 2.7(2) e(x,a){k/2 and
e(xfngl)Sk/Z, contrary to (3.6). Thus |X1”T|22, and similarly

IXnT122. Hence IXNT1=2.
(3.10) G has no k-set.

Proof. Assume that G has a k-set X. Let XiCX and chi be
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minimum k—sets. By (3.9) |XinT|=2 (i=1,2).

(3.;0.1) If Y is a k-set and X "Y# § , then X c¥eX,.

For , if X;-Y#$, then Y-X,;#¢ and YUX,#@, since X, is

minimum. By Lemma 2.6 e(Xl—Y)=e(X1”Y)=e(Y—X1)=k.

Thus IX,1=2 and by (3.6) X,<T. Let X,=Ca,,a,) and a eY. If

lY=-X,1>2, then by (3.9)‘|fY~X INT |=2, and so |YNT|=3, contrary
1 1

to (3.9). Thus |Y—X1|=1, and by (3.6) Y~X1CT. Let Y-X Y.

1=Cag
Y"X2=(a3), and so Xz—aseT as above, let X2—83=(a4). Now

e(a1,32)=e(al,83)=e(53,aa)=k/2. e(T)<k and by (3.4) T#Sﬁ,
contrary to (3.6) or (3.9). Hence XICY. 1f Yﬁxzﬁﬂj, then

similarly XZCY' contrary to (3.9). Therefore YCRZ.

(3.10.2) V(G)=X1UX2.

For, assume V(G)#X1UX2. Then there is a Yciz such that Xng

and e(Y)=k. We choose Y such that |Y| is minimal (Y might equal

22). Let xeY-X,. If N(x)eX,UY, then el(x,X,)>(k+1)/2 or

1 1 1

e(x,?)2(k+1)/2, and so e(Xlux)<k or e(Y-x)<k. Thus for some

y€Y~X1, e(x,y)>0, By (3.7) there is a k-set Z such that
[Zn{x,y)|I=1. We may let Xlﬂl*ﬂs (if not, then we take Z as 7).
Then by (3.10.1) Xlglciz. By choice of Y, Z»-—Y#'¢. By Lemma
2.6 e(Z-Y)=k, contrary to (3.6) or (3.9).

Let X1"T=(al.32) and X2“T=(b1.b2). By (3.8) for each

xexl—T, N(x)c(al,az)UXZ. and for each yEX2—T, N(y)C(bl,bz)le.
By (3.6), for i=1,2, IXil is even and (k+1)|Xi—T|$3k, thus

IXi-T|=0 or 2. By (3.4) we may let X,-T=(x . For i=1,2, if

1'%2
)<k/2-1, Similarly

1

e(ai,X2)2k/2. then e(XZUai)gk, thus e(ai,)(2
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e(xi.Xz)Sk/z (i=1,2). 1If V(F)=(b1,b2}, then e(81,82)=0. By
Lemma 2.7(2) e(al,xi)gk/Z (1i=1,2), and so e(al,xi)>0 (1=1,2).
Similarly e(a2.xi)>0 (i=1,2) and the result follows. If
V(F)=(al,82), then we may let |X2~T|=0, contrary to (3.3). Thus
we may let V(f)=Ca,,b,). Nou ela,,b,)=0. If elb,,Cxs,x,2)0,
et 9168(b2,x1), then e(xl,a2)=0, and so there are gzea(xl,xz)
and 9366(52,x2). e((al,xl,az);G/X2)=e(al)+e(x1)+e(82)—
29(31,(xl,az))23k+1—2(k~1)=k+3. Thus l(G/Xz—(F,gl,gz,ga))2k—2.
Therefore e(bz,(xl,xz))=0, and so |X2~T|=2 (note that
e(b2,32)=0).’ Let X2—T=(y1,y2). Similarly e(az,(yi;yz))=0.
Since (al’bl) is not a separating set, e((xl.xz),(yl.y2))>0.
Let g,8(x,,y,). Then e(x,,a))=ely;,b,)=0, and for g,€d(x,,x,),
9366(x2,32), 94%9(y yy5) and gsea(yz,bz),

A(G-(Ff })=k-2.

991’92993v94’95
. By (3.7) and (3.10) for each xeV(G)-T, N(x)cT. Let

5. k1TI1<4k-2 and IT| is even , thus and by (3.4)

ITl=2, Let T=(x

V(F)=(ai,a
| 1.><2). By (3.10) e(s,ai)<k/2 (i=1,2), and so by

(3.3) els,{x 3)>0 and e(t,{x 2150, Ue may let e(s,x,)>0,

1°%2 1°%2 7
then e(t,x1)=0, e(t,x2)>0 and e(s,x2)=0. (31.82) is not a
separating set , thus'e((s,xl).(t.x23)>0, and so there is a
glea(xl,xz). For i=1,2, e((s,xzrai})23k—29(ai,(s,xz))z
3k-2(k-1)=k+2. Thus for gzea(s.x1> and g5€8(t,x,),

992

3. Proof of Theorem 1

The proof of Lemma 4.1 will be giQén Jater.
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Lemma 4.1. Suppose that k4 is an even integer, n>3 is an
integer, G is a 2-connected graph, V(G)=TUU19U2 (disjoint
Union)' T=(81".‘,5n’t1,‘."tn)' lT'=2n. Tuuler(G’k), »
e(si)=e(ti)=k (1<{ilk), for each xeul, e(x)=k or k+1l, and for
each x€U2, e(x)<k is even. Then there is a subgraph G*cG such
that

- (a) for some 1(i<j<1¢n, G-E(G") has edge-disjoint paths
Pltsi,ti], P2[sj’tjj and P3[si.t]].

(b) V(6")=K; UK, and K,;"K,=¢,

2 1 72
(C) T“(Si’ti’sj’tj's] .t‘}CKler(G*’k_d)’

(d) for each x€K2. e(x3G") is even.

Proof of Theorem 1

By (1.1) it suffices to prove g(3k){4k and g(3k+2){a4k+2
(k>2). Let a=0 or 1, m>2 is an integer, k!=4m+2a and ni=3m+2a.
Assume that G is a k-edge-connected graph and
(51,....sn,t1,...,tn)!=T are vertices of G (not necessarily
distinct). We prove that there are edge—-disjoint paths
Pl,...;Ph such that Pi joins s, and tiA(lgiSn). Ve may assume

(see the proof of Theorem 2 and Figﬁre 3 in £61)

(4.1) e(si)=e(ti)=k (1<i<{n) and For each xeV(G), e(x)=k or
k+1.

We proceed by induction on lIEGYI. If 8485 then by Lemma 2.4

there is a path PCt,,t,] such that s,eV(P) and 1(G-E(P))k-2.

By induction G-E(P) has edge-disjoint paths Patéa.t Jyenn,

3
PnEsn,th. Thus let IT|l=2n. By Lemma 4.1 there is a subgraph

G*<G such that (a),(b),(c) and (d) hold. By Lemma 2.3
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G*(Kl,k—d) is (k-4)-edge-connected, and by induction G*(Kl,k—d)
has (n-3) edge-disjoint paths joining (sr’tr) (1<r<n, ré#i, j, 1),

Thus the result holds in G.
Proof of Lemma 4.1

Suppose that G satisfies the hypothesis of Lemma 4.1, but
the result does not hold. Choose G with this property such

that |E(G)| is minimal.

(4.2) U,= @.

Proof. Assume xEU2. Then e(x)>4, By Lemma 2.2 we have an
admissible lifting Gx of G at x. The result holds in Gx’ and

so in G.

(4.3) If 1<idjsn, G1CG is a subgraph such that G-E(G,) has

1
edge—disjoint paths Pitsi,ti] and Pztsj,tj] , V(Gl)=K1UK2,
K1"K2=y5. T—(si,ti,sj,tj)CKl,and for each xGKZ, e(x;Gl) is

even, then K1¢r(61,k—2).

Proof. Assume Kiér(Gl.k—2). Let 1$l$n and 1#i,j. By Lemma

2.4 G1 has a path P[sl.t]] such that 2(G,-E(P))>k-4., Let

1

G*!=01—E(P).

(4.4) 1¥F xeul. then e(x)=k+1.

Proof. Assume e(x)=k. By Lemma 2.2 there is an admissible
Tifting Gx of G at x. The result holds in Gx with

V(Gx)=TU(U1~x)U(x). and it also holds for G.

(4.5) 1I¥f x,yEU1 and fed(x,y), then A(G-f)<k-1.
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(4.6) If a,beT,’ then e(a,b)=0.

Proof. If Fea(sl.tl). then by Theorem 2 there is a path

P[sz.tzj such that f¢E(P) and A(G-E(P)-f))>k-2, contrary to

(4.3)., 1f Fea(si,sz). then by Theorem 2 G has a path P1E53’t3]
such that F#E(Pl) and X(G—E(Pi)—F)2k~2. By Lemma 2.4 G—E(Pl)—F
has a path P2[t1,t2]/such'that 51€V(P2) and

I(G—E(PiUP )-f)ok-4.

2

(ao?) IF X1,X26U1' alpazeT’ Fiea(xipal) (i=1p2) Bnd
gﬁa(xz.az). then V(G)—a1¢F(G—(F1,f2),k).

Proof. Set 81!=G—(F1.F2), and assume V(G)-aler(Gl,k). Set

GZ!=81(V(G)—ai,k). 1f ay =8y and 82=t1. then by Theorem 2 82

has a path P[sz,tzl.such that gf#E(P) and A(GZ—E(P)*g)zk—Z.
contrary to (4.3). 1¥ a,=8, and 8,=95, then by Theorem 2 G2
has a path P1[53't3] such that gﬂE(Pl) and l(Gz—E(Pl)—g)zk—Z.
By Lemma 2.4 Gz—E(Pi)—g has a path P2Et1.t2] such that a,eV(P,)

2 2

and 1(G —E(P1UP2)~9)2k—d.

2

(4.8) G has no k—-set.

Proof. Assume X is a minimum k-set. Let ueX. If x.yGXr\M% and

fed(x,y), then V(G)-(x,y)el(G-f,k). For, if not, then for some
k-set i, |Z“(x{y)|=1. Then Z—X#F‘#XUZ and by Lemma 2.6

e(X-Z)=e(XNZ)=k. Thus [X|=2 and e(x)=e(y)=k,
contrary to (4.6). Thus by (4.5) N(XMU, 36/X)eTU(E),

and’by (4.6) X"UlijéixﬂT. By (4.4) |XnU1|22, and so IXNT|>2.
Let aeXNT. Since e(a,X)<(k/2 (otherwise e(X-a)<k), by Lemma 2.2

for aome x,y€N(a)nNX, G:’y is admissib]é. By (4.6) (x,y)Cui.
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F )'k)o Let

Let Fiea(a.x) and era(a,y), then V(G)-ael'(G—-(f 2

1’
be( (N(x)UN(y))nX)-a, then beT, contrary to (4.?)

By (4.2),(4.,5),(4.6) and (4.8) G is a bipartite graph with
the partition (T,Ui). Let ae¢T. By Lemma 2.2 for some

x,y€N(a), G:’y is admissible and we can deduce a contradiction

(see the proof of (4.8)),
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