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Abstract
Rough sets, which correspond to the approximation of sets by means
of equivalence relations modeling indiscernibility, are extended to
fuzzy sets and fuzzy equivalence relations. This paper proposes a
logic based on the fuzzy rough sets. Then, it is shown that the sat-

isfiability problem for this logic is solvable.

§1 Introduction

In {1], 2. Pawlak introduced rouéh sets, which correspond to the
approximation of sets by means of equivalence relations modeling
indiscernibility. 1In [2], E. Orlowska and Z. Pawlak discussed theo-
retical foundations of knowledge representation from a point of view
of modal logic. Further, in [3] E. Orlowska presented a logic of
indiscernibility relations.

Recently, the problem of knowledge representation has been one
of the central topics of artificial intelligence. Along this line,

in [4] the present author has given a survey of relationships be-
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tween various non-standard logics and knowledge representation. In-
discernibility relations are primarily based on equivalence relations
and thus its logic corresponds to the modal logic S5,

Meanwhile, the theory of fuzzy sets introduced in L.A. Zadeh [5]
is a well-established and active field, with numerous apﬁlications.
In [6], the author introduced fuzzy rough sets based on extended
equivalence relations that correspond to the similarity proposed in
Zadeh [7].

The purpose of this paper is to propose a logic based'oﬁ the fuzzy
rough sets and some relevant notions and then to show that the satis-
fiability problem for this logic is solvable. We assume that readers
are familiar with primitive definitibns of fuzzy rough sets [6].

This paper is partly motivated Dubois and Prade [81.

§2 Terminologies
Lét us consider a system $=(0B, AT, VAL, f). In this system S,
OB, AT, vAL and f are defined as follows:
OB is a set (not necessary finite) of objects,
At is a set (not necessary finite) of attributes,
VALa is a set of values of attribute a for each ae AT, and VAL
is the union of all the sets VALa,

f is a mapping from OB X AT into VAL,

_We consider a subset A of AT and a relation A in the set OB de-
fined as follows:
- .
(oi,oj)e A iff f(oi,a)=f(oj,a) for each aeA.

"~

¢ =0B X OB.
Relation & is refered to as indiscernibility with respect to attri-
butes for the set A.

Let R be an equivalence relation defined on X. [x]R stands for
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the equivalénce class of x in the sense of R.
pefinition 2.1 Let S be a subset of a given set X and R be an equi-
valence relation defined on X.
R, (S)={xe X | [x] &8},
R*(S)={xe X | [x];~S F ¢}.
R, (S) and R*(S) are called a lower and an upper approximation of S

with respect to R, respectively.

Definition 2.2 A rough set is a collection of objects which cannot

be precisely characterized in terms of the values of a set of attri-
butes, while a lower and an upper approxiomation of the collection

can be characterized in terms of these attributés.

Now, let us consider the fuzzy case of the previous definitions.:
Fuzzy sets are defined by their membership function u [5]. Let S
and T be fuzzy sets. The membership functions of SAT, SVUT, and S
were defined as follows:

Hg Ap (¥)=min(ug (%), un(x)),

Hg up (¥)=max (ug (%), Hp(x)),

ug(x)=l_- us(x) o

A fuzzy relation R is defined as a fuzzy collection of ordered
pairs. We treat here a special case of the fuzzy relation. That is,
we consider similarity relations introduced in [7]1. The similarity

is essentially/a generalization of the notion of equivalence, and

it is very useful concept for the theory of knowledge representation.

Definition 2.3 A similarity relation R,, inyx, is a fuzzy relation

in X which satisfies the following (a)-(c):
(a) reflexive, uR(x,x)=l for all x in dom R,
(b) symmetric, uR(x,y)=uR(y,x) for all x,y in dom R,
(c) transitive, uR(x,z);:\/ (ug (%,¥) \ug(¥,2)) for all x,y,z in

Y
dom R.

s
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Definition 2.4 For o in [0,1l], an a-level set of a fuzzy set S in

X is a non-fuzzy set defined as S ={x€X | Hg (%) 2 al.

Definition 2.5 For o in :[0,1], an o-level set of a fuzzy relation

R is a non-fuzzy subset of X2 defined as Ra={(x,y)[ uR(x,y)g;a}.

Definition 2.6 For x of a non-fuzzy set X, a fuzzy set S, ae[0,1]

and a similarity R, My (S)(X) and My (S)(X) are defined as follows:
o ~a .

u§a(s) (x) sup uS(X') '
uR(x,x')g o
uBa(S) (X) inf ]JS (X’) °

uR(x,x')ga

Notice here that E; and Ba correspond to R* and R, of rough sets,

respectively.

§3 Fuzzy rough logic

In this section, we propose a logic based on fuzzy rough sefs.
First, we give the syntax. In this logic, we use the following
symbols:

(1) Propositional variables: X,Y,Z,o..,xl,xz,... ’

(2) Logical symbols: ﬁ\(and), v (or), 7 (not),

(3) similarity operations: R+ RB""’ Syr =+ (asB el0,1]),

(4) Parentheses: (,) .

Definition 3.1 A well-formed formula (for short wff) is defined

as follows:
(1) Propositional variables are wff's.

(2) Let A and B be wff's. Then, (A)A(B), (A)V(B), T(A), and

ﬁ&(A) are wff's,

(3) A wff is defined by the above (1) and (2) only.

In (2) of Definition 3.1, parentheses (,) are abbreviated in the
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usual rules. Further, Ba is defined as 1§&1.
Example (RO.S(XVY)A§0°7(XVWZ))V RO.ITX is a wff.

The proposed fuzzy rough logic is denoted by FRL. Let us now
consider the semantics of FRL. Let L be the set of propositional
variables and OB is the set of objects. A model is a triple

<OB, {Rv} , U>.

pefinition 3.2 An o-satisfiability of a wff A is defined as follows:

‘There exists an object x in a model M=<OB,{RV} ,u> such thaf
(1) The case that A is a propositional variavle X:

Considering X as a fuzzy set, X is a-satisfiable iff ux(xlza o
In the following cases, propositional variables are always consi-
dered as fuzzy sets.
(2) The case that A is a wff A, VA,, or Aj ARy, or TA,:

AlVAZ is a-satisfiable iff Ua U a (x) >a o

1 "2
AjaB, 1s o-satisfiable 1iff uAln Az(x)zcx
A, 1is a-satisfiable iff ux(x)>0.
1 A=

(3) The case that A is a wfflﬁéAi:
RBAl is o-satisfiable iff uﬁéAl(X)Z'a .
When a wff A is o-satisfiable at x of M, this is denoted by

M,x}% A .

Example

Every wff is O-satisfiable.
X A71X is not 0.6-satisfiable.

§6.3X is 0.5-satisfiable.

§4 Decision problem
Here, we give a result of a decision problem on the logic FRL.
That is, we show a positive solution to decide whether or not an

arbitrary wff of the logic based on fuzzy rough sets is a-satisfiable.

-
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Lemma 4.1 The following (l)—(4):hold.
(1) vg VG(x) > a(:HIF(x)za or uG(x)z a
(2)uFAG&)§a¢§%JmZa and ., (x) >a .
(3) “1F(X) 2o SUg (%) £ 1-a.

(4) ﬁ’BF(X)Z 0& Ay ((x,y) 2 R and up(y)2a ).

Proof

These (1)-(4) are easily shown from the definitions. //

Lemma 4.2 Let A be a wff of FRL, Then, uA(x)Zu is transformed to
a formula A¢ in which u-operations are just before propositional
variables and y, (x)20 gAd; is satisfiable at x of M,

Proof

This is obvious from Lemma 4.1 . //

Generally, A¢ means a wff having p-operations just before pro-
positional variable. which is obtained by repeated applications of
(1)-(4) of Lemma 4.1 irom a wff A of FRL,

Now, we consider the problem to decide whether or not an arbit-
rary wff A is o-satisfiable. Hereafter, we assume that o is an arbi-
trary but fixed number. First, we can assume that OB for A is in-
finite. Because for a finite case the a—satisfiabilify of A is
decided by checking all cases.

from Lemma 4.2, A¢ can be aiso considered as a wff of the first-
order predicate logic which consists of some duadic predicate letters
Rd(x,y), SB(z,x),... and monadic predicate letters xa(x), YY(u_),...°
According to this consideration, we define the equivalence class
over OB. Let M be a model and S(A¢) be the set consisting of all -
formula ®¢ 's which are obtained from subformulas ¢'s of A,

Definition 4.3 For x,y in OB, x=&vV {M,A¢) ‘" (for short, x=y in

case that there is no confusion) is defined as follows:

x=y iff M,xpo’ & M,yke® for all o%¢ s@a%),
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and ‘

M,x.P(BB®)¢¢¢ M,yt:(58¢)¢v for all Rg's in A and all sub-
formulas ¢'s of A,

and

M,x |=(58§Yq>)¢e=> M,y }:(58§Y¢>)¢‘ for all Ry's and 5 's in A

and all subformulas ¢'s of A.

It is easily known from the definition that =~ is an equivalence
relation. Thus, [x] defined as [x]={x' | x=x'} is an equivalence

class. Also, it is known that OB is divided into finite equiva-

‘lence classes by this relation. This is denoted by OB#.

By making use of this [x], the relation Rg over OB#X.OB# is de-

fined as follows:

(1x1,1y]) € RE

iff
M,x F(BB¢)¢¢#» M,y F(BB¢)¢ for all RB's in A and all subformulas
¢'s of A,

and
M, x F(BB§N¢)¢:¢$ M,y k(§B§Y¢)¢ for all Ry's and SY'S in A and all

subformulas ¢'s of A.

It is easily known from the definition of [x] that this relation Rg

is well defined. Then, M# is defined by {OB#, {Rt}, u#> . It is

shown without difficulty that M# is a model.
Theorem 4.4 (the main theorem)
M,xFa A iff M,[x]F‘-& A .

Proof

We prove this theorem for a case that A is of form BBA1° For
cases that A is of form AlVA2 or Al"AZ or 7Al, it is easily shown
by defining ui([x]) as ux(x)o

In the following (i) and (ii), o is a fixed number of [0,1].

We prove (i) and (ii) by the induction of number of V, A7, Rv in A,



(i) Let us assume that BBAl is o-satisfiable at [x] in a model M#.
- The base of induction is obviéus by defining u# . The induction
step is shown as follows: It is easily shown that (x,y)eRB implies

(Ix1,[y]) e RE . Thus, we know that VIy] ((Ix],[y])eRE 5w, (Iy])2a)
1

implies Yy({x,v)éR, ou, ([yl)2a). Therefore, we have M,xER,A
B 'Al a~B81

from the hypothesis of induction,
(ii) From M,xk&gBAl we must M'[X]kaBBAl' The base of induction
is also ovbious. For the proof, it is sufficient to show

Yy ((x,¥)eR, > 1, (y)2a) = Viy] (([x], [yDert 5 u (1y1) > 0.
B Al B Al

But, this is shown by making use of the following fact and the hy-
péthesis of induction.

Vy((x,y)eRBDuA{y)za) & ( M,x\:(BBAl)¢<==> M,y F(58A1)¢):> M, YERA; -
From the above (i) and (ii), we get this theorem. /7

From Theorem 4.4, we have the following corollary:

Corollary 4.5 The decision problem to decide whether or not an

arbitrary wff A of FRL is o-satisfiable is solwvable.
Proof

From Theorem 4.4, we can determine a cardinal number of OB# which
is finite and depends on a given wff A.

Thus, we get this corollary. //
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