# SIEGEL MODULAR FORMS AND QUATERNION ALGEBRAS

(On a construction of H. Yoshida)

bу

Siegfried Böcherer and Rainer Schulze-Pillot

In two interesting papers [Y1, Y2] H. Woshida constructed a lifting from pairs of automorphic forms on a quaternion algebra to Siegel modular forms of degree two. However the non-vanishing of his construction was proved only in a weak form [Y2, Theorem 6.7].

In this paper we describe two approaches to Conjecture 7.6 of [Y1] (= Conjecture B of [Y2]).

Our first appoach was arithmetical in nature: We express (a certain average of) the Fourier coefficients of our Siegel modular form in terms of the Fourier coefficients of two modular forms of weight  $\frac{3}{2}$ . In this way we do not get a definite result concerning the non-vanishing, but we get some insight into the arithmetic of our Siegel modular forms.

The second approach uses properties of automorphic L-functions and leads to a full proof of Yoshida's conjecture for weight 2. We shall describe - without any technical details - both approaches and some applications. This exposition does not reflect the chronological order of our research, e.g. the "first" approach appears in the last chapter!

For details we refer to [Bö-Sp 2]; some of our results were announced in [Bö-Sp 1].

I

# Chapter I: Yoshida's lift and some problems related to it

Let  $N=q_1\dots q_t$  be a square-free number (fixed throughout) and let D be the quaternion algebra over  $\mathbb Q$  ramified in  $^{\infty}$ ,  $q_1$ , ...,  $q_t$ . We denote by R some maximal order of D and by  $R_p$  its localization. For the adelization  $D_A^{\star}$  of  $D^{\star}$  we have a double coset decomposition

 $D_{A}^{x} = \bigcup_{i=1}^{H} D^{x} y_{i} K$ 

where H is the class number of D, K is defined as  $\prod_{p,\infty}^{\times} R_p^{\times}$  and we assume that the  $y_i$  have reduced norm 1.

We define 4-dimensional lattices  $L_{ij}$  in the Q-vector space D by  $L_{ij} := D \cap y_i \left( \overline{\bigcup_p} R_p \right) y_j^{-1}$ ; these  $L_{ij}$  correspond to integral quadratic forms  $Q_{ij}$  which we identify with half-integral positive definite symmetric matrices of size 4 with

 $\det(2Q_{ij}) = N^{2}. \text{ We consider theta series of type}$   $\theta_{ij}^{n}(Z) = \sum_{\mathbf{x} \in \mathbb{Z}^{(4,n)}}^{2\pi i \operatorname{trace}(\mathbf{x}^{t}Q_{ij}\mathbf{x}^{z})}$ 

with  $Z \in \mathbb{H}_n$  (= Siegel's upper half space of degree n). We shall denote by  $\theta^n$  the  $\mathfrak{C}$ -vector space generated by all the  $\theta^n_{ij}$ ; this is known to be a subspace of  $\mathcal{M}^n$ , by which we mean the space of all Siegel modular forms of degree n and weight 2 with respect to  $\Gamma^n_o(N)$ . By  $\theta^n_{cusp}$  and  $\mathcal{M}^n_{cusp}$  we mean the corresponding subspaces of cusp forms.

Now let  $\mathcal{A}$  be the the space of right K-invariant automorphic forms for D, that is the space of all functions  $\mathcal{P}: D_A^\times \longrightarrow \mathbb{C}$  satisfying  $\mathcal{P}(\mathcal{V}g\,k) = \mathcal{P}(g)$  for all  $\mathcal{V}\in D_A^\times$ ,  $g\in D_A^\times$ ,  $k\in K$ . Yoshida's construction can now be described easily (we do it for degree n instead of degree 2):

For any  $n \geqslant 1$  we define

$$Y^{n}: \begin{cases} A \times A & \longrightarrow & \bigoplus^{n} \subset \mathcal{M}^{n} \\ (P, Y) & \longmapsto & \sum_{i,j=1}^{H} \frac{1}{e_{i}e_{j}} Y(y_{i}) Y(y_{j}) e_{ij}^{n} \end{cases}$$

Here  $e_i$  denotes the order of  $R_i^x = L_{ii}^x$ .

The main problem is to study the (non-) vanishing properties of those mappings  $Y^n$ . Yoshida mentions two obstructions to non-vanishing:

1. Obstruction: If f and f are eigenforms which are not proportional to each other, then  $Y^1(f, f) = 0$ . To describe the second obstruction, we recall that each  $q \mid N$  gives rise to an involution on f. For any map f:  $\{q_1, \dots, q_t\} \rightarrow \{\pm 1\}$  let f be the corresponding eigenspace for these involutions.

2. Obstruction: For 
$$f \in A^{\epsilon}$$
,  $\gamma \in A^{\epsilon}$  with  $\epsilon \neq \epsilon$  we have  $Y^{n}(f,\gamma) = 0$  for all n.

Roughly speaking Yoshida's conjecture says that these two obstructions are the only obstructions to non-vanishing. We shall see below that this is almost true, we shall however discover a third (more subtle) obstruction.

For later purposes it is helpful to divide the vanishing problem into three different problems.

- (A) "Stable non-vanishing": Is there any n > 1 with  $Y^n(\mathcal{L}, \mathcal{V}) \neq 0$ ?
- B) Which is the smallest n with  $Y^{n}(\sqrt[4]{\gamma}) \neq 0$ ?
- Let  $n_0$  be the smallest n with  $Y^n(\not, \uparrow) \neq 0$ ; can we describe  $Y^n(\not, \uparrow)$  for  $n > n_0$  by some kind of (Klingen type)

  Eisenstein series attached to  $Y^{n_0}(\not, \uparrow)$ ?

Concerning B) and C) we should mention here (and we shall use this tacitly in the sequel) that  $F = \theta^n$  is a cusp form iff  $\phi F = 0$ , where  $\phi$  is the Siegel  $\phi$  - operator; so we do not have to care about "several cusps".

There are some more problems related to the Yoshida-lift:

- (D) "scalar product formulas"
- $\widehat{E}$ ) Relations to modular forms of weight  $\frac{3}{2}$
- Yoshida has shown that  $Y^2(1, Y)$  satisfies the Maaß-relations. We may ask more generally whether the Fourier coefficients of  $Y^n(Y, Y)$  have some special properties.

In chapter II we shall describe our proof of Yoshida's conjecture. Chapters III and IV will deal with  $\stackrel{\frown}{\mathbb{E}}$  and  $\stackrel{\frown}{\mathbb{F}}$  (respectively).

# Chapter II: Non-vanishing properties of Y<sup>n</sup> and applications (The method of L-functions)

To prove the conjecture of Yoshida, we make extensive use of properties of automorphic (standard-) L - functions. This should not be surprising because the relevance of these L-functions for problems related to theta series is now well known (e.g. [Bö], [Bö], [Gr], [We]). Our proof of Yoshida's conjecture has essentially three ingredients:

- -- Solution of problem A ("stable non-vanishing")
- -- A characterization of  $\theta_{\text{cusp}}^3$  inside  $\theta^3$  in terms of automorphic L-functions
- -- A theorem of A. Ogg

The first ingredient is the easiest one:

Proposition: For 
$$0 \neq \ell \in \mathcal{A}^{\mathcal{E}}$$
,  $0 \neq \ell \in \mathcal{A}^{\widetilde{\mathcal{E}}}$  we have 
$$Y^{n}(\ell, \ell) = 0 \quad \text{for all } n \iff Y^{3}(\ell, \ell) = 0$$

$$\iff \mathcal{E} \neq \mathcal{E}$$

The first equivalence follows from a result of Kitaoka [Kit] on the linear independance of theta series. To prove the second assertion, one has to understand precisely under which conditions two lattices  $L_{ij}$  and  $L_{i'j'}$  are isometric.

Let  $\mathcal{K}_N^n$  be the "N-integral" Heckealgebra (spanned by double cosets  $\Gamma_O^n(N) {M^{-1} \ O \ O \ M^t} \Gamma_O^n(N)$  with M integral,  $\det(M)$  coprime to N). It is known that  $\mathcal{M}^n$  has a basis consisting of eigenforms of  $\mathcal{K}_N^n$ ; to such an eigenform F we attach the standard L-function

$$D^{N}(F,s) = \prod_{p \nmid N} \frac{1}{1-p^{-s}} \prod_{i=1}^{n} \frac{1}{(1-\alpha_{ip}^{i} p^{-s})(1-\alpha_{ip}^{-1} p^{-s})}$$

where the  $\chi_{ip}$  are the Satake-parameters of F.

Our second ingredient is the crucial

Theorem: Let  $0 \neq F \in \Theta^3$  be an eigenform of  $\mathcal{H}_N^3$  with  $\varphi^3 F = 0$ ; then

$$F \in \Theta^3_{\text{cusp}} \iff \text{ord } D^N(F,s) \geqslant t$$

Indication of proof:

"  $\Longrightarrow$ ": We use an integral representation for  $D^N(F,s)$  which involves a (pullback of a) degree 6 Eisenstein series. Then the claim follows from the results of Feit [Fe] on the poles of such Eisenstein series and by a careful analysis of the "bad primes" (for this analysis we need that F is in  $\theta^3$ ). "  $\Leftarrow$  ": Let us assume that F is not a cusp form. The case  $\varphi^2 F \neq 0$  reduces everything to elliptic cusp forms - this is easy. So we suppose that  $\varphi F$  is cuspidal; for all  $G \in \theta^2_{CUSD}$ 

which are eigenfunctions of  $\mathcal{M}_N^2$  we can prove an identity (analogous to the one in [Bö<sub>4</sub>] for level 1) \*)

$$\sum_{i,j} \frac{\langle G, \theta_{ij}^2 \rangle}{e_i e_j} \theta_{ij}^2 = c \operatorname{Res}(D^N(G,s) G$$
(\*)

This shows that  $\mathbf{D}^{\mathbf{N}}(\mathbf{F},\mathbf{s})$  has a pole in s=1 and therefore

$$D^{N}(F,s) = \zeta^{N}(s-1) \zeta^{N}(s+1) D^{N}(F,s)$$

cannot be of order  $\gg$  t in s=1 (Here  $\searrow^N(s)$  denotes the N-restricted Riemann zeta function).

Now let  $0 \neq f \in A^{\epsilon}$ ,  $0 \neq f \in A^{\epsilon}$  be eigenfunctions of the Hecke algebra. To make the theorem above applicable to our problem, we should first determine the standard L - function of  $F := Y^3(f, f)$  in terms of data attached to f, f, by the results obtained so far it is clear that F is non-zero!

Let  $\widehat{f}$ ,  $\widehat{f}$  be elliptic modular forms of weight two corresponding (via Eichler-Shimizu-Jacquet-Langlands) to f, f and let a(p), b(p) be their eigenvalues for the usual Hecke operator T(p),  $p \not f N$ .

We define  $\langle (p), \langle (p), \beta(p), \beta(p) \rangle$  by

$$B(p) + B(p) = b(p)$$
  $B(p) \cdot B(p) = p$ 

By some local computations we get

$$D^{N}(F,s) = \langle N(s) \rangle^{N}(s-1) \rangle^{N}(s+1) L_{sym}^{N}(\hat{\gamma}, \hat{\gamma}, s+1)$$

with 
$$L_{sym}^{N}(\hat{\gamma}, \hat{\gamma}, s) =$$

$$\frac{1}{(1-4(p)B(p)p^{-S})(1-4(p)B(p)p^{-S})(1-4(p)B(p)p^{-S})(1-4(p)B(p)p^{-S})}$$

\*) We shall use the symbol "c" several times in the sequel to to indicate constants  $\neq 0$ ; of course these constants do not coincide in general.  $\langle , \rangle$  is the Petersson scalar product.

If  $\uparrow$  is not cuspidal - this means that  $\uparrow$  is just a constant - we have

If we summarize all these informations, we see that we have indeed obtained a  $\underline{\text{third obstruction}}$  for non-vanishing, now in terms of an  $\underline{\text{analytic}}$  condition on an automorphic L-function:

For  $\Upsilon$ ,  $\Psi$  as above - but not both constant - we have  $\Upsilon^3(\Upsilon,\Upsilon)$  cuspidal iff  $\Upsilon^2(\Upsilon,\Psi)=0$  iff  $L^N_{\text{sym}}(\widetilde{\Upsilon},\widetilde{\Psi},2)=0$ . Surprisingly the latter condition is possible only in very few cases:

- a) If f and f are proportional to each other we may apply a classical result of Rankin, which says that  $L_{\text{sym}}^{N}(f, \widetilde{f}, \widetilde{f}, s)$  has a first order pole in s=2 with residue beeing essentially equal to the Petersson scalar product  $\langle f, f \rangle$ .
- b) If f and f are both non-constant and not proportional to each other, we can apply a theorem of Ogg [0], which says that  $L_{\text{sym}}^{N}(\widetilde{f},\widetilde{f},2) \neq 0$  in other words  $Y^{2}(f,f) \neq 0$ .
- c) It remains the case where precisely one of the automorphic forms let us say (-) is constant. Since  $L^N(\gamma,2)$  is different from zero (convergent Euler product !) we get  $Y^3((\cdot,\gamma)) \text{ cuspidal iff } L^N(\gamma,1) = 0$

Since the case f,  $\psi$  both constant is somewhat trivial (it just produces a Siegel Eisenstein series) we omit it from the formulation of the

Final result: If  $0 \neq 1$ ,  $0 \neq 1$  are eigenfunctions in  $4^{\epsilon}$  with 1 not constant, then

- a)  $Y^3(\varphi, \psi) \neq 0$
- b)  $Y^2(f,f) = 0$  iff f = const and  $L^N(\widetilde{\psi},1) = 0$
- c)  $Y^{1}((,,)) = 0$  unless  $\mathcal{C}$  and  $\mathcal{C}$  are proportional

### Complementary remarks

1) Linear independence of theta series. According to a conjecture of Andrianov [An] and Yoshida [Y2] on the linear independence of theta series we should have  $\theta_{\text{cusp}}^3 = \{0\}$ . Our results show that (via the map  $\Psi \mapsto Y^3(1, \Psi)$ )  $\theta_{\text{cusp}}^3$  is isomorphic to  $A^0$ := linear span of those eigenforms  $\Psi$  in  $A_{\text{cusp}}^{\varepsilon_0}$  with  $L^N(\widehat{\Psi},1) = 0$ ,

where  $\mathcal{E}_s$  is the constant map  $\mathcal{E}_s: \{q_1, \ldots, q_t\} \longrightarrow \{1\}$ . In general,  $\mathcal{A}^0 \neq \{0\}$ , as the example N=q=389 shows (see [SP], [Gr] and [Ha]). Anyway, the space  $\mathcal{A}^0$  describes precisely up to which amount the conjecture of Andrianov-Yoshida is (not) true!

2) Scalar products. Take f,  $\forall \epsilon \in A^{\epsilon}$  with  $0 \neq Y^2(f, \psi)$  cuspidal. Then we know two representations of  $Y^2(f, \psi)$  as linear combinations of theta series – one involving the values of and  $A^{\epsilon}$ , the other one involving the scalar products  $\langle F, 0_{ij}^2 \rangle \langle f, \psi \rangle$  eigenforms, see (\*)). Actually these representations are the same

Theorem: If f,  $\psi$  and F are as above then

a) 
$$\langle F, \Theta_{ij}^2 \rangle = c \operatorname{Res}_{s=1} D^{N}(F,s) \left\{ f(y_i) f(y_j) + f(y_j) f(y_i) \right\}$$

b) 
$$\langle F, F \rangle = c \operatorname{Res}_{s=1} D^{N}(F,s) \{ f, f \} \cdot \{ \Psi, \Psi \}$$

where  $\{\ ,\ \}$  is the canonical scalar product on  $\mathcal A$ . We have similar formulas also for the degree 1 and degree 3 cusp forms produced by Yoshida-lifts. We sketch a proof of the theorem above: We consider the degree 3 cusp form

c Res D<sup>N</sup>(F,s) Y<sup>3</sup>(
$$\{\gamma, \gamma\}$$
) -  $\sum_{i,j}$   $\frac{1}{e_i e_j} \langle F, \theta_{ij}^2 \rangle \theta_{ij}^3$ 

All we have to show is that this function is identically zero! But this follows from the fact that this function is again an eigenform of  $\mathcal{H}_N^3$  with the same eigenvalues as those of the non-cusp form  $Y^3(\mathcal{C},\mathcal{V})$ ; by the results above, it must be zero.

3) Eisenstein series of Klingen type. From general properties of pullbacks of Eisenstein series (see [Bö<sub>2</sub>] or [Ga]), combined with a version of Siegel's theorem, we see that for  $F \in \mathcal{M}_{cusp}^2$  indeed

$$\sum_{i,j} \frac{1}{e_i^e_j} \langle F, \theta_{ij}^2 \rangle \theta_{ij}^n$$

is essentially (a residue of) an Eisenstein series of Klingen type attached to F. From this (and the scalar product formulas above) we can get a solution of Problem (C); similar arguments also work for the degree 1 and degree 3 cusp forms.

4) In a letter [Y3] Yoshida kindly informed us that he has also made some progress towards his conjectures [Y1, Y2]. His methods are different from ours. In particular – using results of Waldspurger – he has also obtained our result on  $Y^2(1, \gamma)$  and an unconditional proof of Theorem 6.7 of [Y2].

# Chapter III: Modular forms of weight $\frac{3}{2}$

In this chapter we restrict ourselves to t=1, so N=q is a prime; we write  $\mathcal{A}^{\frac{1}{2}}$  instead of  $\mathcal{A}^{\frac{1}{2}}$ . The basic facts which we need in this chapter can be found in [Gr], [Ko], [Kr], [Y2]. To each maximal order  $R_i = L_{ii}$  of D we attach a ternary lattice

$$R_i^0 := \left\{ x \in 2R_i + \mathbb{Z} \mid trace(x) = 0 \right\}$$

and a ternary theta series

$$\mathcal{N}_{i}(\tau) = \sum_{x \in R_{i}^{0}}^{7} e^{2\pi i \operatorname{norm}(x)}.$$

Following [Ko] we define a space M of those modular forms g of weight  $\frac{3}{2}$  with respect to  $\int_{0}^{\infty} (4q)$  which satisfy in addition  $g(a) = \sum_{D = 0}^{\infty} e^{2\pi i D \cdot L}$  with a(D) = 0 unless  $-D \equiv 0$ , 1 mod 4

Even more important for us is the subspace M^- M of those forms g whose Fourier coefficients a(D) vanish unless  $\left(\frac{-D}{q}\right) \neq 1$ . Via the Shimura-correspondence M<sub>cusp</sub> is isomorphic to  $\mathcal{M}_{\text{cusp}}^1$  and M<sup>-</sup> corresponds to those forms f in  $\mathcal{M}^1$  with f| $\binom{0}{q} \stackrel{-1}{0}$ =-f (see [Ko]).

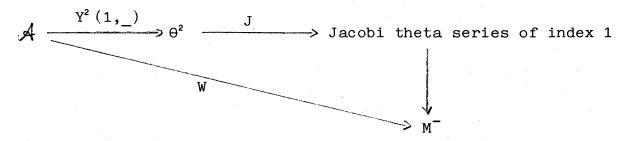
Now we define two mappings, both Hecke-equivariant

$$W : \begin{cases} A & \longrightarrow M^{-} \\ P & \longrightarrow \sum \frac{\varphi(y_{i})}{e_{i}} \sqrt{1} \end{cases}$$

$$\widetilde{W}:\begin{cases} M^{-} & \longrightarrow & \downarrow \\ g & \longmapsto & \downarrow g \end{cases} \quad \text{with} \quad \left(g(y_i) = \langle g, \chi_i^c \rangle\right).$$

These mappings are adjoint to each other with respect to the Petersson scalar products on  $\mathcal{A}$  and  $M^-$  (we may extend the scalar product from  $M^-_{\rm cusp}$  to  $M^-$ ).

Clearly  $W(\P)$  can also be obtained in the following way: From [Y2, Thm 4.3] we know that  $Y^2(1,\P)$  is in the Maaß space; so let  $JY^2(1,\P)$  be the corresponding Jacobi form of index 1; a theorem of Kramer [Kr] asserts that the modular form of weight  $\frac{3}{2}$  which corresponds to  $JY^2(1,\P)$  is just  $W(\P)$ , so we get a commutative diagram



Combining this with the results obtained in chapter II we get Proposition: Let  $0 \neq A_{cusp}$  be an eigenform, then

$$W(\hat{\gamma}) \neq 0$$
 iff  $L^{q}(\hat{\gamma},1) \neq 0$ 

(Actually we only proved this for  $f \in \mathcal{A}^+$ , but for  $f \in \mathcal{A}^-$  both W(f) and  $L^q(\widehat{f},1)$  are automatically equal to zero).

To proceed further, we need an analogue of (\*) for our ternary theta series :

Theorem: Let  $0 \neq g \in M_{cusp}$  be an eigenform of all Hecke operators, then

$$\sum_{e_i} \frac{\langle g, \mathcal{N}_i \rangle}{e_i} = c L(g,1) g,$$

in particular, g is a linear combination of the  $\vartheta_i$  iff L(g,1) is different from zero.

Here we mean by L(g,s) the Dirichlet series  $\sum \lambda(m) m^{-s}$  where  $\lambda(m)$  is the eigenvalue of g for the Hecke operator  $T(m^2)$ . This theorem, combined with the fact that  $\dim M = T$  = type number of D, gives a new proof of a result of Gross [Gr] which

says that we have T linear independent theta series  $\sqrt{\phantom{a}}_{i}$ there is no  $g \in M_{cusp}^-$  with L(g,1) = 0.

Again we can obtain scalar product formulas:

<u>Proposition</u>: Let  $0 \neq \varphi \in \mathcal{G}_{cusp}$  be an eigenform.

a) 
$$c L^{q}(\tilde{\varphi}, 1) \varphi(y_{i}) = \langle W(\tilde{\varphi}), \hat{\psi}_{i} \rangle$$

b) 
$$cL^{q}(\hat{r},1)\{f,r\}=\langle W(f),W(f)\rangle$$

# Corollary:

a) For 4 as above

$$\widetilde{W} W(\mathcal{P}) = c L^{q}(\mathcal{P}, 1) \Upsilon$$

b) For  $g = M^-$ , g eigenform WW(g) = cL(g,1)g

$$WW(g) = cL(g,1)g$$

It is reasonable now to introduce a modified Yoshida - lift by

$$\widetilde{Y}^{n}: \begin{cases} M^{-} & M^{-} \\ (g,h) \end{cases} \xrightarrow{\underset{i,j}{\longrightarrow}} \frac{1}{e_{i}e_{j}} \langle g, \psi_{i} \rangle \langle h, \psi_{j} \rangle \theta_{ij}^{n}$$

From the above it is clear that

$$\hat{Y}^{n}(g,h) = Y^{n}(\tilde{W}(g), \hat{W}(h))$$

$$\tilde{Y}^{n}(W(\mathcal{C}), W(\mathcal{C})) = c L^{q}(\hat{\mathcal{C}}, 1) L^{q}(\hat{\mathcal{C}}, 1) Y^{n}(\mathcal{C}, \mathcal{C}).$$

So there is not much difference between looking at  $\textbf{Y}^n$  or at  $\boldsymbol{\breve{Y}}^n$ as long as we are only interested in those  $\{\epsilon\}_{\text{cusp}}$  with  $\mathtt{L}^q(\,\widehat{\,\, (\,\, )}\,,1) \neq 0$  . The striking point about  $\, \widetilde{\mathtt{Y}}^n\,$  is that we have a beautiful kernel function to describe it:

#### Theorem:

$$(\tau, \tau', z) := \sum_{\mathbf{i}, \mathbf{i}} \frac{1}{e_{\mathbf{i}} e_{\mathbf{j}}} \sqrt[q]{\epsilon_{\mathbf{i}}} (\tau) \sqrt[q]{\epsilon_{\mathbf{i}}} (z)$$

is a kernel function for  $\tilde{Y}^{\Pi}$ .

# Chapter IV: The Fourier coefficients

In this chapter N = q is again a prime.

The most ambitious programme would of course be to look for explicit formulas for the Fourier coefficients of  $Y^n(\mathscr{C},\mathscr{C})$  in terms of some data attached to  $\mathscr{C}$  and  $\mathscr{C}$ .

Our results are more modest; we consider the case n=2 and compute a certain mean value of Fourier coefficients: For  $Y^2(\phi, \psi)$  with Fourier expansion  $\sum_{T} a(T) e^{2\pi i \operatorname{trace}(TZ)}$  we study (for

any discriminant -D < 0 ) the weighted average

$$a_{D} := \frac{a(T)}{\epsilon(T)}$$
,

where T runs over all  $Sl_2(\mathbb{Z})$  - classes of binary integral quadratic forms with disc(T) = -D and  $\xi(T) = \#$  proper automor - phisms of T (=1 in general).

In analogy to the results in  $\left[B\ddot{o}_{3}\right]$  we may expect here also some relations to modular forms of weight  $\frac{3}{2}$ . Indeed, put

$$g = W(\mathcal{P}) = \sum_{D > 0} b(D)e^{2\pi i D\tau}$$

$$h = W(\mathcal{P}) = \sum_{D > 0} c(D)e^{2\pi i D\tau}.$$

Then we get (at least for fundamental discriminants -D = 0) a very simple identity:

$$\left[ \mathbf{a}_{\mathbf{D}} = \mathbf{y}_{\mathbf{D}} \, \mathbf{b}(\mathbf{D}) \, \mathbf{c}(\mathbf{D}) \right]$$

where  $\chi_D$  = 2 if q | D and  $\chi_D$  = 1 otherwise.

We may reformulate this result as an identity for Dirichlet series (now for general discriminants) as follows:

Recall that for any degree 2 Siegel modular form

$$F(Z) = \sum_{T} a(T) e^{2\pi i \operatorname{tr}(TZ)}$$
 we have the Koecher - Maaß - Dirich-

let series  $\vec{\beta}_F(s) = \sum_D a_D^{-s}$  and for modular forms g, h  $\in$  M as above we define a (modified) Rankin - Konvolution

$$\mathcal{R}(g,h,s) := \sum_{D} \chi_{D} b(D) c(D) D^{-s}.$$

Theorem: For any  $F = Y^2(f, \psi)$ , g=W(f),  $h=W(\psi)$  we have  $\begin{cases} F(s) = (2s-1) & (g,h,s). \end{cases}$ 

# Remarks.

- 1) If  $L^q(f,1) = 0$ , then g = 0 (and the same for  $\psi$ ); in other words, the formula above together with the results of the preceding chapters prove the existence of many degree 2 Siegel modular forms with Koecher-Maaß series vanishing identically.
- 2) Our first attempt to prove the non-vanishing of  $Y^2(?, ?)$  was by means of the theorem above (if  $W(?) \neq 0$ ,  $W(?) \neq 0$ ). However it seems to be a very difficult problem to get a reasonable criterion for the (non-) vanishing of the Rankin-convolution attached to two modular forms of half-integral weight. We can however prove directly (i.e. by the theorem above, not using the results of chapter II) a version of Theorem 6.7 of [Y2]:

Corollary. For  $\mathcal{P}_{\xi} \not A$  with  $W(f) \neq 0$  we have  $Y^{2}(f, f^{\xi}) \neq 0 \quad \text{for all } \xi \in \text{Aut}(\xi).$ 

The assertion of the theorem above will easily follow from a purely arithmetical statement on representation numbers (representations of binary quadratic forms by quaternary forms).

# Let us start with a numerical example:

We take q=11 - this also occurs in [He, p.900, Beispiel 2], [Y1, Example 1] and [Gr, §13]. We have 3 inequivalent integral quaternary quadratic forms of determinant  $\frac{1}{16}$   $q^2$ :

$$Q_{11} \sim x_{1}^{2} + x_{1}x_{2} + 3x_{2}^{2} + x_{3}^{2} + x_{3}x_{4} + 3x_{4}^{2}$$

$$Q_{12} \sim 2(x_{1}^{2} + x_{2}^{2} + x_{3}^{2} + x_{4}^{2}) + 2x_{1}x_{3} + x_{1}x_{4} + x_{2}x_{3} - 2x_{2}x_{4}$$

$$Q_{22} \sim x_{1}^{2} + 4(x_{2}^{2} + x_{3}^{2} + x_{4}^{2}) + x_{1}x_{3} + 4x_{2}x_{3} + 3x_{2}x_{4} + 7x_{3}x_{4}$$

The ternary forms corresponding to  $Q_{11}$  and  $Q_{22}$  are

$$R_1^0 \sim 12x^2 + 44xy + 44y^2 + 11z^2$$
 $R_2^0 \sim 3x^2 + 2xy + 15y^2 + 44yz + 44z^2$ 

The adjoint forms of  $R_1^0$  and  $R_2^0$  are equivalent to

$$\hat{R}_1 \sim x^2 + xy + 3y^2 + z^2$$
 $\hat{R}_2 \sim x^2 + xy + y^2 + xz + 4z^2$ 

For two positive definite quadratic forms S and T we denote by A(S,T) the number of integral representations of T by S. We claim that there should be some relation between  $A(R_{\bf j}^{\rm O},D)$  and  $A(R_{\bf j}^{\rm O},D)$  on one hand and  $A(Q_{\bf ij},T)$  with T binary of discriminant -D on the other hand.

| D  | $A(R_1^0,D)$ | $A(R_2^0,D)$ | $A(R_1^0,D)^2$ | $A(R_1^0,D)A(R_2^0,D)$ | $A(R_2^0,D)^2$ |
|----|--------------|--------------|----------------|------------------------|----------------|
| 3  | 0            | 2            | 0              | 0                      | 4              |
| 4  | ,2           | 0            | 4              | 0                      | 0              |
| 11 | 2            | 0            | 4              | 0                      | 0              |
| 15 | 4            | 6            | 16             | 24                     | 36             |
| 31 | 8            | 6            | 64             | 48                     | 36             |

The quadratic form  $ax^2 + bxy + y^2$  will be denoted by [a,b,c].

| D  | Т        | $\frac{A(Q_{11},T)}{F(T)}$ | $\frac{A(Q_{12},T)}{\epsilon(T)}$ | $\frac{A(Q_{22},T)}{z(T)}$ |
|----|----------|----------------------------|-----------------------------------|----------------------------|
| 3  | 1,1,1    | 0                          | . 0                               | 4                          |
| 4  | [1,0,1]  | 4                          | 0 2                               | О .                        |
| 11 | [1,1,3]  | 8                          | 0                                 | O                          |
| 15 | [1,1,4]  | 16                         | 0                                 | 0                          |
| 15 | [2,1,2]  | 0                          | 24                                | 36                         |
| 31 | [1,1,8]  | 32                         | 0                                 | 36                         |
| 31 | [2,+1,4] | 16                         | 24                                | O                          |

Everything in these tables becomes very smooth if we look at the weighted average

$$A_{ij}(D) := \underbrace{\sum_{\{T\}}}_{\{T\}} \frac{A(Q_{ij},T)}{\mathcal{E}(T)},$$

where T runs over all (properly) inequivalent integral binary quadratic forms of discriminant -D; in fact we have (not only for the numerical example above but for arbitrary primes q) the following

$$\frac{\text{Theorem}}{\text{Theorem}}: \quad A_{ij}(D) = \chi_{D} \cdot A(R_{i}^{O}, D) \cdot A(R_{j}^{O}, D)$$

for 1 = i, j = H and -D a fundamental discriminant - and a similar statement for non-fundamental discriminants.

Remark. We can reformulate the statement above as follows;

It is elementary that (for -D fundamental)

$$A(R_{i}^{O},D) = \frac{1}{2} \left( \begin{array}{c} A(\hat{R}_{i},T) \\ \xi(T) \end{array} \right).$$

Therefore the theorem above can be written in a more symmetric

way as

$$\frac{A(Q_{ij},T)}{(T)} = \frac{1}{4} \stackrel{A(\hat{R}_{i},T)}{(T)} \stackrel{A(\hat{R}_{j},T)}{(T)} \qquad (***)$$

One might try to make this statement stronger by putting in everywhere a character of the class group of  $\bigcirc$  ( $\bigcirc$  ). In our example the cases D = 3, 4, 11 are of course trivial.

| D  | Т                 | A(Î,T) | $A(\hat{R}_2,T)$ |
|----|-------------------|--------|------------------|
| 15 | [1,1,4]           | 8      | 12               |
| 15 | [2,1,2]           |        | , , , , , , , O  |
| 31 | [1,1,8]           | 0      | 12               |
| 31 | [2, <u>+</u> 1,4] | 8      | 0                |

The example D = 15 shows that we have been too optimistic:  $+ 24 \stackrel{?}{=} \frac{1}{4} (8 + 0) (12 + 0)$ 

For a correct strengthening of (\*\*\*) we refer to [Bö-Sp 2].

Some applications.

- 1) In [Bö $_3$ ] we conjectured (for Siegel modular forms of de-gree 2 and level 1) that the square of the average  $a_D$  should be related to a special value of the twisted spinor-L-function. The result of this chapter shows that  $Y^2(\Upsilon, \Upsilon)$  satisfies that conjecture.
- 2) We may obtain a new proof of Waldspurger's formulas for the square of the Fourier coefficients of modular forms of half-integral weight (in the case of weight  $\frac{3}{2}$ ) as follows: For  $f \in \mathcal{A}$ , f an eigenform, and a fundamental discriminant -D, we can compute the average  $a_D$  for  $Y^2(f,f)$  in two ways:

First of all, according to the formulas above,

$$a_D = \langle \langle \rangle_D b(D)^2 \rangle$$

with b(D) = D - th Fourier coefficient of  $g := W(\mathcal{C})$ .

Secondly, by interpretating  $Y^2(f,f)$  as a kind of Eisenstein series attached to  $Y^1(f,f)$ , we may get (by some analytic considerations) a formula of type

$$a_{D} = A(f) D^{\frac{1}{2}} L(g,1) L(g,D,1)$$

where A(f) is some (explicitely known) constant depending on f and L(g,D,s) denotes the twist of L(g,s) by the quadratic character  $\left(\frac{-D}{-}\right)$ . Combining these two formulas we get that  $b(D)^2$  is proportional to  $\int_D^{1/2} L(g,D,1)$ ; unfortunately this proof does not give any information for those f with W(f)=0 (i.e. for those f with  $L^q(f,1)=0$ ). For details we refer to a paper in preparation.

#### Final remarks.

In some sense the results presented here are not complete.

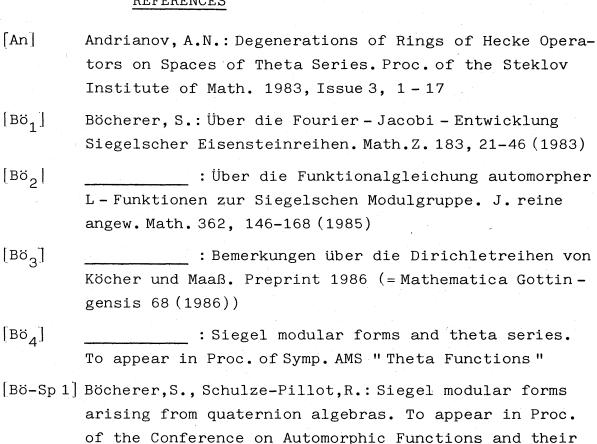
- -- We should consider Eichler orders instead of maximal orders; this will indeed be done in [Bö-Sp 2].
- -- We should include the case of theta series with harmonic coefficients as in | Y1, Y2 | and in | Ta |.
- -- The results of chapters III and IV should be extended to arbitrary quaternion algebras (not just those ramified only in q,  $\sim$ ).

Our results on these more general problems are not complete at present, but we are working on them. We hope to treat them

in future papers.

Acknowledgement: The first-named author would like to thank the Japanese mathematical community and especially Professor F. Sato for warm hospitality during his stay in Japan. This stay was made possible by a generous Research Fellowship of Rikkyo Uni-versity, which is gratefully acknowledged.

#### REFERENCES



[Bö-Sp 2] : Siegel modular forms and theta series attached to quaternion algebras.

Preprint 1989 (preliminary version)

Applications Khabarovsk 1988

- [Fe] Feit, P.: Poles and residues of Eisenstein series for symplectic and unitary groups. Memoirs AMS 346 (1986)
- [Ga] Garrett, P.B.: Pullbacks of Eisenstein series; applications. In: Automorphic Forms of Several Variables (Taniguchi Symposium), Birkhäuser 1984

| Gr    | Gross, B.: Heights and the special values of L-series. In: Number Theory, CMS Conference Proc. 7 (1987)                                            |  |  |  |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Ha    | Hashimoto, K.: Ranks of theta series for ternary and quaternary forms (unpublished tables)                                                         |  |  |  |
| He    | Hecke, E.: Mathematische Werke. Vandenhoeck und Ruprecht Göttingen 1970                                                                            |  |  |  |
| Kit   | Kitaoka, Y.: Representations of quadratic forms and their applications to Selberg's zeta functions. Nago-ya Math. J. 63, 153-162 (1976)            |  |  |  |
| Ko    | Kohnen, W.: Newforms of half-integral weight. J. reine angew. Math. 333, 32-72 (1982)                                                              |  |  |  |
| Kr    | Kramer, J.: Jacobiformen und Thetareihen. manuscripta math. 54, 279-322 (1986)                                                                     |  |  |  |
| [0]   | Ogg, A.: On a convolution of L-series. Invent. Math. 7, 297-312 (1969)                                                                             |  |  |  |
| SP    | Schulze-Pillot, R.: A linear dependance of theta series of degree 2 and weight 2. To appear in Proc. of Journées Arithmétiques Ulm 1987            |  |  |  |
| Ta    | Tanigawa, Y.: Construction of Siegel modular forms of degree three and commutation relations of Hecke operators. Nagoya Math. J. 100, 83-96 (1985) |  |  |  |
| [We   | Weissauer, R.: Stabile Modulformen und Eisensteinreihen.<br>Springer Lecture Notes in Math. 1219 (1986)                                            |  |  |  |
| [Y 1] | Yoshida, H.: Siegel's modular forms and the arithmetic of quadratic forms. Invent. Math. 60, 193-248 (1980)                                        |  |  |  |
| Y 2]  | : On Siegel modular forms obtained from theta series. J. reine angew. Math. 352, 184-219 (1984)                                                    |  |  |  |
| Y3    | : Letter, 1988                                                                                                                                     |  |  |  |

Mathematisches Institut der Universität Hebelstr. 29 D - 7800 Freiburg Bundesrepublik Deutschland Freie Universität Institut für Mathematik II Arnimalle 3 1000 Berlin (West) 33