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SIEGEL MODULAR FORMS AND QUATERNION ALGEBRAS

(On a construction of H. Yoshida)

by

Siegfried Bocherer and Rainer Schulze-Pillot

In two interesting papers [Y’l, Y’2] H. Yoshida constructed a
lifting from pairs of automorphic forms on a quaternion algebra
to Siegel modular forms of degree two. However the non - vanish-
ing of his construction was proved only in a weak form [Y’2,
Theorem 6.7 ] .

In this paper we describe two approaches to Conjecture 7.6 of

[Y1] (= Conjecture B of [Y2]).

Our first appoach was arithmetical in nature : We express ( a
certain average of) the Fourier coefficients,of our Siegel modu-
lar form in terms of the Fourier coefficients of two modular
forms of weight é?. In this way we do not get a definite result
concerning the non - vanishing, but we get some insight into the
arithméetic of our Siegel modular forms.

The second approach uses properties of automorphic L - functions
and leads to a full proof of Yoshida's conjecture for weight 2.
We shall describe - without any technical details - both
. approaches and some applications. This exposition does not re-
flect the chronological order of our research, e.g. the "first"
approach appears in the last chapter !

For details we refer to [Bo-Sp 2 ]; some of our results were

announced in [B& - Sp 1].
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Chapter I : Yoshida's 1ift and some problems related to it

Let Nﬁ=q1... qt be a square—ffée number (fixed throughout) énd
let D be the quaternion algebra over @ ramified in o=, Aps +oes
qt . We denote by R some maximal order of D and by Rp its lo-
calization. For the adelization D; of Dy we have a double co-
set decomposition

H
x *
DA = }:{ D yil(

where H is the class number of D, K is defined as ‘ I R
P,

%
p

and we assume that the v have reduced norm 1,

We define 4-dimensional lattices Lij in the @Q- vector space D

1]
gral quadratic forms' Qij which we identify with half-integral

by L.. := Dmn yi(il Rp) ygl ; these Lij‘ correspond to inte-
p .

positive definite symmetric matrices of size 4 with
det(ZQij) = N®, We consider theta series of type
. Z 21 trace( XV Q X 2)
eij (z) = 2 e
Xe7Z"
with Z e }%1( = Siegel's upper half space of degree n).

We shall denote by en the G-—vector‘space generated'by all
n
ij
mean the space of all Siegel modular forms of degree n and

the © ; this is known to be a subspace of J&n, by which we

A . : n n : n
weight 2 with respect to Q)(N). By ecusp and.JMbusp we mean
the corresponding subspaces of cusp forms. '
Now let A be the the space of right K-invariant automorphic
b
A—~ﬁ®
satisfying Y (ygk) = f(g) for all yeD):geDK, ke K.

forms for D, that is the space of all functions $:D

Yoshida's construction can now be described easily (we do it

for degree n instead of degree 2)
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For any n>1 we define

n n
det —— > e M
Yn: H
- . 0
(P,0) > Z = \O(yi)/ﬁ'(yj) 6
PR i7]
i,j=1
% *x
Here e. denotes the order of R, = L;. .
1 1 11

The main problem is to study the (non-) vanishing properties of

those mappings Y". Yoshida mentions two obstructions to non-
vanishing

1. Obstruction : If fand " are eigenforms which are not

proportional to each other, then Yl(f,#d = 0.
To describe the second obstruction,we recall that each g|N gives
rise to an involution on;f¥. For any map & : {ql,... ’qt%*;éiié
let &§' be the corresponding eigenspace for fhese involutions.

< o . o
2. Obstruction : For f¢ o ,:V@L4%'with ¢ # & we have

Y (€,4) = 0 for all n.
Roughly speaking Yoshida's conjecture says that these two ob-
structions are the.only obstructibns to non—vanishing.We shall
see below that this is almost true, we shall however discover

a third (more subtle) obstruction.

For later purposes it is helpful to divide the vanishing problem
into three different préblems.
@9 "Stable non-vanishing" : Is there ggz:n > 1 with
Y0, 4) 40 2
(B) Which is the smallest n with an(%,f\y) # 0 ?
Qg; Let n_ be the smallest n with Yn(¥,Ar) + 0; can we des-
cribe Y™M¥,¥) for n>n_ by some kind of (Klingen type)

n
Eisenstein series attached to Y o(f,f?) ?
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Concerning B’ and .C) we should mention here (and we shall use
this tacitly in the sequel) that F. 0" is a cusp form iff
<¥F = 0, where Cb is the Siegel ¢>— operator; so we do not haVe

to care about '"several cusps'.

There are some more problems related to the Yoshida - 1ift :

D) "scalar product formulas"
'ﬁ) Relations to modular forms of weight '%

F) Yoshida has shown that Y2(1 ,4) satisfies the MaaB - rela-
tions. We may ask more generally whether the Fourier co-
efficients of Yn({ﬁ“f) have some special properties.

In chapter II we shall describe our proof of Yoshida's conjecture,

3

Chapters III and IV will deal with @; and (:) (respectively).

Chapter II : Non-vanishing properties of ¥" and applications

(The method of L-functions)

To prove the conjecture of Yoshida, we make extensive use of
properties of automorphic (standard-) L - functions. This’should
not be surprising because the relevance of thesevL-functions
for problems related to theta series is now well known (e.g.
[Bﬁl], [B64], EGr;i, fWej ). Our proof of Yoshida's conjec-
ture has essentially three ingredients

-— Solution of problem A ("stable non-vanishing")

3

—~— A characterization of 6
: cusp

inside ©%® in terms of
automorphic L - functions

-— A theorem of A, Ogg

The first ingredient is the easiest one
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& z
Proposition : For 0# fc¢ . 4 , 0# V<4~ we have

YHNP,¥) = 0 for all n === Y (/,7) =0

<= e # o

The first equivalence follows from a result of Kitaoka [Kit}
on the linear independance of theta series. To prove the second
assertion, one has to understand precisely under which conditi-

ons two lattices Lij and L&'j' are isometric.

Let &Gﬁ be the "N-integral" Heckealgebra (spanned by double
-1
cosets FE(N)(M 2A rg(N) with M integral, det(M) coprime to
0O M
N). It is known that M" has a basis consisting of eigenforms

of Ifn; to such an eigenform F we attach the standard L-function

N Wm“j 1 ﬁllﬁ 1
D (F,s) = j — l — SR

l1-p (1--o(ipp )<1_o("ipp )
plIN i=1 :

~where the oéip are the Satake - parameters of F.
OQur second ingredient is the crucial

. 3 '
Theorem : Let O %Fe 8° be an eigenform of }ﬁN with<b3F=O;then

3 . N
Fe 8 ,gp < :icli D (F,s) >t

Indication of proof:

" =>": We use an integral representation for DN(F,S) which
involves a (pullback of a) degree 6 Eisenstein series. Then
the claim follows from the results of Feit [Fe] on the poles
of such Eisenstein series and by a careful analysis of the
"pad primes" (for this analysis we need that F is in N ).

"=": Let us assume that F is not a cusp form. The case
‘$21F # O reduces everything to elliptic cusp forms - this

is easy. SO0 we suppose that ¢ F is cuspidalj for allk Ge GZusp

5
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which are eigenfunctions of Efﬁ we can prove an identity (ana-

¥*
logous to the one in [B&,] for level 1) )

e 2 .
S G, 613 - s N, .
e @2 . = ¢ Res(D(G,s) G (*)

b 1] s=1

This shows that DN(F‘,S) has a pole in s=1 and therefore
N N N N
D (F,s) = 3 (s-1) { (s+1) D (F ,s)
cannot be of order » t in s21 (Here SN(S) denotes the N-restri-

cted Riemann zeta function).

Now let O =# ?édAi O=$HW?L%C be eigenfunctions of the Hecke alge-
bra. To make the theorem above applicable to our problem, we
should first determine the standard L - function of F := Ys(f,V)
in terms of data attached to +{, ¥ ; by the results obtained so
far it is clear that F is non-zero !
Let % ,ff be elliptic modular forms of weight two corresponding
(via Eichler-Shimizu-Jacquet-Langlands) to ¥ ,Y¥ and let a(p),b(p)
be their eigenvalues for the usual Hecke operator T(p), p fN.
We define ~/(p), ~(p), B(p), 8(p) by
<(p) + +(p) = alp), «L(p) (p)

B8(p) + B(p) = b(p) B(p)-B(p)

I
o)

It
O

3y some local computations we get

p(r,8) = M(s) §M(s-1) TN(s+1) LY (€, 4, s01)

. N o ;'
with Lsym(Y , Viys) =
, ‘ 1

1?(1;4<p>s<p>p‘s>(1-x(p>é(p>p‘s><1—&Yp)s<p>p‘s)<1-4(B>é(55p's>
piN
*) We shall use the symbol "c”rseveral times in the sequel to

to indicate constants # 0; of course these constants do not
coincide in genéral. ¢ , » 1s the Petersson scalar product.




If { is not cuspidal - this means that {"is just a constant -

we have
N o N, .7 N,.. .
L$ym(const;£,s) =L (",s) L (¢ ,s-1)
where LNC¢}S)‘is just the ordinary Iw—series,\defined by
N, ~ T 1
Nerey - || S

L (12 8(p)p™S) (1 - B(p)p~S
p){N( (p)p ") (plp 7)
If we summarize all these informations, we see that we have

indeed obtained a third obstruction for non-vanishing, now in

terms of an analytic coﬁdition on an automorphic L - function
For ¥, Y as above - but not both constant - we have
Ys(f,f?) cuspidal iff Y2(‘P,Af') =0 iff Lgym(%,-'\?,z) =0.
Surprisingly the latter condition is possible only in very few
cases :
a) If {)andf% are proportional to each other we may apply
a classical result of Rankin, which says that Lgym(%i,qﬂs)
has a first order pole in 5;2 with residue beeing essential-
ly equall to the Petersson scalar product <¥,¥>.
b) If { and are both non-constant and not proportional to
each other, we can apply a theorem of Ogg [O:], which

~

says that Lgym(f,:¥,2) # O - in other words 'Y2(%7ﬁf) # O.

c) It remains the case where precisely one of the automorphic
forms - let us say“f - is constant. Since LNQﬂf,Z) is
different from zero (convergent Euler product !) we get

‘Y3(*€,ﬂ’) cuspidal iff LN(F,1) = o
Since the case f, N both constant is somewhat trivial (it just
produces a Siegel Eisenstein series) we omit it from the

formulation of the
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Final result : If 0 3, O~ are eigenfunctions in J@g

1)

2)

with 4 not constant, then
a) Y2(¢,%) + 0
b) YZ(,%) = 0 iff. -f = const and tN(F,1) =0

¢) YI((,m)

O wunless f and A are proportional

Complementary remarks

Linear independence of theta series. According to a conjecture

of Andrianov [ An| and Yoshida [Y 2] on the linear indepen-

dence of theta series we should have ©° ={Qﬁ Our results
cusp
show that (via the map Y 5Y3(1,#ﬁ ) ezusp is isomorphic
P (
to gio := linear span of those eigenforms ¥ in Lﬁb;sp with

N, 3
L (/4',/,1) = O’
where ¢, is the constant map <. :éql, ...,qt}»m>{1} .

s O

In general, + {O} , as the example N =qg =389 shows

(see [sP], [Gr] and |Ha'| ). Anyway, the space .&° desc -

cribes precisely up to which amount the conjecture of

Andrianov-Yoshida is (not) truel

Scalar products. Take f,Aff @ with O=tY20€,ﬁ0 cuspidal.

Then we know two representations of Yg(f, % ) as linear
combinations of theta séries - one involving the values of

" and ¥ , the other one involving the scalar products

ZF, Ozj‘y('?

sentations are the same

, '} eigenforms, see (*)). Actually these repre-

Theorem: If 1, Y and F are as above then

a) < F,02 % = o Res DM(F,8) ¥y )N (y )+ ¥y ) (vy))

+J s=1
b) VF,F. = ¢ Re% DN(F,s) {{L} {,\5 . { \i«;;,\%, ’3
P S= .
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where { , | is the canonical scalar product on 4.
We have similar formulas also for the degree 1 and degree 3
cusp forms produced by Yoshida - 1ifts. We sketch a proof of the

theorem above : We ccnsider the degree 3 cusp form

¢ Res DN(F,S) Ys(f M) - :Ez:

s=1 —
1,

LF,0% .5 o,
eiej ij ij

All we have to show is that this function is identically zero !
But this follows from the fact that this function is again an

eigenform of }Bg with the same eigenvalues as those of the

non-cusp form Ya({,ﬂ’);by the results abcve, it must be zero.

3) Eisenstein series of Kiingen type. From general properties

of pullbacks of Eisenstein series (see [B5,] or [Ga]),

combined with a version of Siegel's theorem, we see that

2 .
for Fe Aicusp indeed
1 2 n
E : e.e. <F, eij> eij
— i~
1,

is essentially (a residue of) an Eisenstein series of Klingen
type attached to F. From this (and the scalar product formu-
las above) we can get a solution of Problem C:) ; Similar

arguments also work for the degree 1 and degree 3 cusp forms,

4) In a letter [Y’3] Yoshida kindly informed us that he has
also made some progress towards his conjectures [Yl,Y§].His
methods are different from ours. In particular - using results
of WaldSpurger— he has also obtained our result on Y2(].,NQ

and an unconditional proof of Theorem6.7 of [Y2].
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Chapter IIT : Modular forms of weight —g—

In this chapter we restrict ourselves to t=1, so N=q is a

r &
prime; we write Ai instead of A . The basic facts which we

need in this chapter can be found in [Gr |, [Xo 1, [Kr], [Y2

To each maximal order Ri =Lii> of D we attach a ternary lattice

o ._ _
R; := {xe2Ri + Z | trace(x) —O}

and a ternary theta series

— i
q}i(ﬁc) _ ZW‘A e27r1 norm(x) .

xe R,

B O

Following [Ko 1 we define a space M of those modular forms g

2

N 2 4Dy .
gl=)=+___ e with a(D)=0 unless -D=0,1 mod 4

of weight 3 with respect to ro(4q) which satisfy in addition

Even more important for us is the subspace M - M of those

forms g whose Fourier coefficients a(D) wvanish unless (:(ig} £1.

. . . . 1
- e
Via the Shimura - correspondénce Mcusp is isomorphic to ‘M'cusp
and M  corresponds to those forms f in Ml with fl(g '01)=_f

(see [Ko ]).
Now we define two mappings, both Hecke-equivariant

jF\A‘ ) > M
W :

W:\ ~

{

g v ——3 { with '{'g(yi) =g, .

These mappings are adjbint to each other with respect to the

Petersson scalar products on Q"{ and M (we may extend the

scglar product from Mcusp to M ).

/0
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Clearly W(P) can also be obtained in the following way : From
[Y’2,Thm 4.3] we know thét Y2(].;€) is in the MaaB space; so
let JY2(1,f) be the corresponding Jacobi form of index 1; a
theorem of Kramer [Kr] asserts that the modular form of weight
g which corresponds to JY2(1;P) is just W(¥), so we get a

commutative diagram

Y2 (l,_‘) J
A > 6° : > Jacobi theta series of index 1

~—

\M'"“b M_

Combining this with the results obtained in chapter II we get

Proposition: Let ’O # j*cusp be an eigenform, then

wie) 40 iff 1%%,1) £ o0
. + “f 04/_
(Actually we only proved this for fed', but for Ve both
N v
W({) and Lq(€,l) are automatically equal to zero).
To proceed further, we need an analogue of (*) for our ternary
theta series

Theorem: Let 0 # gé&Mcusp be an eigenform of all Hecke operai~

tors, then

<g, >
v ”“.—;__}_Qj;_ =CL(g91)g,

AN

i
in particular, g is a linear combination of the 49} iff L(g,1)
is different from zero. \
Here we mean by L(g,s) the Dirichlet series‘Zi:'ﬂ(nn m~° where
A(m) is the eigenvalue of g for the Hecke operator T(m®).
This theorem, combined with the fact that dimM =T ==typé num-

ber of D, gives a new proof of a result of Gross [ Gr] which
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says that we have T linear independant theta series aﬁi iff

there is no gé:Mcusp with L{g,1) = O.

Again we can obtain scalar product formulas

Proposition: Let O# v . be an eigenform.

‘cusp

&) oLdF,1) Ply,) = < U,
b)  cLU(P,1){€, ] = < W(E),W(E) >
Corollary:
"a) For -i as above Ww(e) = e, T
b) For g~ M , g eigenform W Ww(g) = cL(g,1) g

It is reasonable now to introduce a modified Yoshida - lift by

o, [ R -0
° ‘ X ,_,_.1 . Gy B {;\ .« . n -
‘M(g,h) Voo e > > ce.e. > R h, ""J- > eij
3 i7J
1,J

From the above it is clear that

(g,n) = Y (¥W(g), W(n))
YWY, wir) ) = e L®,1) LA, 1) YR(O, ¥).

So there is not much difference between looking at Y? or at

as long as we are only interested in those {t‘ytusp with

Lq(e,l)%(). The striking point about Y is that we have a

beautiful kernel function to describe it

Theorem :-
n \\ o ' 1 rﬂ 6\',-'\ n »
K (e,v,2) :=cémﬁ éiéf'lfi(u) ijﬂt) Gij(Z)
i,]

is a kernel function for Y .

/ Z

~n

Y
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Chapter IV : The Fourier coefficients

In this chapter N¥=q is again a prime.

The most ambitious programme would of course be to look for
explicit formulas for the Fourier coefficients of Y (¥ ,4) in
terms of some data attached to - and /¥.

Our results are more modest; we considér the case n=2 and com;

i 2 3
pute a certain mean value of Fourier coefficients : For Y~ (¥,~)

with Fourier expansion / a(T)e2?J'trace(TZ)

T

any discriminant -D< 0 ) the weighted average

we study (for

LalT)
8p T a(T) ?
. ST
where T runs over all S1,(Z) - classes of binary integral qua-
dratic forms with disc(T) = -D and ¢ (T) = # proper automor -

phisms of T (=1 in general).

In analogy to the results in [363] we may expect here also some

relations to modular forms of weight %u Indeed, put
g = WiP) = b(p)e? M1 PT
h = W) = c(p)e2™1 DY

Then we get (at least for fundamental discriminants -D.. O)

a very simple identity
= ¥, b(D) c(D)]
1% XD,M_,,, B |

where k/D =2 if q|D and XD = 1 otherwise.

We may reformulate this result as an identity for Dirichlet
series (now for general discriminants) as follows

Recall that for any degreé 2 Siegel'modular form
F(Z) = }W a(r) 271 tr(TZ)
T

- we have the Koecher - MaaB - Dirich-

/3



92

let series %F(s) = 2.,,_2 ap D™®  and for modular forms g, he M
D

as above we define a (modified) Rankin - Konvolution

R(g,h,s) := Z ¢y b(D) c(D) DS,
D

Theorem : For any F = Y2('(’ » V), g=W(¥ ), h=W(#) we have

-
5
Y

F(s) = Z(ZS-l)Q(g,h,S)-

Remarks.

1) If Lq(F,l) = 0, then g = 0. ( and the same forA§); in other
words, the formula above together with the results of the
preceeding chapters prove the existence of many degree 2

Siegel modular forms with Koecher-MaaB series vanishing:iden-

tically.

2) Our first attempt to prove the non-vanishing of Yabf,w)
was by means of the theorem above (if W(-f) £0, W) £0).
However it seems to be a very difficult prdblem to get a
reasonable criterion for the (non-) vanishing of the Rankin-
convolution attached to two modular forms of half-integral
weight. We can however prove directly (i.e. by the theorem
above, not using the results of chapter iI) a version of
Theorem 6.7 of [Y2] :

Corollary. For P¢ Awith W(f)# O we have

Y2 (£ ,65) 40 for all S e Aut(C).

The assertion of the theorem above will easily follow from a

purely arithmetical statement on representation numbers (repre-

sentations of binary quadratic forms by quaternary forms).

74
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Let us start with a numerical example :

We take q= 11 - this also occurs in [ He, p.900, Beispiel 2 |,

(Y1, Example 1] and [Gr, §13]. We have 3 inequivalent inte-

gral quaternary quadratic forms of determinant A116 q?

- 2 2 2 2
Qll - x1+x1x2+3x2+x8+x3x4+3x4
2. 2 2 2
Q12 o~ 2 (xl + X5 + X5+ x4) + 2x1x3 + X Xyt XXg - 2}(2:‘14
2 2 2 2
Q22 o X 4 (x2 + Xg + x4) + Xy Xg+ 4}(2)(3 + 3x2x4 + 7x3x4

The ternary forms corresponding to Qll and Q22 are

R ~  12x% + 44xy + 44y® + 112?

R

NO O

~  3x% + 2xy + 15y% + 44yz + 44z2°

The adjoint forms of R(lj and Rg are equivalent to

R, ~ x% + xy + 3y® + z°

>

5 ~ X% 4 Xy + y2 + Xz + 4z°

For two positive definite quadratic forms S and T we denote
by A(S,T) the number of integral representations of T by S.
We claim that there should be some relation between A(R?,D)
and A(R?,D) on one hand and A(Qij’ T) with T binary of dis-

crimi_nant -D on the other hand.

D | A(R(,D) A(R3,D)  A(R{,D)’ iA(Ri’,D)A(Rg,D) . A(Rg,D)*
3 o 2 0 0 4
4 | 2 -0 ‘ 4 0 0
11 2 | o 4 0 0
15 4 6 16 24 . 36
31 8 6 64 48 36

)



The quadratic form ax’+bxy+y’ will be denoted by la,b,c].

b or AT ALQ,, T AGQy,,T)
| T TR (1)
e . - U SR
i _ ,
3 i |1,1,1] © O } .0 4
4 ' [1,0,1] 4 0 0
11 [1,1,3] 8 0 ‘ 0
., . |
15 [1,1,4] 16 0 3 0
15 | [2,1,2] 0 24 36
- i :
31 ¢ |1,1,8] 32 o] 36
31 1[2,+1,4] 16 i 24 0

Everything in these tables becomes very smooth if we look

at the weighted average

N A(Ql . sT)

{T

where T runs over all (properly) inequivalent integral binary

quadratic forms of discriminant -D; in fact we have (not only
for the numerical example above but for arbitrary primes q)

the following

. ' _ . o . e}
Theorem : Aij(D) = ¥p A(Ri,D) A(RJ,D)
for 1<i,j+H and -D a fundamental discriminant - and

a similar statement for non-fundamental discriminants.

Remark. We can reformulate the statement above as follows;

It is elementary that (for -D fundamental)
AN A(Ri,T)

1
2 4 vy
{T\& )

A(R‘i’,D) =

Therefore the theorem above can be written in a more symmetric

~
LN



way as
VAR g o ARG T AR,
(T) 4 ¢D — (T) (1)
LT}

One might try to make this statement stronger by putting in eve-

rywhere a character of the class group of QQ’(fiﬁl ). In our

example the cases D=3, 4, 11 are of course trivial.

D T A(R,,T) A(R,,T)
15 [1,1,4] 8 12
15 [2,1,2] | 0 0
31 1,1,8] | 0 12
31 [2,+1,4] 8 ’ 0

The example D =15 shows that we have been too optimistic :

?
+24 £ 2(840)(1210)

For a correct strengthening of (***) we refer to [Bb-Sp 27].

Some applications.

1) In [BGS:I we conjectured (for Siegel modular forms of de -
gree 2 and level 1) that the square of the average ap
should be related to a special value of the twisted spinor -
L - function. The result of this chapter shows that Y?(f,¥)
satisfies that conjecture.

2) We may obtain a new proof of Waldspurger's formulas for the
square of the Fourier coefficients of modular forms of half -
integral weight (in the case of weight é;) as follows :

For {¢ A , ¥ an eigenform,and a fundamental discriminant

-D, we can compute the average a_. for Yz(f”,{) in two ways:

D

7]
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First of all, according to the formulas above,
} 2
ap = @D b(D)?,
with b(D) = D - th Fourier coefficient of g := W(<£).
Secondly, by interpretating Y?(€,¥) as a kind of Eisenstein
series attached to Yl(47;€), we may get (by some analytic¢ con-

siderations) a formula of type
1
a, = A(f) D° L(g,1) L(g,D,1)
where A(f) is some (explicitely known) constant depending
on  and L(g,D,s} denotes the twist of L(g,s) by the quadra-
tic character (:2) . Combining these two formulas we get that

1/2 L(g,D,1); unfortunately this

b(D)? is proportional to ¥p D
proof does not give any information for those f with W(¥) =0
(i.e. for those ¥ with L1%({,1)=0). For details we refer to

a paper in preparation.

Final remarks.

In some sense the results presented here are not complete.
—— We should consider Eichler orders instead of maximal orders; -

this will indeed be done in [ Bo-Sp2].

'-— We should include the case of theta series with harmonic co-

efficients as in |Y1,Y2 | and in [ Ta].

—-— The results of chapters III and IV should be extended to
arbitrary quaternion algebras (not just those ramified only

in q, ).

Our results on these more general problems are not complete

at present, but we are workinngn them. We hope tb treat them

%
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in future papers.
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