SIEGEL MODULAR FORMS AND QUATERNION ALGEBRAS (On a construction of H. Yoshida) bу Siegfried Böcherer and Rainer Schulze-Pillot In two interesting papers [Y1, Y2] H. Woshida constructed a lifting from pairs of automorphic forms on a quaternion algebra to Siegel modular forms of degree two. However the non-vanishing of his construction was proved only in a weak form [Y2, Theorem 6.7]. In this paper we describe two approaches to Conjecture 7.6 of [Y1] (= Conjecture B of [Y2]). Our first appoach was arithmetical in nature: We express (a certain average of) the Fourier coefficients of our Siegel modular form in terms of the Fourier coefficients of two modular forms of weight $\frac{3}{2}$. In this way we do not get a definite result concerning the non-vanishing, but we get some insight into the arithmetic of our Siegel modular forms. The second approach uses properties of automorphic L-functions and leads to a full proof of Yoshida's conjecture for weight 2. We shall describe - without any technical details - both approaches and some applications. This exposition does not reflect the chronological order of our research, e.g. the "first" approach appears in the last chapter! For details we refer to [Bö-Sp 2]; some of our results were announced in [Bö-Sp 1]. I # Chapter I: Yoshida's lift and some problems related to it Let $N=q_1\dots q_t$ be a square-free number (fixed throughout) and let D be the quaternion algebra over $\mathbb Q$ ramified in $^{\infty}$, q_1 , ..., q_t . We denote by R some maximal order of D and by R_p its localization. For the adelization D_A^{\star} of D^{\star} we have a double coset decomposition $D_{A}^{x} = \bigcup_{i=1}^{H} D^{x} y_{i} K$ where H is the class number of D, K is defined as $\prod_{p,\infty}^{\times} R_p^{\times}$ and we assume that the y_i have reduced norm 1. We define 4-dimensional lattices L_{ij} in the Q-vector space D by $L_{ij} := D \cap y_i \left(\overline{\bigcup_p} R_p \right) y_j^{-1}$; these L_{ij} correspond to integral quadratic forms Q_{ij} which we identify with half-integral positive definite symmetric matrices of size 4 with $\det(2Q_{ij}) = N^{2}. \text{ We consider theta series of type}$ $\theta_{ij}^{n}(Z) = \sum_{\mathbf{x} \in \mathbb{Z}^{(4,n)}}^{2\pi i \operatorname{trace}(\mathbf{x}^{t}Q_{ij}\mathbf{x}^{z})}$ with $Z \in \mathbb{H}_n$ (= Siegel's upper half space of degree n). We shall denote by θ^n the \mathfrak{C} -vector space generated by all the θ^n_{ij} ; this is known to be a subspace of \mathcal{M}^n , by which we mean the space of all Siegel modular forms of degree n and weight 2 with respect to $\Gamma^n_o(N)$. By θ^n_{cusp} and \mathcal{M}^n_{cusp} we mean the corresponding subspaces of cusp forms. Now let \mathcal{A} be the the space of right K-invariant automorphic forms for D, that is the space of all functions $\mathcal{P}: D_A^\times \longrightarrow \mathbb{C}$ satisfying $\mathcal{P}(\mathcal{V}g\,k) = \mathcal{P}(g)$ for all $\mathcal{V}\in D_A^\times$, $g\in D_A^\times$, $k\in K$. Yoshida's construction can now be described easily (we do it for degree n instead of degree 2): For any $n \geqslant 1$ we define $$Y^{n}: \begin{cases} A \times A & \longrightarrow & \bigoplus^{n} \subset \mathcal{M}^{n} \\ (P, Y) & \longmapsto & \sum_{i,j=1}^{H} \frac{1}{e_{i}e_{j}} Y(y_{i}) Y(y_{j}) e_{ij}^{n} \end{cases}$$ Here e_i denotes the order of $R_i^x = L_{ii}^x$. The main problem is to study the (non-) vanishing properties of those mappings Y^n . Yoshida mentions two obstructions to non-vanishing: 1. Obstruction: If f and f are eigenforms which are not proportional to each other, then $Y^1(f, f) = 0$. To describe the second obstruction, we recall that each $q \mid N$ gives rise to an involution on f. For any map f: $\{q_1, \dots, q_t\} \rightarrow \{\pm 1\}$ let f be the corresponding eigenspace for these involutions. 2. Obstruction: For $$f \in A^{\epsilon}$$, $\gamma \in A^{\epsilon}$ with $\epsilon \neq \epsilon$ we have $Y^{n}(f,\gamma) = 0$ for all n. Roughly speaking Yoshida's conjecture says that these two obstructions are the only obstructions to non-vanishing. We shall see below that this is almost true, we shall however discover a third (more subtle) obstruction. For later purposes it is helpful to divide the vanishing problem into three different problems. - (A) "Stable non-vanishing": Is there any n > 1 with $Y^n(\mathcal{L}, \mathcal{V}) \neq 0$? - B) Which is the smallest n with $Y^{n}(\sqrt[4]{\gamma}) \neq 0$? - Let n_0 be the smallest n with $Y^n(\not, \uparrow) \neq 0$; can we describe $Y^n(\not, \uparrow)$ for $n > n_0$ by some kind of (Klingen type) Eisenstein series attached to $Y^{n_0}(\not, \uparrow)$? Concerning B) and C) we should mention here (and we shall use this tacitly in the sequel) that $F = \theta^n$ is a cusp form iff $\phi F = 0$, where ϕ is the Siegel ϕ - operator; so we do not have to care about "several cusps". There are some more problems related to the Yoshida-lift: - (D) "scalar product formulas" - \widehat{E}) Relations to modular forms of weight $\frac{3}{2}$ - Yoshida has shown that $Y^2(1, Y)$ satisfies the Maaß-relations. We may ask more generally whether the Fourier coefficients of $Y^n(Y, Y)$ have some special properties. In chapter II we shall describe our proof of Yoshida's conjecture. Chapters III and IV will deal with $\stackrel{\frown}{\mathbb{E}}$ and $\stackrel{\frown}{\mathbb{F}}$ (respectively). # Chapter II: Non-vanishing properties of Yⁿ and applications (The method of L-functions) To prove the conjecture of Yoshida, we make extensive use of properties of automorphic (standard-) L - functions. This should not be surprising because the relevance of these L-functions for problems related to theta series is now well known (e.g. [Bö], [Bö], [Gr], [We]). Our proof of Yoshida's conjecture has essentially three ingredients: - -- Solution of problem A ("stable non-vanishing") - -- A characterization of θ_{cusp}^3 inside θ^3 in terms of automorphic L-functions - -- A theorem of A. Ogg The first ingredient is the easiest one: Proposition: For $$0 \neq \ell \in \mathcal{A}^{\mathcal{E}}$$, $0 \neq \ell \in \mathcal{A}^{\widetilde{\mathcal{E}}}$ we have $$Y^{n}(\ell, \ell) = 0 \quad \text{for all } n \iff Y^{3}(\ell, \ell) = 0$$ $$\iff \mathcal{E} \neq \mathcal{E}$$ The first equivalence follows from a result of Kitaoka [Kit] on the linear independance of theta series. To prove the second assertion, one has to understand precisely under which conditions two lattices L_{ij} and $L_{i'j'}$ are isometric. Let \mathcal{K}_N^n be the "N-integral" Heckealgebra (spanned by double cosets $\Gamma_O^n(N) {M^{-1} \ O \ O \ M^t} \Gamma_O^n(N)$ with M integral, $\det(M)$ coprime to N). It is known that \mathcal{M}^n has a basis consisting of eigenforms of \mathcal{K}_N^n ; to such an eigenform F we attach the standard L-function $$D^{N}(F,s) = \prod_{p \nmid N} \frac{1}{1-p^{-s}} \prod_{i=1}^{n} \frac{1}{(1-\alpha_{ip}^{i} p^{-s})(1-\alpha_{ip}^{-1} p^{-s})}$$ where the χ_{ip} are the Satake-parameters of F. Our second ingredient is the crucial Theorem: Let $0 \neq F \in \Theta^3$ be an eigenform of \mathcal{H}_N^3 with $\varphi^3 F = 0$; then $$F \in \Theta^3_{\text{cusp}} \iff \text{ord } D^N(F,s) \geqslant t$$ Indication of proof: " \Longrightarrow ": We use an integral representation for $D^N(F,s)$ which involves a (pullback of a) degree 6 Eisenstein series. Then the claim follows from the results of Feit [Fe] on the poles of such Eisenstein series and by a careful analysis of the "bad primes" (for this analysis we need that F is in θ^3). " \Leftarrow ": Let us assume that F is not a cusp form. The case $\varphi^2 F \neq 0$ reduces everything to elliptic cusp forms - this is easy. So we suppose that φF is cuspidal; for all $G \in \theta^2_{CUSD}$ which are eigenfunctions of \mathcal{M}_N^2 we can prove an identity (analogous to the one in [Bö₄] for level 1) *) $$\sum_{i,j} \frac{\langle G, \theta_{ij}^2 \rangle}{e_i e_j} \theta_{ij}^2 = c \operatorname{Res}(D^N(G,s) G$$ (*) This shows that $\mathbf{D}^{\mathbf{N}}(\mathbf{F},\mathbf{s})$ has a pole in s=1 and therefore $$D^{N}(F,s) = \zeta^{N}(s-1) \zeta^{N}(s+1) D^{N}(F,s)$$ cannot be of order \gg t in s=1 (Here $\searrow^N(s)$ denotes the N-restricted Riemann zeta function). Now let $0 \neq f \in A^{\epsilon}$, $0 \neq f \in A^{\epsilon}$ be eigenfunctions of the Hecke algebra. To make the theorem above applicable to our problem, we should first determine the standard L - function of $F := Y^3(f, f)$ in terms of data attached to f, f, by the results obtained so far it is clear that F is non-zero! Let \widehat{f} , \widehat{f} be elliptic modular forms of weight two corresponding (via Eichler-Shimizu-Jacquet-Langlands) to f, f and let a(p), b(p) be their eigenvalues for the usual Hecke operator T(p), $p \not f N$. We define $\langle (p), \langle (p), \beta(p), \beta(p) \rangle$ by $$B(p) + B(p) = b(p)$$ $B(p) \cdot B(p) = p$ By some local computations we get $$D^{N}(F,s) = \langle N(s) \rangle^{N}(s-1) \rangle^{N}(s+1) L_{sym}^{N}(\hat{\gamma}, \hat{\gamma}, s+1)$$ with $$L_{sym}^{N}(\hat{\gamma}, \hat{\gamma}, s) =$$ $$\frac{1}{(1-4(p)B(p)p^{-S})(1-4(p)B(p)p^{-S})(1-4(p)B(p)p^{-S})(1-4(p)B(p)p^{-S})}$$ *) We shall use the symbol "c" several times in the sequel to to indicate constants $\neq 0$; of course these constants do not coincide in general. \langle , \rangle is the Petersson scalar product. If \uparrow is not cuspidal - this means that \uparrow is just a constant - we have If we summarize all these informations, we see that we have indeed obtained a $\underline{\text{third obstruction}}$ for non-vanishing, now in terms of an $\underline{\text{analytic}}$ condition on an automorphic L-function: For Υ , Ψ as above - but not both constant - we have $\Upsilon^3(\Upsilon,\Upsilon)$ cuspidal iff $\Upsilon^2(\Upsilon,\Psi)=0$ iff $L^N_{\text{sym}}(\widetilde{\Upsilon},\widetilde{\Psi},2)=0$. Surprisingly the latter condition is possible only in very few cases: - a) If f and f are proportional to each other we may apply a classical result of Rankin, which says that $L_{\text{sym}}^{N}(f, \widetilde{f}, \widetilde{f}, s)$ has a first order pole in s=2 with residue beeing essentially equal to the Petersson scalar product $\langle f, f \rangle$. - b) If f and f are both non-constant and not proportional to each other, we can apply a theorem of Ogg [0], which says that $L_{\text{sym}}^{N}(\widetilde{f},\widetilde{f},2) \neq 0$ in other words $Y^{2}(f,f) \neq 0$. - c) It remains the case where precisely one of the automorphic forms let us say (-) is constant. Since $L^N(\gamma,2)$ is different from zero (convergent Euler product !) we get $Y^3((\cdot,\gamma)) \text{ cuspidal iff } L^N(\gamma,1) = 0$ Since the case f, ψ both constant is somewhat trivial (it just produces a Siegel Eisenstein series) we omit it from the formulation of the Final result: If $0 \neq 1$, $0 \neq 1$ are eigenfunctions in 4^{ϵ} with 1 not constant, then - a) $Y^3(\varphi, \psi) \neq 0$ - b) $Y^2(f,f) = 0$ iff f = const and $L^N(\widetilde{\psi},1) = 0$ - c) $Y^{1}((,,)) = 0$ unless \mathcal{C} and \mathcal{C} are proportional ### Complementary remarks 1) Linear independence of theta series. According to a conjecture of Andrianov [An] and Yoshida [Y2] on the linear independence of theta series we should have $\theta_{\text{cusp}}^3 = \{0\}$. Our results show that (via the map $\Psi \mapsto Y^3(1, \Psi)$) θ_{cusp}^3 is isomorphic to A^0 := linear span of those eigenforms Ψ in $A_{\text{cusp}}^{\varepsilon_0}$ with $L^N(\widehat{\Psi},1) = 0$, where \mathcal{E}_s is the constant map $\mathcal{E}_s: \{q_1, \ldots, q_t\} \longrightarrow \{1\}$. In general, $\mathcal{A}^0 \neq \{0\}$, as the example N=q=389 shows (see [SP], [Gr] and [Ha]). Anyway, the space \mathcal{A}^0 describes precisely up to which amount the conjecture of Andrianov-Yoshida is (not) true! 2) Scalar products. Take f, $\forall \epsilon \in A^{\epsilon}$ with $0 \neq Y^2(f, \psi)$ cuspidal. Then we know two representations of $Y^2(f, \psi)$ as linear combinations of theta series – one involving the values of and A^{ϵ} , the other one involving the scalar products $\langle F, 0_{ij}^2 \rangle \langle f, \psi \rangle$ eigenforms, see (*)). Actually these representations are the same Theorem: If f, ψ and F are as above then a) $$\langle F, \Theta_{ij}^2 \rangle = c \operatorname{Res}_{s=1} D^{N}(F,s) \left\{ f(y_i) f(y_j) + f(y_j) f(y_i) \right\}$$ b) $$\langle F, F \rangle = c \operatorname{Res}_{s=1} D^{N}(F,s) \{ f, f \} \cdot \{ \Psi, \Psi \}$$ where $\{\ ,\ \}$ is the canonical scalar product on $\mathcal A$. We have similar formulas also for the degree 1 and degree 3 cusp forms produced by Yoshida-lifts. We sketch a proof of the theorem above: We consider the degree 3 cusp form c Res D^N(F,s) Y³($$\{\gamma, \gamma\}$$) - $\sum_{i,j}$ $\frac{1}{e_i e_j} \langle F, \theta_{ij}^2 \rangle \theta_{ij}^3$ All we have to show is that this function is identically zero! But this follows from the fact that this function is again an eigenform of \mathcal{H}_N^3 with the same eigenvalues as those of the non-cusp form $Y^3(\mathcal{C},\mathcal{V})$; by the results above, it must be zero. 3) Eisenstein series of Klingen type. From general properties of pullbacks of Eisenstein series (see [Bö₂] or [Ga]), combined with a version of Siegel's theorem, we see that for $F \in \mathcal{M}_{cusp}^2$ indeed $$\sum_{i,j} \frac{1}{e_i^e_j} \langle F, \theta_{ij}^2 \rangle \theta_{ij}^n$$ is essentially (a residue of) an Eisenstein series of Klingen type attached to F. From this (and the scalar product formulas above) we can get a solution of Problem (C); similar arguments also work for the degree 1 and degree 3 cusp forms. 4) In a letter [Y3] Yoshida kindly informed us that he has also made some progress towards his conjectures [Y1, Y2]. His methods are different from ours. In particular – using results of Waldspurger – he has also obtained our result on $Y^2(1, \gamma)$ and an unconditional proof of Theorem 6.7 of [Y2]. # Chapter III: Modular forms of weight $\frac{3}{2}$ In this chapter we restrict ourselves to t=1, so N=q is a prime; we write $\mathcal{A}^{\frac{1}{2}}$ instead of $\mathcal{A}^{\frac{1}{2}}$. The basic facts which we need in this chapter can be found in [Gr], [Ko], [Kr], [Y2]. To each maximal order $R_i = L_{ii}$ of D we attach a ternary lattice $$R_i^0 := \left\{ x \in 2R_i + \mathbb{Z} \mid trace(x) = 0 \right\}$$ and a ternary theta series $$\mathcal{N}_{i}(\tau) = \sum_{x \in R_{i}^{0}}^{7} e^{2\pi i \operatorname{norm}(x)}.$$ Following [Ko] we define a space M of those modular forms g of weight $\frac{3}{2}$ with respect to $\int_{0}^{\infty} (4q)$ which satisfy in addition $g(a) = \sum_{D = 0}^{\infty} e^{2\pi i D \cdot L}$ with a(D) = 0 unless $-D \equiv 0$, 1 mod 4 Even more important for us is the subspace M^- M of those forms g whose Fourier coefficients a(D) vanish unless $\left(\frac{-D}{q}\right) \neq 1$. Via the Shimura-correspondence M_{cusp} is isomorphic to $\mathcal{M}_{\text{cusp}}^1$ and M⁻ corresponds to those forms f in \mathcal{M}^1 with f| $\binom{0}{q} \stackrel{-1}{0}$ =-f (see [Ko]). Now we define two mappings, both Hecke-equivariant $$W : \begin{cases} A & \longrightarrow M^{-} \\ P & \longrightarrow \sum \frac{\varphi(y_{i})}{e_{i}} \sqrt{1} \end{cases}$$ $$\widetilde{W}:\begin{cases} M^{-} & \longrightarrow & \downarrow \\ g & \longmapsto & \downarrow g \end{cases} \quad \text{with} \quad \left(g(y_i) = \langle g, \chi_i^c \rangle\right).$$ These mappings are adjoint to each other with respect to the Petersson scalar products on \mathcal{A} and M^- (we may extend the scalar product from $M^-_{\rm cusp}$ to M^-). Clearly $W(\P)$ can also be obtained in the following way: From [Y2, Thm 4.3] we know that $Y^2(1,\P)$ is in the Maaß space; so let $JY^2(1,\P)$ be the corresponding Jacobi form of index 1; a theorem of Kramer [Kr] asserts that the modular form of weight $\frac{3}{2}$ which corresponds to $JY^2(1,\P)$ is just $W(\P)$, so we get a commutative diagram Combining this with the results obtained in chapter II we get Proposition: Let $0 \neq A_{cusp}$ be an eigenform, then $$W(\hat{\gamma}) \neq 0$$ iff $L^{q}(\hat{\gamma},1) \neq 0$ (Actually we only proved this for $f \in \mathcal{A}^+$, but for $f \in \mathcal{A}^-$ both W(f) and $L^q(\widehat{f},1)$ are automatically equal to zero). To proceed further, we need an analogue of (*) for our ternary theta series : Theorem: Let $0 \neq g \in M_{cusp}$ be an eigenform of all Hecke operators, then $$\sum_{e_i} \frac{\langle g, \mathcal{N}_i \rangle}{e_i} = c L(g,1) g,$$ in particular, g is a linear combination of the ϑ_i iff L(g,1) is different from zero. Here we mean by L(g,s) the Dirichlet series $\sum \lambda(m) m^{-s}$ where $\lambda(m)$ is the eigenvalue of g for the Hecke operator $T(m^2)$. This theorem, combined with the fact that $\dim M = T$ = type number of D, gives a new proof of a result of Gross [Gr] which says that we have T linear independent theta series $\sqrt{}_{i}$ there is no $g \in M_{cusp}^-$ with L(g,1) = 0. Again we can obtain scalar product formulas: <u>Proposition</u>: Let $0 \neq \varphi \in \mathcal{G}_{cusp}$ be an eigenform. a) $$c L^{q}(\tilde{\varphi}, 1) \varphi(y_{i}) = \langle W(\tilde{\varphi}), \hat{\psi}_{i} \rangle$$ b) $$cL^{q}(\hat{r},1)\{f,r\}=\langle W(f),W(f)\rangle$$ # Corollary: a) For 4 as above $$\widetilde{W} W(\mathcal{P}) = c L^{q}(\mathcal{P}, 1) \Upsilon$$ b) For $g = M^-$, g eigenform WW(g) = cL(g,1)g $$WW(g) = cL(g,1)g$$ It is reasonable now to introduce a modified Yoshida - lift by $$\widetilde{Y}^{n}: \begin{cases} M^{-} & M^{-} \\ (g,h) \end{cases} \xrightarrow{\underset{i,j}{\longrightarrow}} \frac{1}{e_{i}e_{j}} \langle g, \psi_{i} \rangle \langle h, \psi_{j} \rangle \theta_{ij}^{n}$$ From the above it is clear that $$\hat{Y}^{n}(g,h) = Y^{n}(\tilde{W}(g), \hat{W}(h))$$ $$\tilde{Y}^{n}(W(\mathcal{C}), W(\mathcal{C})) = c L^{q}(\hat{\mathcal{C}}, 1) L^{q}(\hat{\mathcal{C}}, 1) Y^{n}(\mathcal{C}, \mathcal{C}).$$ So there is not much difference between looking at \textbf{Y}^n or at $\boldsymbol{\breve{Y}}^n$ as long as we are only interested in those $\{\epsilon\}_{\text{cusp}}$ with $\mathtt{L}^q(\,\widehat{\,\, (\,\,)}\,,1) \neq 0$. The striking point about $\, \widetilde{\mathtt{Y}}^n\,$ is that we have a beautiful kernel function to describe it: #### Theorem: $$(\tau, \tau', z) := \sum_{\mathbf{i}, \mathbf{i}} \frac{1}{e_{\mathbf{i}} e_{\mathbf{j}}} \sqrt[q]{\epsilon_{\mathbf{i}}} (\tau) \sqrt[q]{\epsilon_{\mathbf{i}}} (z)$$ is a kernel function for \tilde{Y}^{Π} . # Chapter IV: The Fourier coefficients In this chapter N = q is again a prime. The most ambitious programme would of course be to look for explicit formulas for the Fourier coefficients of $Y^n(\mathscr{C},\mathscr{C})$ in terms of some data attached to \mathscr{C} and \mathscr{C} . Our results are more modest; we consider the case n=2 and compute a certain mean value of Fourier coefficients: For $Y^2(\phi, \psi)$ with Fourier expansion $\sum_{T} a(T) e^{2\pi i \operatorname{trace}(TZ)}$ we study (for any discriminant -D < 0) the weighted average $$a_{D} := \frac{a(T)}{\epsilon(T)}$$, where T runs over all $Sl_2(\mathbb{Z})$ - classes of binary integral quadratic forms with disc(T) = -D and $\xi(T) = \#$ proper automor - phisms of T (=1 in general). In analogy to the results in $\left[B\ddot{o}_{3}\right]$ we may expect here also some relations to modular forms of weight $\frac{3}{2}$. Indeed, put $$g = W(\mathcal{P}) = \sum_{D > 0} b(D)e^{2\pi i D\tau}$$ $$h = W(\mathcal{P}) = \sum_{D > 0} c(D)e^{2\pi i D\tau}.$$ Then we get (at least for fundamental discriminants -D = 0) a very simple identity: $$\left[\mathbf{a}_{\mathbf{D}} = \mathbf{y}_{\mathbf{D}} \, \mathbf{b}(\mathbf{D}) \, \mathbf{c}(\mathbf{D}) \right]$$ where χ_D = 2 if q | D and χ_D = 1 otherwise. We may reformulate this result as an identity for Dirichlet series (now for general discriminants) as follows: Recall that for any degree 2 Siegel modular form $$F(Z) = \sum_{T} a(T) e^{2\pi i \operatorname{tr}(TZ)}$$ we have the Koecher - Maaß - Dirich- let series $\vec{\beta}_F(s) = \sum_D a_D^{-s}$ and for modular forms g, h \in M as above we define a (modified) Rankin - Konvolution $$\mathcal{R}(g,h,s) := \sum_{D} \chi_{D} b(D) c(D) D^{-s}.$$ Theorem: For any $F = Y^2(f, \psi)$, g=W(f), $h=W(\psi)$ we have $\begin{cases} F(s) = (2s-1) & (g,h,s). \end{cases}$ # Remarks. - 1) If $L^q(f,1) = 0$, then g = 0 (and the same for ψ); in other words, the formula above together with the results of the preceding chapters prove the existence of many degree 2 Siegel modular forms with Koecher-Maaß series vanishing identically. - 2) Our first attempt to prove the non-vanishing of $Y^2(?, ?)$ was by means of the theorem above (if $W(?) \neq 0$, $W(?) \neq 0$). However it seems to be a very difficult problem to get a reasonable criterion for the (non-) vanishing of the Rankin-convolution attached to two modular forms of half-integral weight. We can however prove directly (i.e. by the theorem above, not using the results of chapter II) a version of Theorem 6.7 of [Y2]: Corollary. For $\mathcal{P}_{\xi} \not A$ with $W(f) \neq 0$ we have $Y^{2}(f, f^{\xi}) \neq 0 \quad \text{for all } \xi \in \text{Aut}(\xi).$ The assertion of the theorem above will easily follow from a purely arithmetical statement on representation numbers (representations of binary quadratic forms by quaternary forms). # Let us start with a numerical example: We take q=11 - this also occurs in [He, p.900, Beispiel 2], [Y1, Example 1] and [Gr, §13]. We have 3 inequivalent integral quaternary quadratic forms of determinant $\frac{1}{16}$ q^2 : $$Q_{11} \sim x_{1}^{2} + x_{1}x_{2} + 3x_{2}^{2} + x_{3}^{2} + x_{3}x_{4} + 3x_{4}^{2}$$ $$Q_{12} \sim 2(x_{1}^{2} + x_{2}^{2} + x_{3}^{2} + x_{4}^{2}) + 2x_{1}x_{3} + x_{1}x_{4} + x_{2}x_{3} - 2x_{2}x_{4}$$ $$Q_{22} \sim x_{1}^{2} + 4(x_{2}^{2} + x_{3}^{2} + x_{4}^{2}) + x_{1}x_{3} + 4x_{2}x_{3} + 3x_{2}x_{4} + 7x_{3}x_{4}$$ The ternary forms corresponding to Q_{11} and Q_{22} are $$R_1^0 \sim 12x^2 + 44xy + 44y^2 + 11z^2$$ $R_2^0 \sim 3x^2 + 2xy + 15y^2 + 44yz + 44z^2$ The adjoint forms of R_1^0 and R_2^0 are equivalent to $$\hat{R}_1 \sim x^2 + xy + 3y^2 + z^2$$ $\hat{R}_2 \sim x^2 + xy + y^2 + xz + 4z^2$ For two positive definite quadratic forms S and T we denote by A(S,T) the number of integral representations of T by S. We claim that there should be some relation between $A(R_{\bf j}^{\rm O},D)$ and $A(R_{\bf j}^{\rm O},D)$ on one hand and $A(Q_{\bf ij},T)$ with T binary of discriminant -D on the other hand. | D | $A(R_1^0,D)$ | $A(R_2^0,D)$ | $A(R_1^0,D)^2$ | $A(R_1^0,D)A(R_2^0,D)$ | $A(R_2^0,D)^2$ | |----|--------------|--------------|----------------|------------------------|----------------| | 3 | 0 | 2 | 0 | 0 | 4 | | 4 | ,2 | 0 | 4 | 0 | 0 | | 11 | 2 | 0 | 4 | 0 | 0 | | 15 | 4 | 6 | 16 | 24 | 36 | | 31 | 8 | 6 | 64 | 48 | 36 | The quadratic form $ax^2 + bxy + y^2$ will be denoted by [a,b,c]. | D | Т | $\frac{A(Q_{11},T)}{F(T)}$ | $\frac{A(Q_{12},T)}{\epsilon(T)}$ | $\frac{A(Q_{22},T)}{z(T)}$ | |----|----------|----------------------------|-----------------------------------|----------------------------| | 3 | 1,1,1 | 0 | . 0 | 4 | | 4 | [1,0,1] | 4 | 0 2 | О . | | 11 | [1,1,3] | 8 | 0 | O | | 15 | [1,1,4] | 16 | 0 | 0 | | 15 | [2,1,2] | 0 | 24 | 36 | | 31 | [1,1,8] | 32 | 0 | 36 | | 31 | [2,+1,4] | 16 | 24 | O | Everything in these tables becomes very smooth if we look at the weighted average $$A_{ij}(D) := \underbrace{\sum_{\{T\}}}_{\{T\}} \frac{A(Q_{ij},T)}{\mathcal{E}(T)},$$ where T runs over all (properly) inequivalent integral binary quadratic forms of discriminant -D; in fact we have (not only for the numerical example above but for arbitrary primes q) the following $$\frac{\text{Theorem}}{\text{Theorem}}: \quad A_{ij}(D) = \chi_{D} \cdot A(R_{i}^{O}, D) \cdot A(R_{j}^{O}, D)$$ for 1 = i, j = H and -D a fundamental discriminant - and a similar statement for non-fundamental discriminants. Remark. We can reformulate the statement above as follows; It is elementary that (for -D fundamental) $$A(R_{i}^{O},D) = \frac{1}{2} \left(\begin{array}{c} A(\hat{R}_{i},T) \\ \xi(T) \end{array} \right).$$ Therefore the theorem above can be written in a more symmetric way as $$\frac{A(Q_{ij},T)}{(T)} = \frac{1}{4} \stackrel{A(\hat{R}_{i},T)}{(T)} \stackrel{A(\hat{R}_{j},T)}{(T)} \qquad (***)$$ One might try to make this statement stronger by putting in everywhere a character of the class group of \bigcirc (\bigcirc). In our example the cases D = 3, 4, 11 are of course trivial. | D | Т | A(Î,T) | $A(\hat{R}_2,T)$ | |----|-------------------|--------|------------------| | 15 | [1,1,4] | 8 | 12 | | 15 | [2,1,2] | | , , , , , , , O | | 31 | [1,1,8] | 0 | 12 | | 31 | [2, <u>+</u> 1,4] | 8 | 0 | The example D = 15 shows that we have been too optimistic: $+ 24 \stackrel{?}{=} \frac{1}{4} (8 + 0) (12 + 0)$ For a correct strengthening of (***) we refer to [Bö-Sp 2]. Some applications. - 1) In [Bö $_3$] we conjectured (for Siegel modular forms of de-gree 2 and level 1) that the square of the average a_D should be related to a special value of the twisted spinor-L-function. The result of this chapter shows that $Y^2(\Upsilon, \Upsilon)$ satisfies that conjecture. - 2) We may obtain a new proof of Waldspurger's formulas for the square of the Fourier coefficients of modular forms of half-integral weight (in the case of weight $\frac{3}{2}$) as follows: For $f \in \mathcal{A}$, f an eigenform, and a fundamental discriminant -D, we can compute the average a_D for $Y^2(f,f)$ in two ways: First of all, according to the formulas above, $$a_D = \langle \langle \rangle_D b(D)^2 \rangle$$ with b(D) = D - th Fourier coefficient of $g := W(\mathcal{C})$. Secondly, by interpretating $Y^2(f,f)$ as a kind of Eisenstein series attached to $Y^1(f,f)$, we may get (by some analytic considerations) a formula of type $$a_{D} = A(f) D^{\frac{1}{2}} L(g,1) L(g,D,1)$$ where A(f) is some (explicitely known) constant depending on f and L(g,D,s) denotes the twist of L(g,s) by the quadratic character $\left(\frac{-D}{-}\right)$. Combining these two formulas we get that $b(D)^2$ is proportional to $\int_D^{1/2} L(g,D,1)$; unfortunately this proof does not give any information for those f with W(f)=0 (i.e. for those f with $L^q(f,1)=0$). For details we refer to a paper in preparation. #### Final remarks. In some sense the results presented here are not complete. - -- We should consider Eichler orders instead of maximal orders; this will indeed be done in [Bö-Sp 2]. - -- We should include the case of theta series with harmonic coefficients as in | Y1, Y2 | and in | Ta |. - -- The results of chapters III and IV should be extended to arbitrary quaternion algebras (not just those ramified only in q, \sim). Our results on these more general problems are not complete at present, but we are working on them. We hope to treat them in future papers. Acknowledgement: The first-named author would like to thank the Japanese mathematical community and especially Professor F. Sato for warm hospitality during his stay in Japan. This stay was made possible by a generous Research Fellowship of Rikkyo Uni-versity, which is gratefully acknowledged. #### REFERENCES [Bö-Sp 2] : Siegel modular forms and theta series attached to quaternion algebras. Preprint 1989 (preliminary version) Applications Khabarovsk 1988 - [Fe] Feit, P.: Poles and residues of Eisenstein series for symplectic and unitary groups. Memoirs AMS 346 (1986) - [Ga] Garrett, P.B.: Pullbacks of Eisenstein series; applications. In: Automorphic Forms of Several Variables (Taniguchi Symposium), Birkhäuser 1984 | Gr | Gross, B.: Heights and the special values of L-series. In: Number Theory, CMS Conference Proc. 7 (1987) | | | | |-------|----------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--| | Ha | Hashimoto, K.: Ranks of theta series for ternary and quaternary forms (unpublished tables) | | | | | He | Hecke, E.: Mathematische Werke. Vandenhoeck und Ruprecht Göttingen 1970 | | | | | Kit | Kitaoka, Y.: Representations of quadratic forms and their applications to Selberg's zeta functions. Nago-ya Math. J. 63, 153-162 (1976) | | | | | Ko | Kohnen, W.: Newforms of half-integral weight. J. reine angew. Math. 333, 32-72 (1982) | | | | | Kr | Kramer, J.: Jacobiformen und Thetareihen. manuscripta math. 54, 279-322 (1986) | | | | | [0] | Ogg, A.: On a convolution of L-series. Invent. Math. 7, 297-312 (1969) | | | | | SP | Schulze-Pillot, R.: A linear dependance of theta series of degree 2 and weight 2. To appear in Proc. of Journées Arithmétiques Ulm 1987 | | | | | Ta | Tanigawa, Y.: Construction of Siegel modular forms of degree three and commutation relations of Hecke operators. Nagoya Math. J. 100, 83-96 (1985) | | | | | [We | Weissauer, R.: Stabile Modulformen und Eisensteinreihen.
Springer Lecture Notes in Math. 1219 (1986) | | | | | [Y 1] | Yoshida, H.: Siegel's modular forms and the arithmetic of quadratic forms. Invent. Math. 60, 193-248 (1980) | | | | | Y 2] | : On Siegel modular forms obtained from theta series. J. reine angew. Math. 352, 184-219 (1984) | | | | | Y3 | : Letter, 1988 | | | | Mathematisches Institut der Universität Hebelstr. 29 D - 7800 Freiburg Bundesrepublik Deutschland Freie Universität Institut für Mathematik II Arnimalle 3 1000 Berlin (West) 33