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A Regularized Boundary Integral Equation'Method

for Elastodynamic Crack Problems

N. Nishimura and S. Kobayashi

Department of Civil Engineering, Kyoto University

Abstract This paper presents a double layer botential approach of
elastodynamic BIE crack analysis. -Our method regularizes the
conventional strongly singular expressions for the traction of double
layer potential into forms including integrable kernels and Oth, I1st
and 2nd order derivatives of the double layer‘ deﬁsity. The
manipulation is systematized by the use of the stress function
representation of the differentiated double layer kernel functions.
This regularization, together with the use of B spline functions, is

shown to provide accurate numerical methods of crack analysis in 3D

time harmonic elastodynamics.

1 Introduction

From its early stage of development, the boundary integral equation
method has been expected to provide an efficient numerical method of
analysis for crack problems._ In particular the formulation using
double layer potentials appears to be promising because it can deal
with cracks of arbitrary shapes, and because it keeps the size of
numerical analysis relatively small. Nevertheless, this method has not

been investigated very much until recently, because the integration of
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hypersingular kernels in derivatives of double layer potentials was
considered to be extremely difficult. Recent efforts to make this
computation easier, however, have succeeded either in evaluating these
integrals direétly (Takakuda et al. (1985), Budreck & Achenbach(1988))
or in reducing these singular kernels to v.p. (Cauchy's principal
value) singular functions (e.g. Bui(1977), Weaver(1977), Sladek &
'Sladek(1984), Polch et al.(1987)), or to integrable functions (e.g.,
the Galerkin formulation by Nedelec(1986) and the collocation method
by Nishimura & Kobayashi (1988)). |
" In this paper we shall continue the investigation by Nishimura &
Kobayashi (1988) by proposing a new expression for the traction of the
double layer pbtentials in 3D time harmonic elastodynamics with the
help of the stress function representation of the differentiated
fundamental solution. The new formula for the traction is given in
terms of integrable kernel functions and Oth, 1Ist and 2nd order
derivatives of double layer densities. In this respect the new formula
is similar to the earlier results in Nishimura & Kobayashi(1988), but
is more general in that its extension to other applications such as
anisotropy, time domain BIEM, etc. is straightforward. The new
regularization formula, together with the use of collocation and B
spline, provides 3D BIEM implementations, which take the effect of
| near tip singularities into consideration by using a change of
coordinate. We test our numerical method by solving simple problems
and then by comparing the results with known solutions. This paper
* concludes with comments on the extension of the present formulation to
anisdtropic cases, and on the relation between Nedelec’'s variational

formulation and the present method.
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2 Formulation

Let S be a piece of smooth curved surface in R® bounded by a piecevise
smooth edge 9S. Also let n be the unit normal vector to S, which
points into a side of S called the 'positive side’. Our problem is to

find a solution u which satisfies the equations
Afu + pfu =0  in RS, (A*u = div C[Vu))

Tu* = 0 on S, (Tu := C[Vuln)

lim (u'(x) — u (x)) =0, xe€8, x¢€d8S, (la-c)
T—-xg _

and radiation condition (Kupradze et al.(1979)) for u-u;, where A* ,
T, C, p, w, and ul.stand for the Navier operator, elastic traction
operator, élasticity tensor, density, frequency, and the incident
field which satisfies (la) in R®, respectively. Also, we have used
C[Vu] for a tensor whose cartesian components are given by
Cijxt(8/0xk)u;, and a superposed + (-) for a limit from the positive
(negative) side of S, respthively. The solution u to this problem is
complex valued. A physically 'significant solution 1is obtained by
taking the real part of u e i,

As is known, the solution u has a double layer representation given

by

u(z) = fs MG w)e) dS + u(x), reS @)
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where Iy is the double layer kernel defined in terms of the

fundamental solution I' as

T E%Ei‘ap(x—y)c,-kpan(y). | (3)

The fundamental solution of (la) for the isotropic case is written as

(Kupradze et al. (1979))

T(x-y) =1 F®R® + VOVGR), (R := Iz — yl) (4)
where
ik,R ik,R ikR
FR) = S, CR) = (P~ Sp0).

@

YT (/) 2’

(5a-d)

1 is the unit tensor, and A and u are Lame's constants, respectively.

Also, C takes the form given by

Cijkt = R6i;dkt + m(8ikdj1 + 8i16jk). : (6)

For a smooth ¢, (1b) and (2) yield an 'integral’ equation
Ty (x) = p.f.j; T (x,y)e(w) dS, zeS (N

vhere p.f. designates the finite part of a divergent integral.

As one sees easily, the integrand in (7) is hypersinguiar, making
(7) not suitable as a tool of numerical analysis. However, we can
reduce the order of the singularity of TI'} by using the integration by

part as we shall see.



Td'begin with, we consider the static case (w=0). We readily see

that there exists a stress function ®,qs which satisfies
a ad
Cabikgx—k'é_y?rij (x—u)Cedji

= eatpeb)qeckredlsax 6(1, o__9 <I)pqrs(ﬁ:_y) + Dabedd(x-y) (8)

dyk U

where I';; is the fundamental solution of (1a), ejjk is the permutation

symbol and Dgcq is a constant, respectively. Indeed, one may view

CLb&;%%;

Fij (9)
as the (a, b) component of the stress associated with I';j , which must
be in equilibrium at x7+y. This means that there exists a stress
function for the expression in (8). In addition the symmetry of the
LHS of (8) with respect to (a, b) and (c, d) requires the existence of
the stress function of the form on the RHS of (8) for x+y. Finally,
from the theory of distribution, one shows that the last term in (8)
is required for the equality to be valid everywhere in R3.

We then use (8) to compute the traction of the doubie layer

potential as follows:
A n () L oW T ij (@x-y)Cedjine (Y) 0a (Y)

fnb(x)eatpeb;qedlsaax aax aaqu)pqrs(nceckr(od k)dS

f (nb(x) - nb(y))eatpeb)qedlsa(?r 62: aaqu’pqrs(nceckrfpd k)dS
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- p.t .fea‘pedls qursnbeb q"'—— (llceckr(pd k)dS, (10)

where x¢S, and the normal vector n(x) is arbitrary as far as it
approaches the positive normal vector to S as x tends to a point on S.
The p.f. symbol on the RHS of (10) is due to the singularity of
VVe on dS. It is seen that the kernel functions on the RHS of (10)
have integrable singularities at x=y if S is smooth. Indeed, the 2nd
(8rd) derivatives of & are O(Ix—yl*) (O(Ix—1;r2)) , and
n(:r)—n(y)=0(|x—y|) as lx—yl |0 . Therefore the limit of (10) as x—S
takes exactly the same form as (10) because all the kernels in (10)

are integrable. We thus see that the regularization of (7) is

straightforward once one gets the stress function & in (8).
We now proceed to compute &. This calculation is made easier with

the help of the Fourier transform. In 3D isotropic case the Fourier

transform of
- Cabikb‘@x—ké‘a:_r‘l‘rij (x)Cediji (11) -

is written as
(&+2u1) g 1A% 1€1%0w8ea + 22 [€1 (tatudea + totaden)

+ uA+2n) [€1%(8uctbtd + Svatate + Oodfblc + Sbctatd)

— ApA+p)gatvictal » . (12)

vhere f is the parameter of the Fourier transform. But (12) is equal

to



(A'+ 2411) '£ |4 { (2Apeqinet jnecknedin

+ u(i+2u) (euinecjmebknedln + _eaimedjmebknecln) } fifjfkfl » (13)

modulo a constant tensor, whose Fourier inverse transform is

proportional to Dirac’'s delta. Hence we use (8) and (13) to have
B = = gr(hegn (ZA0stbw + (42D (Badu + badu))
- Jz-yl. - (14)
We now consider the dynamic case. Since the elastodynamic
counterpart of (12) differs from (12) by a function of order 1/|fl2 as
|f| —oco , ye generally have

Chbm;§2125%7f3j(I-y)den

d 8 a
= €qip€bjqCckredls aIi an ayk ayl

Dpars (x-Y) + Wobed (x-Y)

+ Dipcad(x-y), - (15)

vhere ¢* is a function of order Ix—yl as |lx-yllo0, W* is a function
which has an integrable singularity at x=y and D},.q is a constant
tensor. Of course, [';; in (15) indicates the glastodynamic fundamental
solution. The functions ¢* and ¥* in (15) are not determined uniquely.
For example one may use the elastostatic & for ¢*, or alternatively

use the following in the isotropic case:
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a

Cabikgaa_a!ﬂrij (x-y)Cedijt

1
A (A+p)

k ik.R k ik R
{uk?{15a55cd+u(5ac5bd + 6adBbe ) } felkl _ ke >

Kkt R k¢ R

- lkzsabscdast + 2'{’-‘-(60!)6cs§dt + 8cdSas bt )

+ U2 (8acBbsbat + 8adBbsSet + ObdOasct + Obcdasdat) )

3 3 /eik,R eikLR
dxsdut\ R -R)

- f?{zwmam + (A+21) (8prqs + BpsSar) }

o 3 3 8 a8 (e gkk
€aip€bjqCckredls axi ax,- aykayl\ R R ’ (16)
where R=|lx-yl , and ~ indicates an equality modulo Dirac’'s delta.

The first 4 lines on the RHS of (16) are identified as ¥}p.q. It is now

a simple matter to regularize the traction of the elastodynamic double

layer potential. Indeed, we have

a
S, 7@ Cabieg Tl () Coaine (@) pa w)lS

= - fs (np(x) — nb(y))eaipequedlsg(?r__ﬁ%‘_‘%@;qrs(ncecqu)d,k)ds
. ! i v

o 0 0 g 9
- p~f-fsealpedls ax; aqu’pqrsnbeb)qayj (nceckr(Pd.k)dS



" L 1 () Wpede () 9adlS. ' - a7

In passing, we note that (16) leads to a variational statement similar
but not identical to the expression used by Nedelec (1986) .

Equations (16) and (17) are considered to be useful as the basis of
numerical analyses because all the singularities of the integrands in

(17), except for the near tip singularities of VVe¢, are integrable.

75

In addition, there is an easy way of evaluating the p.f. integrals in-

(17), as we shall see. Finally, ve note, in the flat crack case, that

the 2nd integral on the RHS of (17) vanishes as x tends to S. Also,
onel shows that the in plane and out of plane components of (17)

decouple as one computes the derivatives in (17) explicitly by using

(16).

3 Numerical analysis

The numerical method used here is almost identical with those used in
Nishimura & Kobayashi(1988). In this section, however, we shall
outline our numericai method for the purpose of completeness. As in
Nishimura & Kobayashi(1988), we shall discretize (7) by using (17) and
the collocation method, which is believed to be efficient in
engineering applications. With this choice, however, it is preferable
to use C! base functions. Indeed, piecewise constant base functions
for ¢ are likely to pollute the solution by introducing 1/6
singularities in (17), where 6 is the distance between the observation

point x and a point where ¢ is discontinuous. Actually, the second
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derivatives of ¢ in (17) would behave like the 1st derivatives of
Dirac’'s delta, which would pick up singularities from the kernel
functions. Still worse is a piecewise linear approximation, in which
case (17) would diverge logarithmically at points where the slope of
the' base functions are discontinuous. This means that a nodal
collocation with piecewise linear base functions breaks down. Hence we
are left with the use of C!' base functions with which (17) is seen to
remain bounded on S.

This restriction of C! continuity is not very stringent in a
special case where one can find a smooth mapping from S onto a square,
say |x|f<a, |xzf<a, x3=0 . Indeed, one first generates B-spline

functions of x; and xz independently in the following manner:

1) Introduce a parameter t such that s = a sin(nt/2a) (Itl<a) where s

is either x; or x2.

2) Divide the interval (-a, a) for t into subintervals of equal length

At by using nodes (-a =) to < t) < ... < th (= @) .

3) Define 3rd order spline functions o;(t) (i =1,2,...,n) by
oi (1)
o1 (t)
t.<t<tp.1 where (see Fig.1)

fdt=til/at) G =1,..,n with exceptions

a(|t-t;|/At) for te<t<t; and o.(t) = g(|t-t.l/At) for

1 — (3/2)n° + (3/4)n° 0=n<l1, _
fa) ={u4@ - 0’ 1=p<e, (18)
0 otherwise,
am) = @24 - - (1/20 - P o=n<t. - (19)

10
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Fig.1 Spline functions

With the spline functions of x; and x? thus defined, we can nov
proceed to construct a system of base functions on the square by
multiplying the x; and x2 spline functions together. Namely, we use
0; (t(x1))oj(t(x2)) as the base functions. Finally one determines the
base functions €;(x) on S by using the composition of the mapping from
S to the square and the base functions on the square which we have

jﬁst def'ined.

Now assume

¢ = 2.0 (x), (20)

vhere ¢, are numbers: We substitute (20) into (17) to discretize (7),
and solve the fesulting numerical matrix for ¢; to determine ¢ with
the help of (20). Note that ¢(x) for a point x near 4S8 is
asymptotically proportional to the square root of the distance from
the edges of the crack to x. This is due to the felation between s and
t. Hence one easily obtains stress intensity factors by computing the
coefficients of square root singular terms in ¢. At corner points,

hoyever, this method renders ¢ non singular. The exact solution, on
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the other hand, is known to be weakly singular there with an exponent .

which is greater than 1/2 and is dépendent on Poisson’'s ratio (e.g.

Takakuda(1985)). This neglecting of the corner singularity, however,

11
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does not seem to.have a significant effect on the overall accuracy of
the numerical solution as we shall see through examples.

Another practically important special case which allows a simple
implementation is the case where thererexists a smooth mapping from S
onto a disc. By the same reasoning as before we are justified to
restrict our attention to the case of a penny shaped'crack having a

radius of a. Our scheme for this case goes as follows:

1) Introduce (t, 0) coordinate system by which the natural polar
coordinate on the crack, denoted by (r, 8), is expressed as

(r,0) = (a sin(xt/2a),0). We also define (¢,€2) = (t cosO,t sinf) .

2) Divide the interval (0, a) for t into subintervals of equal length
At by introducing nodes (0 =) tg < t; <...< t,1 (= a) . Also divide
(0, 2rm) bfor 6 into subintervals of equal length
(0 =) 8 < 0y <...< 0, (=2n). For nodes (ti 0;)
=1i=n1=3j=m)veuse 'product’ base functions similar to

those used before. This determines (n-1)m base functions Q;(x).

3) In the doﬁain defined by (t,0), t = t, 0 =0 < 2r, ve take
points §i (i < i = k) arbitrarily. Draw circles of arbitrary (but not
too large) radius 2r; centred at ¢ Define ’'bell shaped’ base
functions associated with £ by Qa-1)m+i () = f(|f-—fi|/ri)f A standard

choice for r; is At.

4) Use the base functions defined in 2) and 3) (see Fig.2), assume

(20) for ¢, and then discretize (7) with the help of (17).

12



79

Fig.2 Base functions for penny shaped crack

Finally we make several comments concerning our methods. We firs}
note that ¢; in (20) does not have a clear physical meaning since
(h(x;)#&i;. This is why we prefer the name ’'base functions® for - our
Q;. The second comment is related to the method of evaluatihg the
remaining p.f. integral in (17). 1In order to explain our method wve
take the second special case as an example. We shall start with a

formula

' 28 fra 3 \2
p.f.fo fo (£5)2 a(r,0) H(r,8)rdrdo

- fo foa (%)%(r,e)(ru(r,e) ~ aH(a,0))drdd, @1)

13
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where Q stands for one of the base functions having singularities on
as ((a/ar)za ~ (a-r)¥2), and H is'a function regular at r=a. In
deriving (21) we have used the fact that 2 vanishes except in a region
near the tip. With (21) we can compute the p.f. integrals in (17)
numerically since they take the form of the LHS of (21), and the RHS
of (21) cbnverges in the ordinary sense. For evaluating an integral
having an integrable but weakly singular integrand, we use changes of
coordinates used by Lachat & Watson(1976) énd by Watson(1982),
together with the Gaussian integration. Finally, we remark that the
(ei*f/R-e’*F/R) terms in (16) should be evaluated by using series
expansions when kiR is small. This is in order to avoid cancellation,

as has been discussed in Kobayashi & Nishimura(1982).

4 Numerical results

We consider a square crack having side length of 2q subject to a plane
P wéve of normal incidence. The stress magnitude of the incident wave
is po. This problem has been investigated by Itou(1980). Our analysis
has used a mesh having 169 nodes. Poisson’s ratio is set equal to 0.2.
Fig.3 shows the stress intensity factor along an edge of the crack.
Fig. 4 plots the crack opening displacement ¢3 on x1=x3=0 in the
cartesian coordinate shown in the same figure. These figures show that
the results of the present analysis (symbols), agree yell with the

numerical results by Itou (lines).

1k



[3-]
o
©
£ s
[~}
=
=~ 1 BIEM ITOU
X 3
. °
o
&
]
o
o
P T T T T T T T T Y 1
.00 0.20 0,40 0.60 0.80 1.00

X

0.00

0,00 0.20 0.40 0.60 0.8 00

0 1.
X,/ a

Fig.4 Crack opening displacement of a square crack
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5 Concluding remarks

1) In statics, a stress function exists for an arbitrary equilibrated
stress field. This means that the regularization is possible
regardless of the material symmetry, although it is not very easy to
obtain the exélicit forms of the stress functions similar to (16) in
the general aD énisotropic case. In 2D case, however, it is not
difficult to obtain the general formulae for the stress functions even

in the fully anisotropic case. Indeed, we have

( —Cabekg%;g%rucﬂcd)

= ["‘lz‘eaiebjeckedlfifjfkfldet C

+ pw?(CabedCijit — CijanCitea)€j€1 — p%*Cabed)/d (22)

where ¥ stands for the Fourier transform and

Jo = $Ciiki€ i€ Coarsat s€inhr

J = Jo — pe®Cijit€i¢r + plat,
det C = 2(Cy1111C2222C1212 + 2C1122C1222C1112

— CRii2Cozzz — ChizCi2iz — Cha2eCiinr) . ” (23a-c)

The . Fourier inversion of (22) for the static orthotropic case can be
carried out explicitly by using standard techniques (e.g. Green &
Zerna(1954)). The dynamic counterpart, however, is possible only in

the time domain. Namely, the Fourier inversion of (22) in the

16



orthotropic case is possible if one takes w to be the parameter of Fhe
Fourier transform with respect to time. In this papef we shali not go
into further detail of the regulafization process in time domain
because this subject has been. discussed elsewhere (Nishimura &

Kobayashi (1987) and Guo et al. (1987)).

2) The present formulation is closely related to the variational
formulation by Nedelec(1986). To see the relation bétween his
formulation and ours, we remember that our method moves some
derivatives in Ty to the double layer density by using integration by
part. Nedelec’'s formulation starts by multiplying (7) by an arbitrary
weight function w; such that w;=0 on 8S, followed by integration of
the resulting expression over S. Integration by part then transfers
some of the derivatives in TI'y to the double layer density and others

to the weight function, thus yielding Nedelec’s . variational

formulation. Some of the advantages of Nedelec’'s formulation are: 1)

The resulting matrix equation is symmetric and good conditioned. 2)
One may use ® base functions for computing the crack opening
displacement. The present method, on the other hand, is less flexible
than his as far as the choice of base functions is concerned because
our method breaks down with piecewise linear elements, for example.
However, our method is presumably faster than his method since ours

uses collocation.

3) The motivation for the use of C! elements in our method has been-to
eliminate the non-physical singularities of the traction on the crack
face. This choice has made the use of higher order elements possible,

but at the same time has set a limit to the possible shape of cracks.

17
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When an approximation‘ ¢'; for the crack opening displacement ¢; is
available, however, one may introduce a new unknown function ¥; in

terms of which the real crack opening displacement ¢; is expressed as

oi = ¢'i ¥i, (no sum over 1) (24)

and then use piecevwise constant approximation for ¥;. For example one
may use the exact static solution, if available, for ¢’; in carrying
out an elastodynamic analysis for a small w. This approximation does
introduce 1/8 singularities into the numericél solution, as discussed
in 3. However, the effect of these singularitieS'on the accuracy of
the solutions at collocation points may not be very important when the
solution ¥; is expected to be almost constant over S. An attempt along

this line in time domain is found in Guo et al. (1987).
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